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Abstract: Whereas most today parallel High Performance Computing (HPC) software is
written as highly tuned code taking care of low-level details, the advent of the manycore area
forces the community to consider modular programming paradigms and delegate part of the work
to a third party software. That latter approach has been shown to be very productive and e�cient
with regular algorithms, such as dense linear algebra solvers. In this paper we show that such a
model can be e�ciently applied to a much more irregular and less compute intensive algorithm.
We illustrate our discussion with the standard unpreconditioned Conjugate Gradient (CG) that
we carefully express as a task-based algorithm. We use the StarPU runtime system to assess the
e�ciency of the approach on a computational platform consisting of three NVIDIA Fermi GPUs.
We show that almost optimum speed up (up to 2:89) may be reached (relatively to a mono-GPU
execution) when processing large matrices and that the performance is portable when changing
the low-level memory transfer mechanism.

Key-words: High Performance Computing (HPC); GPU; Task; Runtime System; Conjugate
Gradient.



L'algorithme du Gradient Conjugué en tâches pour les
plate-formes multi-GPUs

Résumé : Tandis que la plupart des logiciels de calcul haute performance (HPC) actuels sont
des codes extrêmement optimisés en prenant en compte les détails de bas-niveau, l'avènement
de l'ère manycore incite la communauté à considèrer des paradigmes de programmation mod-
ulaires et ainsi déléguer une partie du travail à des librairies tierces. Cette dernière approche
s'est avérée très productive et e�cace dans le cas d'algorithmes réguliers, tels que ceux issus
de l'algèbre linéaire dense. Dans ce papier, nous démontrons qu'un tel modèle peut être e�-
cacement appliqué à un problème beaucoup plus irrégulier et moins intensif en calcul. Nous
illustrons notre discussion avec l'algorithme standard du Gradient Conjugué (CG) non précon-
ditionné que nous exprimons sous la forme d'un algorithme en graphe de tâches. Nous utilisons
le moteur d'exécution StarPU pour évaluer l'e�cacité de notre approche sur une plate-forme
de calcul composée de trois accélérateurs graphiques (GPU) NVIDIA Fermi. Nous démontrons
qu'une accroissement de performance (jusqu'à un facteur2; 89) quasi optimal (relativement au
cas mono-GPU) peut être atteinte lorsque sont traitées des matrices creuses de grande taille.
Nous montrons de surcroît que la performance est portable quand les mécanismes de transfert
mémoire bas-niveau sont changés.

Mots-clés : Calcul Haute Performance (HPC); GPU; Tâche; Moteur d'exécution; Gradient
Conjugué.
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1 Introduction

In the last decade, the architectural complexity of High Performance Computing (HPC) plat-
forms has strongly increased. To cope with this complexity, programming paradigms are being
revisited. Among other, one major trend consists of writing the algorithms in terms of task
graphs and delegating to a runtime system both the management of the data consistency and
the orchestration of the actual execution. This paradigm has been intensively studied in the
context of dense linear algebra [4, 5, 6, 17, 19, 33, 40, 42] and is now a common utility for
related state-of-the-art libraries such as PLASMA [2], MAGMA [1] and FLAME [46]. Dense
linear algebra algorithms were indeed excellent candidates for pioneering in this direction. First,
their computational pattern allows one to design very wide task graphs so that many computa-
tional units can execute tasks concurrently. Second, the building block operations they rely on,
essentially level-three Basic Linear Algebra Subroutines (BLAS), are compute intensive, which
makes it possible to split the work in relatively �ne grain tasks while fully bene�ting from GPU
acceleration. As a result, these algorithms are particularly easy to schedule in the sense that
state-of-the-art greedy scheduling algorithms may lead to a performance close to the optimum,
including on platforms accelerated with multiple Graphics Processing Units (GPUs) [5].

In this paper, we tackle another class of algorithms, the Krylov subspace methods, which
aim at solving large sparse linear systems of equations of the formAx = b, where A is a sparse
matrix. Those methods are based on the calculation of approximated solutions in a sequence of
embedded spaces, that is intrinsically a sequential numerical scheme. Second, their unprecon-
ditioned versions are exclusively based on non compute intensive kernels, Sparse Matrix Vector
products (SpMV) and level-one BLAS, which need very large grain tasks to bene�t from GPU
acceleration. For these reasons, designing and scheduling Krylov subspace methods on a multi-
GPUs platform is extremely challenging, especially when relying on a task-based abstraction
which requires to delegate part of the control to a runtime system. We discuss this methodolog-
ical approach in the context of the unpreconditioned Conjugate Gradient (CG) algorithm on a
shared-memory machine accelerated with three NVIDIA Fermi GPUs, using the StarPU runtime
system [9] to process the designed task graph. The CG solver is a widely used Krylov subspace
method, which is the numerical algorithm of choice for the solution of large linear systems with
symmetric positive de�nite matrices [44].

The objective of this study is not to optimize the performance of CG on an individual GPU,
which essentially consists of optimizing the matrix layout in order to speed up SpMV. We donot
either consider the opportunity of reordering the matrix in order to improve the SpMV. Finally,
we donot consider numerical variants of CG which may exhibit di�erent parallel patterns. These
three techniques are extremely important but complementary and orthogonal to our work, and
we discuss them in the related state-of-the-art methods (Section 2). Instead, we rely on routines
from vendor libraries (NVIDIA CUSPARSE and CUBLAS) to implement individual GPU tasks,
we assume that the ordering is prescribed (we do not apply permutation) and we consider the
standard formulation of the CG algorithm [44].

