
HAL Id: hal-00767064
https://inria.hal.science/hal-00767064

Submitted on 19 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Feasibility of Measuring the Internet Through
Smartphone-based Crowdsourcing

Adriano Faggiani, Enrico Gregori, Luciano Lenzini, Simone Mainardi, Alessio
Vecchio

To cite this version:
Adriano Faggiani, Enrico Gregori, Luciano Lenzini, Simone Mainardi, Alessio Vecchio. On the Feasi-
bility of Measuring the Internet Through Smartphone-based Crowdsourcing. WiOpt’12: Modeling and
Optimization in Mobile, Ad Hoc, and Wireless Networks, May 2012, Paderborn, Germany. pp.318-323.
�hal-00767064�

https://inria.hal.science/hal-00767064
https://hal.archives-ouvertes.fr

On the Feasibility of Measuring the Internet

Through Smartphone-based Crowdsourcing
Adriano Faggiani, Enrico Gregori†, Luciano Lenzini∗, Simone Mainardi∗†, Alessio Vecchio∗

†Dept. of Information Engineering, University of Pisa, Pisa, Italy

firstname.lastname@iet.unipi.it
∗Institute of Informatics and Telematics (IIT), Italian National Research Council (CNR), Pisa, Italy

firstname.lastname@iit.cnr.it

Abstract—The large base of Internet-enabled smartphones
provides an excellent opportunity for a fine-grained observation
of the structure of the Internet and a quantitative evaluation
of its characteristics. Smartphones can operate as active mobile
monitors and, coordinated by a central entity, they can probe
the network on a local scale. Then the results produced by a
large number of participants can be merged to obtain a detailed
graph of the Internet. Besides the design of the measurement
framework, this paper describes the implementation and valida-
tion of a traceroute-like tool that is compatible with the Android
platform. This confirms that smartphone-based crowdsourcing of
network properties can be a viable strategy.

I. INTRODUCTION

An accurate Internet topology graph is important in many

areas of networking, from deciding ISP business relationships

to diagnosing network anomalies. Most Internet mapping

efforts (e.g. [3], [10], [11], [5], [7]) have derived the network

structure, at the autonomous system (AS) level, from a limited

number of data sources such as Border Gateway Protocol

(BGP) paths or traceroute traces. The advantage of using

BGP paths is that they can be gathered passively from BGP

route collectors and thus require a minimal measurement

effort. Connections between BGP neighbors, also called peers,

are established by hand, then they communicate to maintain

coherent tables of network reach-ability. Unfortunately, the

publicly available BGP paths do not cover the entire Internet

due to issues such as visibility constraints, route aggregation,

hidden sub-optimal paths and policy filtering. In contrast,

traceroute measurements provide the ability to infer the data

paths that packets take when traversing the Internet. Because

they are active measurements, traceroutes can be designed to

potentially cover every corner of the Internet given sufficient

numbers of vantage points, i.e. locations with distinct network

views. To cope with the presence of load-balancing routers,

advanced tracing tools, such as Paris traceroute, have been

developed in the last few years. Nevertheless, despite signifi-

cant research work (such as [6], [8], [4], [9], [12], [2]), the

structure of the Internet has not yet been fully understood and

a large number of links is still to be discovered.

The structure and technical performance of the Internet can

be measured in at least two distinct ways: from within the

Internet core (top-down, from the ISP side) or from the Internet

edges (bottom-up, from the end-user side). Previous research

followed the top down approach and was not completely

successful because of two major reasons: i) measurement

campaigns have been carried out with a small number of

dedicated observation points (three or four order of magnitude

less than the cardinality of the Internet); ii) monitors are often

statically located in proximity of the Internet core, which often

prevents them from observing the edges of the network (where

the vast majority of Internet users is located). Furthermore,

even if some measurement systems with a large number of

monitors have been deployed, they proved to be unable to

characterize the Internet accurately because of the not optimal

positioning of observation points.

In this paper we propose an innovative measuring tech-

nique which operates according to the bottom-up approach.

The novel idea is to obtain detailed Internet maps through

crowdsourcing, using Internet-enabled smartphones as mobile

monitoring nodes.

