Statistical Traffic State Analysis in Large-scale Transportation Networks Using Locality-Preserving Non-negative Matrix Factorization

Abstract : Statistical traffic data analysis is a hot topic in traffic management and control. In this field, current research progresses focus on analyzing traffic flows of individual links or local regions in a transportation network. Less attention are paid to the global view of traffic states over the entire network, which is important for modeling large-scale traffic scenes. Our aim is precisely to propose a new methodology for extracting spatio-temporal traffic patterns, ultimately for modeling large-scale traffic dynamics, and long-term traffic forecasting. We attack this issue by utilizing Locality-Preserving Non-negative Matrix Factorization (LPNMF) to derive low-dimensional representation of network-level traffic states. Clustering is performed on the compact LPNMF projections to unveil typical spatial patterns and temporal dynamics of network-level traffic states. We have tested the proposed method on simulated traffic data generated for a large-scale road network, and reported experimental results validate the ability of our approach for extracting meaningful large-scale space-time traffic patterns. Furthermore, the derived clustering results provide an intuitive understanding of spatial-temporal characteristics of traffic flows in the large-scale network, and a basis for potential long-term forecasting.
Type de document :
Article dans une revue
IET Intelligent Transport Systems, Institution of Engineering and Technology, 2013, 7 (3), pp.283-295. 〈10.1049/iet-its.2011.0157〉
Liste complète des métadonnées

Littérature citée [49 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00766716
Contributeur : Yufei Han <>
Soumis le : jeudi 20 décembre 2012 - 15:18:32
Dernière modification le : lundi 12 novembre 2018 - 11:03:43
Document(s) archivé(s) le : jeudi 21 mars 2013 - 03:45:52

Fichier

IET-journal_v4.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Yufei Han, Fabien Moutarde. Statistical Traffic State Analysis in Large-scale Transportation Networks Using Locality-Preserving Non-negative Matrix Factorization. IET Intelligent Transport Systems, Institution of Engineering and Technology, 2013, 7 (3), pp.283-295. 〈10.1049/iet-its.2011.0157〉. 〈hal-00766716〉

Partager

Métriques

Consultations de la notice

396

Téléchargements de fichiers

248