The objective is to study the opportunity to accelerate CG when multiple GPUs are available
by designing an appropriate task �ow where each individual task is processed on one GPU and all
available GPUs are exploited to execute these tasks concurrently. We �rst propose a natural task-
based expression of CG. We show that such an expression fails to e�ciently accelerate CG. We
then propose successive improvements on the task �ow design to alleviate the synchronizations,
exhibit more parallelism (wider graph) and reduce the volume of exchanges between GPUs. We
show that (for large enough matrices) CG can be carefully scheduled with a nearly optimum
speed-up (up to2:89 on our three GPUs machine with respect to the single GPU case reference).
Finally, we illustrate the bene�ts of relying on a runtime system abstracting the underlying
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hardware. The same task �ow (i.e., high-level task-based algorithm) is indeed executed on top
of two di�erent GPU to GPU memory transfer mechanisms. Depending on the CUDA version,
the programmer has to force data to transit through main memory (GPU-CPU-GPU case) or
not (GPU-GPU case). In our task-based abstraction model, the runtime system transparently
and e�ciently handles that for us.

The rest of the paper is organized as follows. In Section 2, state-of-the-art SpMV and Krylov
methods on GPUs are presented, as well as modern runtime systems. We propose a task-based
formulation of the CG algorithm in Section 4. The experimental environment is introduced in
Section 5. Prior to study the behavior of CG itself, we present a performance analysis of its
building block computational kernels in Section 6. We re�ne the initial formulation of the CG
task �ow in Section 7 in order to alleviate the synchronizations, exhibit more parallelism and
reduce data transfers. Section 7.5 illustrates the bene�ts of using a runtime system to abstract
the hardware in terms of productivity and performance portability. The performance of our
re�ned CG algorithms are �nally presented in Section 8 before concluding in Section 9.

2 State-of_the_art

SpMV is the core kernel of sparse iterative methods. In [50], (resp. [49]) an overview is given
on the performance of the CSR-based SpMV (resp. the CG algorithm) for a number of modern
CPU architectures. Then, with the democratization of GPUs, several studies have focused on
the improvement of the performance of the SpMV kernel on GPUs. These e�orts have mainly
targeted the sparse matrix representation format to improve the memory access pattern/footprint
of the kernel. From the format point of view of the matrix representation, several layouts were
studied such as the compressed sparse row (CSR) format, the coordinate format (COO) format,
the diagonal (DIA) format, the ELLPACK (ELL) format and a hybrid (ELL/COO) format. An
exhaustive description of di�erent implementations of the SpMV operation for GPU architectures
can be found in [15]. More recently, a new row-grouped CSR format was considered [39] as well
as a sliced ELLPACK format [37]. In [14], Bell and Garland propose several methods for e�cient
sparse matrix-vector multiplications that take into account the structure of the input matrices.
They implemented e�cient multiplication routines for various sparse matrix layouts including
a new hybrid layout (this layout stores part of the matrix using ELLPACK and the remaining
elements using the COO format in order to reduce the memory footprint). Their hybrid layout
is most suitable for unstructured matrices and delivers in general the best performance for such
matrices. This work was followed by many e�orts targeting these hybrid representations [22, 36].
A model-driven autotuning approach was introduced in [22] in order to �nd the best parameters
for the hybrid storage format.

From the sparse iterative methods point of view, many e�orts have been conducted to adapt
the existing algorithms and exploit GPU. The block-ILU preconditioned GMRES method is
studied for solving unsymmetric sparse linear systems on the NVIDIA Tesla GPUs in [48]. SpMV
kernels on GPUs and the block-ILU preconditioned GMRES method are used in [34] for solving
large sparse linear systems in black-oil and compositional �ow simulations. More recently, several
works have addressed the multi-GPU case where the computational node is enhanced with more
than one GPU. In [8], a speci�c CG method with incomplete Poisson preconditioning is proposed
for the Poisson problem on a multi-GPU platform. In [25], the authors present an implementation
of the CG algorithm for multi-GPU platforms based on a fast distributed SpMV kernel using
optimized data formats (combining ELL and padded CSR) to allow for a good overlapping
between communication and computation. In [20], the authors present a CG algorithm running
on multiple GPUs using a data parallel approach where the number of non-zeros is balanced

Inria
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among GPUs. The authors have then re�ned their approach in [21], by using a new partitioning
for the matrix based on a hypergraph model to reduce the amount of communication needed by
the algorithm. In [47], the authors describe mappings for the SpMV kernels and show how they
parallelize the CG algorithm over the GPUs by implementing parallel operations (i.e., kernels
running on multiple devices). Moreover they present results illustrating that reordering the input
matrix can improve the performance of the method. Recently, GMRES has been studied in the
context of multiple GPUs platforms [13, 24] where authors mainly identify the operations that
have to be performed by GPUs (e.g. SpMV) and the operation that need to be processed by
CPUs (reductions for example).

All the studies mentioned above were implemented on top of CUDA [23] or OpenCL [38].
Alternatively, expressing the algorithms at a higher level which abstracts the underlying platform
may be more productive and ensure performance portability, as successfully demonstrated in the
context of the dense linear algebra for the MAGMA [3] and FLAME [41] projects. Such an ap-
proach then needs an intermediate software layer, a runtime system, that executes the high-level
algorithm on the actual platform. Many initiatives have emerged in the past years to develop
e�cient runtime systems for platforms equipped with multiple GPUs. Di�erent programming
paradigms have been proposed. Qilin [35] provides an interface to submit kernels that operate
on arrays which are automatically dispatched between the di�erent processing units of a hetero-
geneous machine. Moreover, Qilin dynamically compiles parallel code for both CPUs (by relying
on the Intel TBB [43] technology) and for GPUs, using CUDA. The event-driven Charm++ [31]
runtime system is a parallel C++ library that provides sophisticated load balancing and a large
number of communication optimization mechanisms. Charm++ has been extended to provide
support for accelerators such as the Cell processors and GPUs [32].