A. Measuring the Internet through crowdsourcing

To circumvent the drawbacks of the top-down method, we

propose a mobile, user-centric, bottom up, energy efficient,

and scalable active measurement framework. This can be

achieved by running measurement tools in the ever increasing

number of mobile smartphones, tablets, and laptops. Probing

the Internet both from the bottom up to the inner core towards

tier-1 ISPs (vertical probing) and from end-user to end-user

(horizontal probing) with a large number of cooperative users

distributed all over the world will allow the discovery of the

Internet peripheral structure, which is in large part invisible

to top-down measurement systems. At the same time, the

performance that end-users experience at the fringes of the

Internet is put under observation. This kind of information is

of paramount importance to end-users, researchers and ISPs.

The system can be used to gather information about the set

of routers and ISPs that connect a pair of communicating end-

users. At the same time, end-to-end paths can be characterized

by the value of several metrics, such as the latency or the

minimum available bandwidth. According to this vision, the

final graph will be obtained by merging together the outcomes

of a large number of micro short-range measurements where

the associated mobile monitors inject a negligible quantity of

traffic into the Internet. This approach makes the measure-

ment system both scalable with respect to the number of

participating smartphones and very efficient from the point

8th International Workshop on Wireless Network Measurements, 14-18 May 2012

978-1-61284-824-2/2012 - Copyright is with IFIP 318

1

1

1

2

Fig. 1. Overview of the system architecture

of view of energy consumption which is clearly an issue for

any mobile terminal. It is important to notice that mobility

of monitors provides an additional dimension for the analysis

of the Internet, as it enables the evaluation of performance

variations (expressed, for instance, in terms of end-to-end

delay or minimum bandwidth available along the path) when

a mobile user changes his/her position within a cell or when

he/she switches the wireless access technology (e.g. from Wi-

Fi to HSPA).

II. OVERVIEW

The system includes a large set of clients (the smartphones

acting as mobile monitors) and a server that orchestrates

the measurement campaigns, collects the results, and, after

a merging phase, stores them on a database. The server

decomposes a measurement campaign into a set of loosely

interdependent jobs, that are assigned to clients. Each client

executes its measurement job and reports back to the server

the obtained results (arrows 1 in Figure 1). Assignment of

jobs to clients can be based on their current position. For this

reason, each client must periodically update the server about

its location. In addition to this client-server protocol, a client-

client protocol is used when the measurement job involves

multiple endpoints (arrow 2 in Figure 1). In this case the clients

coordinate with each other to carry out the end-to-end analysis

(e.g. capacity, bottleneck).

The software running on the client-side is devoted to the

following major operations: i) communication with the central

server; ii) execution of measurement jobs; iii) storage of

intermediate results and user preferences; iv) presentation

to the user of network information that he/she considers

useful and valuable, as a form of incentive. The smartphone

application also has to meet the following non functional

requirements: it must be freely available on the main app

markets to maximize the user enrollment and to make possible

a large-scale deployment; moreover, the application should

silently run on the background and it should take minimum

resources from the smartphone. It is also important to ensure

that the client functions are perceived as a useful service and

they must be presented in a simple but effective way. End users

are, in general, not much interested in scientific and technical

results, thus to provide a feedback for their efforts a clear user

interface and friendly design is mandatory. The client must be

available for the major operating systems, e.g., Android and

iOS. A corollary effect of distributing the software through

app markets is the ease of deployment of updated or upgraded

versions.

The server runs on a central machine and represents the

mind of the architecture. The main duties of the server are

i) the management of the various clients, ii) the supervision

of the measurement campaigns, and iii) the storage of the

collected measurements. The management of clients consists

in an access phase, in which each client has to be identified

to join the measurement infrastructure, and in a background

location phase, in which the server maintains the information

about the geo/net-location of each client and checks for any

significant variation. The server needs to identify: i) which

clients are the best candidates to be involved in a given mea-

surement campaign, ii) which are the targets of the campaign

(e.g. routers, fixed hosts or other clients) and iii) which kind

of measurement is required to be run (e.g. capacity estimation,

RTT estimation). In some cases, it is possible that the server

itself could be involved in some kind of measurements, thus

it must also allocate some local resources. Finally, once the

measurement campaign is completed, the server has to collect

and store the data.