Many runtime systems propose a task-based programming paradigm. The StarSs project
is an umbrella term that describes both the StarSs language extensions and a collection of
runtime systems targeting di�erent types of platforms [11, 12, 16]. StarSs provides an annotation-
based language which extends C or Fortran applications to o�oad pieces of computation on
the architecture targeted by the underlying runtime system. The runtime system dynamically
schedules tasks within a node using a work-stealing policy. Other task-based runtime systems,
not based on directives, like APC+ [29], DAGuE [18], KAAPI [30], and StarPU [10] o�er support
for hybrid platforms mixing CPUs and GPUs. In particular, the StarPU runtime system handles
low-level data transfers between GPUs very e�ciently and proposes a very convenient expression
of the task graph. StarPU thus represents an excellent candidate for illustrating our study. We
provide more details in the next section.

3 Task-based StarPU runtime system

StarPU proposes a task-based programming paradigm where the algorithm is expressed as a
Directed Acyclic Graph (DAG), vertices representing tasks and edges representing dependencies
between them. The DAG does not need to be fully provided. Instead, the sequence of task to
be executed is provided dynamically as well as the set of data and the access mode (read, write,
read-write modes) onto which those tasks operate. Based on this information, the dependencies
are implicitly computed by the runtime system.

In our study, each task is performed on a single computational unit. The submission of a task
is a non blocking operation so that multiple tasks may be processed concurrently. The runtime
system then performs the actual execution of that task only once the related dependencies are
satis�ed and that the appropriate data has been transferred on the required computational unit.
StarPU thus ensures both data consistency and transfers between processing units (in our case
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GPUs). Furthermore, data prefetching is used to cope with memory latencies.
StarPU o�ers several advanced utilities for data management. In this study, we speci�cally

consider the data partitioning and data unpartitioning operations. Data partitioning divides a
piece of data in several parts. Data unpartitioning is the opposite operation; it assembles several
parts of a partitioned data in the original form. Those operations are the counterpart of the
scatter/gather operations in the SPMD programming model used by MPI and similar instructions
existed also on vector computers a few years ago. Both these operations are blocking operations.
That is, they are control instructions for the task �ow construction, which prevent the user from
submitting any new task as long as the corresponding tasks, partitioning or unpartitioning, have
been processed.

4 Task-based Conjugate Gradient algorithm

We now propose a task-based expression of the CG algorithm whose pseudo-code is given in
Algorithm 1. This algorithm can be divided in two phases, the initialization phase (lines 1-5)
and the main loop (lines 6-16). The initialization phase being executed only once, we only focus
on an iteration occurring in the main loop in this paper.

Three types of operations are used in an iteration of the algorithm: SpMV (line 7), scalar
operations (lines 9, 13, 14) and level-one BLAS operations (lines 8, 10, 11, 12, 15). In particular
three di�erent level-one BLAS operations are used: scalar product (dot, lines 8 and 12), linear
combination of vectors (axpy, lines 10, 11 and 15) and scaling of a vector by a scalar (scal, line
15). The scal kernel at line 15 is used in combination with anaxpy. Indeed, in terms of BLAS,
the operation p  r + �p consists of two successive operations:p  �p (scal) and then p  r + p
(axpy). In our implementation, the combination of these level-one BLAS operations represents
a single task calledscal-axpy. The most costly operation in an iteration is the SpMV (line 7)
and its performance is thus critical for the behavior of the whole algorithm.

Algorithm 1 Pseudo-Code of Conjugate Gradient algorithm

1: r  b
2: r  r � Ax
3: p  r
4: � new  dot(r; r )
5: � old  � new

6: for j = 0 ; 1; :::; until kb� Ax k
kbk � eps do

7: q  Ap /* SpMV */
8: �  dot(p; q) /* BLAS-1 */ (dot)
9: �  � new =� /* scalar operation */

10: x  x + �p /* BLAS-1 */ (axpy)
11: r  r � �q /* BLAS-1 */ (axpy)
12: � new  dot(r; r ) /* BLAS-1 */ (dot)
13: �  � new =�old /* scalar operation */
14: � old  � new /* scalar operation */
15: p  r + �p /* BLAS-1 */ (scal-axpy)
16: end for

According to our programming paradigm (Section 3), data need to be decomposed in order
to provide opportunities for executing concurrent tasks. We consider a 1D decomposition of the
matrix, dividing the matrix in several block-rows. The number of non-zero values per block-rows
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is balanced and the rest of the vectors follows the same decomposition as illustrated in Figure 1.

Figure 1: Matrix and vector decomposition. 1D decomposition is applied to the matrix balancing
the number of non-zero values per block-rows (left). The rest of the vectors follows the same
decomposition (right).

After decomposing the data, tasks that operate on those data can be de�ned. The tasks
derived from the main loop of Algorithm 1 are shown in Figure 2, when the matrix is divided in
six block-rows. Each task is represented by a box, named after the operation executed in that
task, and edges represent the dependencies between tasks.

Let us examine in more details the task �ow in Figure 2. The �rst instruction executed in
the main loop of Algorithm 1 is the SpMV . SpMV performs the operation q  Ap where
A is a sparse matrix and q and p are dense vectors. When a 1D decomposition is applied to
the matrix, dividing it in six parts implies that six tasks are submitted for this operation (the
green tasks in Figure 2): qi  A i p; i 2 [1; 6], one for each block-rowA i of the matrix. For
these tasks, a copy of the whole vectorp is needed (vectorp is unpartitioned). But in order to
extract parallelism of other level-one BLAS operations where vectorp is used (lines 8 and 15 in
Algorithm 1), it needs to be partitioned. As discussed in Section 3, the partitioning operation
is a blocking call; it thus represents a synchronization point in this task �ow (represented with
the red vertical bar after SpMV tasks in Figure 2). Once vector p is partitioned, the tasks
corresponding to the scalar product (line 8 in Algorithm 1) can then be submitted. Both vectors
p and q are partitioned in six parts ( pi ; qi ; i 2 [1; 6]), so six tasks are again submitted. Each
dot operation accesses� in read-write mode, which induces a serialization of the operation, as
shown in Figure 2 with the dependencies between the successivedot tasks. This sequence thus
introduces new synchronizations in the task �ow. The �nal value of � for the current iteration
is obtained after the scalar operation�  � new =� (line 9). The twelve axpy tasks (six at line
10 and six at line 11) can then all be executed in parallel (see Figure 2 again). Anotherdot
operation is then performed (line 12) and induces other serializations (as it was the case for the
dot at line 8). After the scalar operations at lines 13 and 14 in Algorithm 1, the last operation of
the loop can be executed . Similarly to theaxpy operations, this operation is completely parallel.
After this last operation, the new value of vector p is obtained. At this stage, it is partitioned in
multiple pieces (pi ; i 2 [1; 6]). In order to perform the SpMV tasks (line 7, next iteration) which
all need the whole vectorp, these pieces are unpartitioned to form the input variablep.

All in all, this task �ow contains four synchronization points per iteration and is very thin.
Section 7.1 exhibits the induced limitation in terms of pipelining, while sections 7.2, 7.3 and 7.4
propose successive improvements allowing us to alleviate the synchronizations and design a wider
task �ow, thus increasing concurrency.
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Figure 2: Task �ow of the main loop of CG Algorithm (lines 7-15 in Algorithm 1). The matrix is
divided in six block-rows. Vertices of the graph represent tasks and edges represent dependencies
between them. The red vertical bars between thescal � axpy and SpMV tasks and between the
SpMV tasks and thedot tasks represent the partitioning and the unpartitioning of the vector p,
respectively.

Inria



Task-based Conjugate-Gradient for multi-GPUs platforms 9

5 Experimental Setup

5.1 Hardware

All the tests presented in this paper were run on a cache coherent Non Uniform Memory Access
(ccNUMA) machine with two hexa-core processors Intel Westmere Xeon X5650, each one having
18GB of RAM, for a total of 36GB. It is equipped with three NVIDIA Tesla M2070 GPUs,
each one having 6GB of RAM memory. In all the experiments discussed in this paper, CPU
are not used to perform computation; instead, we assess the potential bene�ts to accelerate our
algorithms when using multiple GPUs (with respect to a mono-GPU execution).

Since multiple GPUs are used, data have to be moved between GPUs during the execution
of the algorithm. Before CUDA v4.0, communication between GPUs required a copy of the
data to the RAM before sending it to the receiving GPU (we will call GPU-CPU-GPU this
communication mechanism in the rest of the paper). Since CUDA v4.0, data transfers between
GPUs may be performed directly from one GPU to another, bypassing the intermediate copy to
RAM (GPU-GPU communication mechanism). In Section 7 the GPU-CPU-GPU mechanism is
used, except in Section 7.5 where the GPU-GPU mechanism is investigated.

5.2 Software

The task-based CG algorithm proposed in Section 4 is implemented on top of the StarPU runtime
system (see Section 3). We use the opportunity o�ered by StarPU to control each GPU with
a dedicated CPU core. We rely on the CUBLAS v2.0 and CUSPARSE v1.0 vendor libraries to
implement the GPU tasks that execute the level-one BLAS and SpMV operations.

5.3 Scheduling and mapping strategy

As discussed in Section 4, the task �ow derived from Algorithm 1 contains four synchronization
points per iteration and is very thin, ensuring only a very limited concurrency. Furthermore,
as we will show in Section 6, the tasks are not very compute intensive so that moving data
between GPUs is expensive relatively to the actual execution of the task. Pipelining the task �ow
e�ciently is thus very challenging. In particular, dynamic strategies that led to close to optimum
schedules in dense linear algebra [5] are not well suited here. We have indeed experimented such
a strategy (Minimum Completion Time (MCT) policy [45]) but all studied variants failed to
achieve a very high performance. Indeed, with such a thin graph, each inaccurate decision
induced a strong imbalance that could not be recovered. We have thus implemented a static
scheduling strategy. Each block-row of the matrix is associated with a GPU and the related
tasks are performed on that GPU. In order to increase concurrency, we have considered the case
where there are more block-rows than GPUs. In that case, we perform a cyclic mapping of the
block-rows on the GPUs in order to ensure load balancing.

5.4 Matrices

To illustrate our discussion we consider the matrices presented in Table 1. As discussed above,
matrices are divided in block-rows and each block-row is mapped on a GPU. In all the experi-
ments presented in this study, each block-row is thus initially prefetched on the GPU that will
perform the corresponding SpMV task,before the experiment is timed, in order to represent the
behaviour occurring in a CG iteration (except for the �rst iteration, which is not considered
here). Furthermore, when assessing the behaviour of the building block operations (Section 6),
the corresponding block-vectors are also prefetched on those GPUs.
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Matrix name nnz N nnz / N �op/iteration

11pts-256 183,6 M 16,7 M 10.9 1,9 G

11pts-128 22,8 M 2,1 M 10.9 224,4 M

audikw_1 154,3 M 943,6 K 163.6 317,2 M

Table 1: Overview of sparse matrices used in this study. The 11pts-256 and 11pts-128 matrices are
obtained from a 3D regular grid with 11pt computation stencil. The audikw_ 1 and af _ 0_ k101
matrices come from irregular �nite element mesh for structural mechanics.