III. SYSTEM ARCHITECTURE

As mentioned, the measurement system is composed of a

server and a large number of mobile devices (clients). The

server implements the high-level policies that must be adopted

for the measurement campaigns and operates as a central-

ized repository of collected data. When a new measurement

campaign is started, the server decomposes the global task

into a possibly large number of jobs that are distributed to

the clients. The assignment of jobs to clients can take into

account the particular properties of the clients, such as their

geographical position or the network they belong to. Each

client measures some properties of a small portion of the

Internet, as described in the job received from the server, stores

locally the intermediate results, and transmits the results back

to the server once finished. The server processes and merges

the received data to obtain the final graph.

A. Client

Figure 2 depicts a high-level architecture of the client-side

software. In the following, the modules that compose the

system are described in more detail.

Coordinator. It takes care of coordinating all the client-side

activities; this includes communication with the server (receiv-

ing new jobs and sending back the results) and scheduling

of the measurement duties. Communication and measurement

activities should be carried out in background, with little

impact on the user’s experience.

Analyzer. It provides the measurement tools. It is organized as

a collection of subsystems, where each subsystem is able to

measure a specific property of the Internet (number of hops

319

Persistence

Manager

Networking API

Analyzer

S
u
b
s
y
s
te

m
 1

M
e
a
s
u
re

m
e
n
t

M
e
a
s
u
re

m
e
n
t

S
u
b
s
y
s
te

m
 2

. . .

Localization

Module

Graphical User Interface

Manager

Fig. 2. Client architecture

and IP addresses of the interfaces along the path towards a

given target, bandwidth of a link, latency, etc).

Persistence manager. It provides persistent storage for the

intermediate results and users preferences.

Graphical user interface. It accomplishes a two-fold purpose:

it lets the user define his/her preferences and provides a visual

representation of the properties of the network that surrounds

him/her (as an incentive to adopt and use the application).

Localization module. The results of the analysis are associated

with the position of the client.

B. Server

Figure 3 shows the main components of the software

running on the server-side. The modules that compose the

server are here described.

Scheduler. It receives the specification of a measurement

campaign, divides the global task into a set of jobs, and assigns

the jobs to the available clients. This module may use various

policies to assign jobs to clients, based on the clients’ context

and history. The context may include the geographic position

(e.g. for analyzing the route towards the farthest point in a

country), the client network (e.g. if the client is in a given

network then execute a particular job), or its battery level.

Client tracker. It tracks the status and context of clients

and logs such information into the database. It also tracks

communication history between clients and the server.

Communicator. It handles communication with clients: it sends

jobs and receives the results and status updates.

Data manager. It performs consistency checks and merges data

into a unique graph.

Data refiner. In case of incomplete information coming from

the clients, the server can integrate such data by performing

a limited set of measurements. For instance, if a client is not

able to execute a specific de-aliasing technique, because of

limitations imposed by the OS, this operation can be carried

out on the server-side.

Database. It provides persistent storage for all the other

modules.

IV. IMPLEMENTATION ON THE ANDROID PLATFORM

We implemented a prototype of the software running on

the client-side for the Android platform. The standard An-

droid libraries and programming model provided adequate

Communicator

Data

Manager

Scheduler

Database

Tracker

Client

Client Client

Data

Refiner

. . .

Fig. 3. Server architecture

support for the implementation of the GUI, persistence of

data, and communication with the server. Implementation of

the measurement subsystems, on the contrary, proved to be a

challenging task. The main difficulties have been originated by

the networking API available on the Android platform at the

socket level, the same of the standard Java language. Such API

is characterized by a level of abstraction that is too high with

respect to the necessities that arise from the implementation of

low-level network measurement mechanisms. In more detail,

the absence of raw sockets makes troublesome the manipula-

tion of packet headers and all the data that is not accessible

at the application level.

Current implementation is provided with an analyzer mod-

ule that includes a single measurement subsystem: a traceroute

tool that operates similarly to the multipath detection algorithm

(MDA) [13], an extension of Paris traceroute [1]. At the

moment, our implementation uses only UDP datagrams for

estimating the route towards a given host. It is able to recog-

nize load-balancing routers and to enumerate their interfaces.

The basic principles are the same of traceroute, and they

are here recalled for the sake of clarity. The source node emits

packets, called probes, with increasing TTL values to discover

the hosts along the path towards the destination. When the

packet arrives on a router its TTL is decremented, and if its

value becomes zero the packet is discarded and the router

replies with an ICMP Time Exceeded.