6 Building Block Operations

In order to explore the potential parallelism of the CG algorithm, we �rst study the performance
of its building block operations, level-one BLAS andSpMV , on our platform.

6.1 Level-one BLAS operations

As mentioned in Section 4, three level-one BLAS operations are used in CG:dot, axpy and
scal � axpy. These kernels have a computational cost of2N for the dot and axpy operations and
of 4N for the scal � axpy operation, whereN is the size of the vectors. This low computational
cost relatively to the amount of data involved makes them hard to accelerate on GPUs. Figure 3
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Figure 3: Performance of level-one BLAS operations on multiple GPUs. Both axes are expressed
in logarithmic scale. Data is divided in equal pieces and is prefetched on every GPU before
execution and performance assessment. Here is shown the performance of theaxpy kernel, but
all kernels follow the same behavior.

shows this e�ect. We recall that the matrix is split in equal block-rows and that the vectors
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are divided accordingly. Following the experimental set up presented in Section 5.4, the input
vectors are prefetched on the GPUs before execution. Therefore, in this experiment, only the
computational time is measured. Nonetheless, very large vectors need to be considered (N > 106)
to bene�t from multi-GPU acceleration (relatively to one GPU). When the input vectors are of
intermediate size (105 < N < 106), the use of multiple GPUs does not speed up the overall
performance anymore. When the vectors are smaller (N < 105), a multi-GPU context even
slows down the execution. In that latter case, the computation time is negligible and there is
still no communication; the only measured time is the start-up spent for launching the kernels.
Because of a lock occurring within the NVIDIA driver 1 when launching a CUDA kernel, at
such a �ne granularity, concurrent tasks are thus actually serialized and the launching times are
paradoxically cumulated.

6.2 The SpMV operation

When the matrix is split in multiple block-rows, the SpMV operation may be executed as concur-
rent SpMV tasks. The performance obtained for theaudikw_ 1 matrix is shown in Figure 4. The
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Figure 4: Performance ofSpMV with audikw_ 1 matrix when split in nb_block block-rows
(x-axis). These blocks are prefetched on GPUs before the experiment (see Section 5.4).

impact of the task granularity on performance may be assessed with the performance observed
on one GPU. When the matrix is split in multiple block-rows, the performance is not strongly
penalized. For instance, the mono-GPU execution only decreases of8% when the matrix is split
in three blocks (from 10:37 G�op/s to 9:50 G�op/s). When multiple GPUs are used, if the
number of blocks is a multiple of the number of GPUs, a correct load balancing may be further-
more achieved. In particular, when the matrix is divided in three block-rows, the penalty on
granularity is minimal while achieving a decent load balancing. A performance of26:87 G�op/s
is indeed achieved which represents a speed-up of2:83 over the mono-GPU execution with the

1we have reported this surprising behavior to NVIDIA
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same number of blocks (9:50 G�op/s) and an overall 2:59 speed-up over the best mono-GPU
execution (10:37 G�op/s).

7 Achieving Highly E�cient Pipelining

In accordance with the example discussed in Section 4, the matrix is split in six block-rows and
three GPUs are used. We pursue our illustration with matrix 11pts-128.

7.1 Assessment of the proposed task-based CG algorithm

Figure 5 shows the execution of one iteration of the task �ow (Figure 2) derived from Algorithm 1
with respect to the mapping proposed in Section 5.3. Figure 5 can be interpreted as follows.
The top black bar represents the state of the CPU Random Access Memory (RAM) during

� � � � � � � � � � � � � �
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Task execution Idle Fetching input

Figure 5: Execution trace of an iteration with the CG task �ow of Figure 2 using three GPUs.

the execution. The periods when the RAM is used for a data transfer from (or to) a GPU
are highlighted by an arrow from the source to the destination. As explained in Section 5.1,
data transfers between GPUs are handled by the runtime system with the GPU-CPU-GPU
communication mechanism. Below the bar of the CPU RAM, the three other couples of bars
represent the state of the three GPUs. Indeed, for each GPU, the top bar represents the activity
of the GPU itself, whereas the bottom bar represents the state of its GPU memory. The activity
of a GPU (top bar) may have one of the three following states: active computation (green), idle
(red) or active waiting for the completion of a data transfer (purple).