This base mechanisms have been extended by tools like

Paris traceroute and MDA to cope with load balancing routers,

which can forward a packet towards different next-hop in-

terfaces. Per-flow load balancing routers classify incoming

packets on the base of some fields of the IP and UDP/TCP

packet header (such as source address, destination address,

source port, destination port, protocol and checksum). Per-

destination load balancing routers forward packets to a given

interface only on the base of the destination address. Per-

packet load balancers distribute packets evenly over multiple

connections and their decisions are not based on the content

of packets. Paris traceroute and MDA are able to discover

the multiple next-hop interfaces of per-flow load balancers by

operating as follows. Once a new router is detected, the source

320

node generates additional probes passing through that router

and having different values in the header fields, so that they

are classified as belonging to different flows. Then, for every

discovered interface, a new set of probes is generated to find

its next hop. This last step requires the production of probes

having a specific flow id, so that they are all forwarded through

the same interface.

In general, a path can be traced by using one of the

following protocols: ICMP, UDP, and TCP. An ICMP-based

implementation requires access to raw sockets, that are used

to receive and analyze the ICMP replies coming from the

probed hosts. But to use raw sockets an application must run

with the superuser privilege level, and this is not possible

on the Android platform where applications are executed as

normal users. Thus, we discarded the idea of an ICMP-based

implementation. The impossibility of receiving ICMP packets

also makes troublesome the implementation of UDP- and

TCP-based tracing mechanisms. We found a solution for the

UDP-based version by using the IP RECVERR option of BSD

sockets. This option enables extended reliable error message

passing: when it is applied to a datagram socket, all generated

errors will be queued in a per-socket error queue; then the user

can obtain information about the occurred errors by calling the

recvmsg() function with the MSG ERRQUEUE flag set. This

mechanism can be used to achieve trace-routing functionalities

according to the following sequence of operations: the mobile

monitor emits a UDP probe datagram with a given value of

TTL, say k; the k-th router discards the datagram and replies

with a Time Exceeded ICMP error; when the ICMP packet is

received on the mobile terminal, the error is stored within

the queue associated with the socket, and the next time a

primitive is called on that socket an error status is notified

to the application level; the application uses the recvmsg()

call to retrieve information about the error and receives an

instance of the sock extended err structure. This structure

contains the type of error occurred, the code and type fields

of the ICMP packet, and the address of the sending host. The

TTL value of outgoing datagrams can be manipulated by using

the setsockopt() primitive. Matching between a probe and the

corresponding ICMP reply is automatically achieved because

all operations take place on the same socket and because a

new probe is emitted only after having received the reply for

the previous one. The IP RECVERR option can be set only

on datagram sockets, thus this technique cannot be used for a

TCP-based implementation of traceroute.

It should be noted that these are standard mechanisms for

BSD sockets but they are not available at the Java API level.

For this reason, our implementation is split into a Java part and

a native part, written in C. The native code directly interacts

with the Linux kernel primitives (a Linux 2.6.x kernel is at

the base of the Android platform). Mixing Java and native

code is made possible by the Android Native Development

Kit (NDK).

A. Parallelization

The previous solution suffer from the lack of parallelization:

an application cannot send a pool of probes and then wait for

the replies, it can only send a single probe at a time and wait

for the associated ICMP error. To overcome this limitation we

enhanced the system with the use of multiple sockets and with

different threads of execution. Our implementation makes use

of two types of threads, Breadth Explorer and Depth Explorer.

A Breadth Explorer does not directly send probes, it creates

a pool of Depth Explorers and waits for the results of their

actions. Every Depth Explorer emits a probe and waits for the

reply. When the results produced by all the Depth Explorer

are ready, the Breadth Explorer aggregates them and update

a global data structure where all the found interfaces along a

path are stored.

Every Depth Explorer generates probes having a different

source port, as it uses a different socket. It also sends the

probes to a destination address that is adjacent to the address

of the target, and that is different from the one used by its

siblings. The use of adjacent addresses makes possible the

discovery of next-hop interfaces in the presence of routers that

adopt per-destination load balancing policies. Moreover, since

the source port is also changed, the probes are considered as

having a different flow id if a per-flow load balancer is found.