An iteration starts with the execution of a SpMV operation (line 7 in Algorithm 1), time
interval [ t0,t1] in Figure 5. As shown in Figure 2, the SpMV operation is decomposed in six
tasks (green tasks in Figure 2). Following the cyclic mapping strategy presented in Section 5.3,
each GPU is thus in charge of twoSpMV tasks. At time t1, vector q is available, distributed
in six pieces but vector p is unpartitioned. As explained in Section 4, p is partitioned into
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six pi pieces, i 2 [1; 6], with respect to the block-row decomposition of the matrix. However,
this data partitioning operation is a blocking call (see Section 5.2) which means that no other
task can be submitted until it is completed at time t1 (the red vertical bar after the SpMV
tasks in Figure 2). Once vectorp is partitioned, tasks for all remaining operations (lines 8-15)
are submitted. The scalar product tasks are executed sequentially with respect to the cyclic
mapping strategy explained in Section 5.3. The reason for this, as explained in Section 4, is that
the scalar � is accessed in read-write mode. In addition,� needs to be moved to GPU between
each execution of adot task (interval [ t1; t2] in Figure 5). Once the scalar product at line 8 is
computed, the scalar division follows (line 9) executed on GPU 1 (respecting the task �ow in
Figure 2). The execution of the next two instructions follows (lines 10 and 11). But before the
beginning the execution of theaxpy tasks on GPU 2 and GPU 3, the new value of� is sent
according to the GPU-CPU-GPU transfer model (the purple period at t2 in Figure 5). The axpy
tasks (yellow tasks in Figure 2) are executed during the period [t2; t3] in parallel. The scalar
product at line 12 is then executed during the time interval [t3; t4], following the same sequence
as explained above for line 8. Next,� and � old are computed on GPU 1 at time t4 in Figure 5,
representing the scalar operations from lines 13 and 14 of Algorithm 1. Tasks related to the last
operation of the iteration (scal � axpy tasks in Figure 2) are then processed during the time
interval [ t4,t5]. When all the new vector blockspi are calculated, the vectorp is unpartitioned
(red vertical bar after the scal � axpy tasks in Figure 2). As explained in Section 5.2, this data
unpartition is another synchronization point and may only be executed in the RAM. All blocks
pi of vector p are thus moved from the GPUs to the RAM during the time interval [ t5,t6] for
building the unpartitioned vector p. This vector is then used to perform the qi  A i � p tasks
related to the �rst instruction of the next iteration ( SpMV at line 7). We now understand why
the iteration starts with an active waiting of the GPUs (purple parts before time t0): vector p is
only valid on the RAM and thus needs to be copied on the GPUs.

During the execution of the task �ow derived from Algorithm 1 (Figure 2), the GPUs are idle
during a large portion of the time (red and purple parts in Figure 5). In order to achieve more
e�cient pipelining of the algorithm, we present successive improvements on the design of the task
�ow: relieving synchronization points (Section 7.2), reducing volume of communication that is
transferred by packing data (Section 7.3) and relying on a 2D decomposition (Section 7.4).

7.2 Relieving synchronization points

Alternatively to the sequential execution of the scalar product, each GPUj can compute locally
a partial sum (� j ) and perform a reduction to compute the �nal value of the scalar (� =P

j =1 ;n _ gpus � j ). Figure 6 illustrates the bene�t of this strategy. The execution of the scalar
product, during the time interval [ t0; t1] is now done in parallel. Every GPU is working on its
own local copy of� and once they have �nished, the reduction is performed on GPU 1 just after
t1.

The partition (after instruction 7 of Algorithm 1) and unpartition (after instruction 15)
of vector p represents two of the four synchronization points of an iteration. They furthermore
induce extra management and communication costs. Indeed, after instruction 15, each GPU owns
a valid part of vector p. For instance, once GPU 1 has computedp1, it sendsp1 to the RAM and
receives it back, which is useless. Second, vectorp has to be fully assembled in the main memory
(during the unpartition operation) before prefetching a copy of the fully assembled vectorp back
to the GPUs (after time t3 in Figure 6). We have designed another scheme where vectorp is kept
in a partitioned form all along the execution (it is thus no longer needed to perform partitioning
and unpartitioning operations at each iteration). Instead of building and broadcasting the whole
unpartitioned vector p, each GPU gathers only the missing pieces. Assuming ifp is decomposed
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Figure 6: Execution trace of one iteration when thedot is performed in reduction mode.

in six pieces, GPU 1 had computedp1 and p4 at the previous iteration (following the cyclic
mapping strategy presented in Section 5.3). So, by using this vector scheme, the GPU 1 will
only receive p2, p3, p5 and p6 vector blocks. This enables us to decrease the overall tra�c.
Furthermore, each vector block pi can be copied from the RAM to GPUs as soon it is fetched
in main memory without waiting the other vector blocks to be copied, as it was required in the
previous case. Finally, we ensure that all the pieces ofp get copied in a contiguous fashion on
the device, so that vectorp is valid when the task qi  A i p is executed.
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Figure 7: Execution trace of an iteration after furthermore avoiding data partitioning and un-
partitioning, and moving instruction 10 after instruction 12.

Figure 7 illustrates the bene�ts of this policy. Avoiding the unpartitioning operation allows us
to decrease the time required between two successive iterations from8:8 ms to 6:6 ms. Further-
more, since the partitioning operation is no longer needed, the corresponding synchronization in
the task �ow control is removed. The corresponding idle time (red part at time t0 in Figure 6)
is removed and instructions 7 and 8 are now pipelined (period [t0,t1] in Figure 7).
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Coming back to Figure 6, one may notice that GPUs are idle for a while just before time
t1 and again just before time t2. This is due to the reduction that �nalizes each dot operation
(dot(p; q) at instruction 8 and dot(r; r ) at instruction 12, respectively). In Algorithm 1, vector
x is only used at lines 10 (in read-write mode) and 6 (in read-only mode). The execution of
instruction 10 can thus be moved anywhere within the iteration as long as the other input data
of instruction 9, i.e., p and � , have been updated to the correct value. In particular, instruction 10
can be moved after instruction 12. This delay enables us to overlap the �nal reduction of the
dot occurring at instruction 12 with the computation of vector x.

The red part before t2 in Figure 6 becomes (partially) green in Figure 7. We do not have
a similar opportunity to overlap reduction �nalizing the dot operation at instruction 8. This is
why the red part before t1 in Figure 6 remains red in Figure 7.

7.3 Reducing communication volume by packing data

By avoiding data partition and data unpartition operations, the broadcast of vector p has been
improved (from period [t2; t4] in Figure 6 instead of period[t3; t4] in Figure 7) and the communi-
cation time remains the last main performance bottleneck (time interval [t3; t4] in Figure 7). This
volume of communication can be decreased. Indeed, if a column within the block-rowA i is zero,
then the corresponding element inp does not a�ect the numerical result of the task qi  A i p.
Therefore, p can be pruned. With a SPMD model, using MPI, the natural method would consist
in packing the relevant data into bu�ers before performing the associated communication.