On receiving a reply, every Depth Explorer checks if the

interface is a new one or if it is already known to the system.

If the interface is a new one, it is added as a next-hop of the

interface currently under examination; then, if the maximum

number of probes has not already been reached1, six new

Depth Explorers are started.

B. Classification of the load-balancing policy

After the discovery phase, the system detects the policy

adopted by load-balancing routers (if it is per-flow, per-

destination, or per-packet). This is done by sending probes

having a fixed destination address and changing the flow id

(by using different source port numbers). If the replies are all

generated by the same interface, then the load-balancing policy

is classified as per-destination. On the contrary, if the replies

arrive from different interfaces, then the mobile monitor sends

an additional set of probes having the same flow id (using

sequentially a single socket): if the replies associated to this

probes arrive from the same interface then the load-balancer

is classified as per-flow, otherwise as per-packet.

C. Limitations

One of the limitations of this technique is the absence of in-

formation useful to build de-aliasing mechanisms (on Android

mobile terminals): since the content of ICMP packets cannot

be fully analyzed by the application level, all fingerprint-

based de-aliasing algorithm (e.g. MIDAR) cannot be used.

However, path information provided by Android terminals can

be post-processed on the server where a de-aliasing module

can be implemented using state of the art techniques (as

mentioned in the previous section, the Data refiner module

aims at overcoming the limitations that are peculiar of specific

device families).

1The maximum number is equal to 96 as suggested by [13]

321

V. EXPERIMENTS

We experimentally validated and evaluated the implemen-

tation of the traceroute mechanisms for the Android platform

through a series of measurements. The Android device from

which the traceroutes were sent was connected to the Internet

via a Wi-Fi access point.

A. Selection of Target Destinations

We chose 141 target destinations belonging to the GARR2,

the Italian network that connects universities and research

centers. We decided to select the targets within this network

because its topology is freely available to researchers (through

the GARR website). Information about topology and status

can be browsed through the GARR Integrated Networking

Suite3 (GINS); information available includes router inter-

faces, traffic, load percentages – regarding the backbone of the

network, as well as its users and Point-of-Presence (PoP) in the

territory. We used this system to retrieve the list of IP addresses

associated to target destinations: all the Italian i) libraries; ii)

public (private) universities; and iii) Italian National Research

Council (CNR) centers connected to GARR PoPs.

We executed traceroutes to these destinations from a facility

of the CNR located in Pisa. As it can be verified by checking

the GINS4, this network is directly connected to the GARR

PoP of Pisa (PoP-PI1, rt.pi1.garr.net). Accordingly,

since our gateway router is directly connected to this PoP, only

the first interface discovered in our probes belongs to the CNR

network of Pisa. The others, reachable in a number of hops

greater than or equal to 2, are always within the GARR net-

work. Specifically, we detected 21 GARR network interfaces,

all with addresses included in the subnet 193.206.128.0/20.

Who-is queries confirm that this subnet is assigned to the

GARR for its backbone and PoPs.

B. Validation

We carried out the validation by: i) comparing the interfaces

discovered with those made available by the consortium man-

aging the GARR; and by ii) comparing our results with those

produced by a popular traceroute tool.

For each GARR network interface detected, we browsed

the GINS to check whether that interface belongs to a router.

We found that the totality of the interfaces are within PoP

or are associated with backbone routers. Moreover, for each

pair of interfaces belonging to the same path, we found that

they belong to physically adjacent routers. Therefore, we can

say that our tool succeeds in discovering GARR network

interfaces.

The results produced by our tools have been compared with

the ones produced by Paris traceroute, which is open-source,

freely-available5, and it is considered as one of the most

reliable tools for tracing paths. We executed Paris traceroute

on a Linux PC connected to the same Wi-Fi access point

2http://www.garr.it
3http://ginsdr.dir.garr.it
4http://ginsdr.dir.garr.it/Weathermap/mapgen auto.php?type=eql3&id=rt.

pi1.garr.net
5http://www.paris-traceroute.net/

of the Android device. In order to make it behave exactly

like our tool – i.e. classifying load balancing routers and

finding all the interfaces for each hop – we decided to

run Paris traceroute with the --algo=exhaustive option.