We now explain how we achieve a similar behavior with a task �ow model. Instead of
broadcasting the whole vectorp on every GPU, we only transfer the required subset. Before
executing the CG iterations, this subset is identi�ed with a symbolic preprocessing step. Based
on the structure of the block A i;j , we determine which part of pj is needed to build qi . If pj

is not fully required, we do not transfer it directly. Instead, we pack it into an intermediate
data, pi;j . According to the task-based model, this packing operation is implemented with a
task. The receiving GPU then needs to unpack this data before performing the SpMV (since
SpMV operates on a full vector). One possibility would be to implement this unpack operation
with a new task. In order to limit the overhead due to the task creation, we alternatively merge
this unpack operation with the SpMV operation, resulting in a sparse_ SpMV task, where the
input vector is now sparse.

Figure 8 shows the resulting pipeline. The time interval [t3; t4] in Figure 7 needed for the
broadcasting of the vectorp has been reduced to the interval [t0; t1] in Figure 8. In the rest of the
paper we refer to either thefull algorithm, where all the block are sent or thepackedalgorithm
if this feature is used.

7.4 2D decomposition

The 1D decomposition scheme requires that for eachSpMV task, all blocks of vector p (packed
or not packed) are in place before starting the execution of the task. In order to be able to
overlap the time needed for broadcasting the vectorp (time interval [ t0; t1] in Figure 8) a 2D
decomposition must be applied to the matrix. The matrix is �rst divided in block-rows, and
then the same decomposition is applied to the other dimension of the matrix. Similarly as for
a 1D decomposition, the entire block-row will be mapped on a single GPU. Contrary to the 1D
decomposition, where we had to wait for the transfer of all missing blocks of the vectorp, with
the 2D decomposition, time needed for the transfer of the vectorp can be overlapped with the
execution of the tasks for which the blocks of the vectorp are already in place.

The result of the impact of a 2D decomposition is shown in Figure 9. During the time interval
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Figure 8: Execution trace when furthermore the vectorp is packed.
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Figure 9: Execution trace when relying of a 2D decomposition of the matrix.
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[t1; t2] in Figure 8 there is no communication. All of them are done before the beginning of the
SpMV task (time interval [t0; t1]). In Figure 9 during the time interval [ t0; t1], communications
are performed while theSpMV is executed. In the rest of the paper we refer to either 1D or 2D
depending on the data decomposition used. The trade-o� between large task granularity (1D)
and increased pipeline (2D) will be assessed in Section 8.

7.5 Portability

Di�erent data transfers between GPUs are possible with the latest versions of CUDA (see Sec-
tion 5.1). Depending on the transfer mode, data need to be explicitly copied �rst to the main
RAM (GPU-CPU-GPU mechanism) or may be directly copied from a GPU RAM to another
GPU RAM (GPU-GPU mechanism). Relying on a task-based programming model allows us
to delegate the management of these complex low-level details to the runtime system. While
the GPU-CPU-GPU mechanism has been used so far, we now assess our algorithm with the
GPU-GPU mechanism. We use exactly the same high-level algorithm (and code) and only turn
on the alternative data transfer mode when compiling the runtime system.

����� �
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�����
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Figure 10: Execution trace when relying on GPU-GPU transfers (1D decomposition case).

Figure 10 shows the resulting behaviour when GPU-GPU transfers are turned on. Now,
communications are performed directly from a GPU RAM to another GPU RAM as represented
with white arrows in Figure 10. This mechanism, combined with all other presented optimiza-
tions, enables us to further limit the idle (red) and active waiting (purple) periods. The only
two idle regions left in Figure 10 are the time intervals [t0,t1] and [t2,t3], which correspond to
the reduction �nalizing the dot at instruction 8 in Algorithm 1 and the communications for the
vector p, respectively.

8 Performance assessment

Tables 2, 3 and 4 present the performance achieved for all three matrices considered in this paper.
The best performance is represented for each scheme. We recall that the objective of the paper
is to assess the bene�ts of using multiple GPUs over a mono-GPU execution. We thus discuss
the results in terms of metrics which relate these bene�ts.
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1D 2D

Communications # GPUs full packed full packed

GPU - CPU - GPU

1 5.851

2 7.863 11.437 7.481 10.801

3 8.800 16.821 8.830 14.770

GPU - GPU

1 5.845

2 9.513 11.435 8.861 10.810

3 8.125 16.910 8.660 14.784

Table 2: Performance (in G�op/s) of CG on the 11pts-256 matrix.

1D 2D

Communications # GPUs full packed full packed

GPU - CPU - GPU

1 5.708

2 7.320 10.141 6.874 9.107

3 7.981 13.846 7.250 12.048

GPU - GPU

1 5.581

2 7.302 10.269 7.676 9.467

3 6.342 13.878 7.484 12.067

Table 3: Performance (in G�op/s) of CG on the 11pts-128 matrix.

1D 2D

Communications # GPUs full packed full packed

GPU-CPU-GPU

1 10.162

2 15.037 15.312 11.372 11.493

3 17.872 18.452 12.539 12.368

GPU-GPU

1 10.147

2 15.172 15.257 11.971 13.069

3 15.431 18.202 13.056 15.405

Table 4: Performance (in G�op/s) of CG on the audikw_ 1 matrix.
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The matrix is decomposed into block-rows in order to ensure concurrency. If we noteTb(p) the
elapsed time spent withp GPUs in one execution of the algorithm when the matrix is decomposed
in b block-rows, the speed up is thus de�ned as:

De�nition 1. S = T1(1)=Tb(p)

The global e�ciency is thus de�ned as:

De�nition 2. e = T1(1)=(Tb(p) � p).