However, by looking at the source code, we observed that the

implementation of the functionalities needed for the detection

of routers adopting per-destination load balancing policies was

still incomplete. Thus, to obtain compliant and comparable

results, we turned this feature off also in our tool. Finally,

we set a timeout of 1000 ms for each probe. The results con-

firmed the correctness of our solution: Paris traceroute and the

Android-based implementation discovered exactly the same set

of interfaces and the same path for all the destinations.

C. Evaluation

Experimental evaluation has been accomplished as follows.

First, we determined to what extent the interfaces detected

in our measurements are also reported by a widely spread,

distributed traceroute framework. Then, we analyzed the char-

acteristics of the paths followed by our probes and captured

the number of packets sent, in order to determine the total

amount of IP traffic generated. Finally, we monitored battery

consumption of the device during the experiments.

The Cooperative Association for Internet Data Analysis

(CAIDA) collects several types of Internet properties at ge-

ographically and topologically different locations, and makes

this data available to the research community. We decided

to use October 2011 CAIDA Macroscopic Internet Topology

Data Kit (ITDK) to evaluate our tool. ITDK contains two

Internet router-level topologies, produced from active mea-

surements conducted on the Archipelago (Ark) measurement

infrastructure (the focus of Ark is coordinating large-scale

traceroute-based topology measurements). The two topologies

considered, which differ only on the algorithms used for

associating interfaces to physical routers, contain almost all the

the interfaces we detected. We registered two exceptions: the

first interface which is not present in the ITDK topologies has

IP address 146.48.99.254, which corresponds to our gateway in

the CNR network; the second has IP address 193.206.136.29,

which corresponds to the GARR PoP-PI1 router interface

directly connected to the CNR of Pisa. In order to under-

stand the reasons behind these CAIDA missed detections, we

searched for missed interfaces within couples of consecutive

IP addresses within ITDK topologies. The rationale behind

this choice is that if you traverse a point-to-point link, you

will almost surely detect only one interface – the one which

gets you out from that link. Therefore, the detected interface

depends on the direction a given link is passed through.

For the point-to-point link between the CNR of Pisa and

the GARR PoP-PI1, we find the interface with IP address

193.206.136.30 in the ITDK topologies. This is consistent

since our tool traversed that link from the CNR to the GARR

PoP-PI1, while CAIDA traceroutes traversed it in the opposite

direction. From these observations it follows that a large-scale

deployment of our tool between end-users connected to non-

backbone networks, could be fundamental to traverse links in

both directions and discover all their interfaces.

322

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 2 3 4 5 6 7

N
o

o
f

D
e
s
t
i
n
a
t
i
o
n
s

No of Hops

Fig. 4. Number of destinations vs. number of hops required to reach them

We now focus on the volume of traffic generated by our

application. Since this volume depends on the number of

hops needed to reach a given destination, we first calculated

(Fig. 4) the number of probed destinations reachable with

a given number of hops. The average number of hops is

4.30. Therefore, chosen destinations are quite close to our

device. In practice, if destinations are chosen at random, the

number of hops required to reach them could be higher. Our

application sent a total of 110,539 UDP datagrams with no

payload to probe the whole set of destinations. Since UDP

header is 8 Bytes in size and each datagram is encapsulated

in an IP packet, the total volume of IP traffic generated is

approximately 3.16 MBytes (IP header is 24 Bytes).

We conclude the evaluation with a preliminary study about

energy consumption. We measured the battery level of our

device during the experiments by implementing and regis-

tering an Android BroadcastReceiver. This allows the

application-level to receive ACTION_BATTERY_CHANGED

broadcasts from the Android system and to retrieve the

EXTRA_LEVEL information from the BatteryManager

API. We repeated the measurements several times and we

never measured battery level reductions greater than 1%.

Therefore, we can reasonably say that our application can

be executed by end-users with extremely low impact on their

device battery and that energy consumption, a major problem

in the context of mobile device, is not an impediment for

smartphone-based crowdsourcing of Internet measures.

VI. CONCLUSION AND FUTURE WORK

A thorough understanding of the Internet requires detailed

information about its topology and its performance figures.

Given the size of the Internet, an approach based on crowd-

sourcing may fit the scope in an unprecedented way: the

results of a large number of short-range measurements, carried

out using currently available smartphones, can be combined

together to generate a fine-grained map of the network. Besides

their potentially huge number, the use of smartphones as

network monitors provides other opportunities: i) performance

is observed at the periphery of the network, where the majority

of end-users is located, ii) mobility of terminals allows the

monitoring system to collect dynamical and geo-referenced

information.

The major contributions of this paper are the following.

The idea of gathering information about the Internet through

smartphone-based crowdsourcing is novel and it is here pro-

posed for the first time (as far as we know). The paper

describes an architecture for a measurement system that in-

cludes from the beginning the use of mobile monitors. The

implementation of a prototype, provided with a measurement

subsystem that operates similarly to Paris traceroute, demon-

strates that the proposed idea can be put into practice, despite

the limitations of mobile operating systems. The preliminary

evaluation of the energy consumption on the client side shows

that the application can be compatible with a satisfying user

experience.

Future work will focus on the implementation of additional

measurement modules and on porting the client to other

popular operating systems (such as iOS). At the same time, we

are developing a module useful to perform address de-aliasing

on the server. This will allow to refine the path information

generated by Android devices (preliminary analysis seems to

show that this problem does not arise on iOS-based devices,

which will be able to carry out de-aliasing techniques directly

on the client-side).

REFERENCES

[1] Brice Augustin, Timur Friedman, and Renata Teixeira. Multipath tracing
with Paris traceroute. In Proceedings of the Fifth IEEE/IFIP Workshop
on End-to-End Monitoring Techniques and Services (E2EMON 07),
pages 1–8. IEEE, 2007.

[2] Zachary S. Bischof, John S. Otto, Mario A. Sánchez, John P. Rula,
David R. Choffnes, and Fabián E. Bustamante. Crowdsourcing ISP
characterization to the network edge. In Proceedings of the first ACM

SIGCOMM workshop on measurements up the stack (W-MUST 11),
pages 61–66. ACM, 2011.

[3] H. Chang, R. Govindan, S. Jamin, S. J. Shenker, and W. Willinger.
Towards capturing representative AS-level Internet topologies. Computer
Networks, 44(6):737–755, 2004.

[4] Kai Chen, David R. Choffnes, Rahul Potharaju, Yan Chen, Fabian E.
Bustamante, Dan Pei, and Yao Zhao. Where the sidewalk ends:
extending the Internet as graph using traceroutes from P2P users. In
Proceedings of the 5th International Conference on Emerging Network-

ing Experiments and Technologies (CoNEXT 09), pages 217–228. ACM,
2009.

[5] R. Cohen and D. Raz. The Internet Dark Matter: on the Missing Links
in the AS Connectivity Map. In IEEE INFOCOM, 2006.

[6] Cooperative Association for Internet Data Analysis (CAIDA). Internet
topology data kit.

[7] Yihua He, Georgos Siganos, Michalis Faloutsos, and Srikanth Krish-
namurthy. A systematic framework for unearthing the missing links:
measurements and impact. In Proceedings of the 4th USENIX conference

on networked systems design and implementation (NSDI 07), pages 14–
14. USENIX Association, 2007.

[8] B. Huffaker, A. Dhamdhere, M. Fomenkov, and k. Claffy. Toward
Topology Dualism: Improving the Accuracy of AS Annotations for
Routers. In Passive and Active Network Measurement Workshop (PAM

10), Zurich, Switzerland, April 2010.
[9] Ken Keys. Internet-scale IP alias resolution techniques. SIGCOMM

Comput. Commun. Rev., 40:50–55, January 2010.
[10] Ricardo V. Oliveira, Dan Pei, Walter Willinger, Beichuan Zhang, and

Lixia Zhang. In search of the elusive ground truth: the internet’s AS-
level connectivity structure. SIGMETRICS Perform. Eval. Rev., 36:217–
228, June 2008.

[11] Ricardo V. Oliveira, Beichuan Zhang, and Lixia Zhang. Observing the
evolution of Internet AS topology. SIGCOMM Comput. Commun. Rev.,
37:313–324, August 2007.

[12] Yuval Shavitt and Eran Shir. DIMES: let the Internet measure itself.
SIGCOMM Comput. Commun. Rev., 35:71–74, October 2005.

[13] Darryl Veitch, Brice Augustin, Renata Teixeira, and Timur Friedman.
Failure control in multipath route tracing. In INFOCOM, pages 1395–
1403. IEEE, 2009.

323