The e�ciency may not be maximum (i.e., e < 1) for two reasons. First data need to be
decomposed in order to have concurrent tasks. The drawback of this decomposition is that we
operate at a smaller granularity and is appreciable in the mono-GPU case: using one GPU,
the execution time (Tb(1)) when data is decomposed inb blocks is likely to be longer than
the execution time (T1(1)) when data is not split and tasks act on the complete matrix. The
measure of this penalty due to the fact we operate at a lower granularity on the e�ciency may
be quanti�ed by the following e�ciency:

De�nition 3. egranularity = T1(1)=Tb(1).

Second the tasks may or may not be well pipelined. An execution onp GPUs with b blocks
may last longer (Tb(p)) than the ideal execution of the same task �ow (Tb(1)=p) if GPUs are not
fully occupied. This e�ect on e�ciency due to a limited pipeline is de�ned as:

De�nition 4. epipeline = Tb(1)=(Tb(p) � p)

The global e�ciency e is the result of composing those two e�ects:

De�nition 5. e = egranularity � epipeline .

We present these values in Table 5 for both GPU-CPU-GPU and GPU-GPU communication
mechanisms in the case of a 1D decomposition. Note that the communication mechanism does
not impact the e�ects of the granularity. Dividing the 11pts-256 matrix in several block-rows
does not induce a penalty on the task granularity (egranularity = 0 :995 � 1). Furthermore,
thanks to all the improvements of the task �ow proposed in Sections 7.2 and 7.3 a pipeline
e�ciency of epipeline = 0 :969 is achieved. All in all, a global e�ciency of e = 0 :964 is obtained.
For the 11pts-128 matrix, the matrix decomposition induces a higher (but still decent) penalty
egranularity = 0 :904 is a direct consequence of the matrix size. The sum of the sequential time
spent in all tasks is increased when the matrix in divided in several blocks as it can be observed
in Figure 11. This results in a global e�ciency of e = 0 :829. Finally, the global e�ciency for
the audikw_1 matrix is lower ( e = 0 :598) than the one for the 11pts-128 matrix despite the fact
that they have similar granularity e�ciency ( egranularity = 0 :897 for audikw_1). The reason
for this is the e�ciency of pipeline for the audikw_1 matrix ( epipeline = 0 :667) that can be
explained by a poorer load balancing due to the very irregular pattern of the matrix that is
more complex to split evenly. Since theSpMV operation is the most costly operation in terms
of execution time in the CG algorithm, the global e�ciency is in�uenced by the e�ciency of
the SpMV operation. The e�ciency of the SpMV operation for this matrix is eSpMV = 0 :862
(corresponding to the 2:59 speed-up mentioned in Section 6.2). TheSpMV operation at line 7
in Algorithm 1 is followed by a dot operation, which introduces a synchronization point. This
synchronization point coupled with the static task mapping (as explained in Section 5.3) leads
to an imbalance that cannot be recovered.

In all cases, the 1D algorithms outperformed the 2D algorithms. With the 2D algorithm
proposed in Section 7.4, when the matrix is decomposed inbblock-rows, the SpMV is decomposed
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Matrix 11pts-256 11pts-128 audikw_1

SGP U � CP U � GP U 2.875 2.426 1.816

SGP U � GP U 2.893 2.487 1.794

eGP U � CP U � GP U 0.958 0.809 0.605

eGP U � GP U 0.964 0.829 0.598

egranularity 0.995 0.904 0.897

epipeline GP U � CP U � GP U 0.963 0.894 0.675

epipeline GP U � GP U 0.969 0.917 0.667

Table 5: Speed-up and e�ciency. If Tb(p) represents the execution time with p GPUs when
the matrix is decomposed inb block-rows, S the speed-up,e the overall e�ciency, the e�ects of
granularity on e�ciency egranularity and the e�ects of pipeline on e�ciency epipeline are de�ned
with De�nition 1, 2, 3 and 4 respectively. In our case p = 3 and all values in this table are
obtained using the algorithm which yields the best overall performance (bold values in tables 2,
3 and 4).
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Figure 11: Sum of sequential time spent in kernels for the 11pts-128 matrix.
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in b2 tasks. Figure 11 shows that the subsequent e�ects on the cumulated time for executing
all the tasks is much more tremendous than in 1D. This is mainly due to the fact that the
SpMV kernel from CUSPARSE is better suited for matrices with more non-zero per row. In this
con�guration, the e�ects of granularity on e�ciency are so important in the 2D case that they
prevent the 2D algorithm to outperform the 1D algorithm in spite of a potentially better pipeline.
For instance, for the 11pts-128 matrix with GPU-GPU transfers, the e�ects of granularity in the
2D case (egranularity � 2D = 0 :804, not reported in Table 5 since it is outperformed by the 1D
caseegranularity � 1D = 0 :904) are stronger that the cumulated e�ects of pipeline and granularity
in the 1D case (e1D = 0 :829).

Table 5 also demonstrates the performance portability of the task-based approach we em-
ployed. Indeed, the e�ciency is high for both GPU-CPU-GPU and GPU-GPU mechanisms. Let
us now compare GPU-CPU-GPU to GPU-GPU transfers. GPU-GPU transfers are about30%
faster than GPU-CPU-GPU transfers. On the other hand, broadcast-like communications (here,
when p is broadcasted before SpMV) are faster with the GPU-CPU-GPU mechanism since the
runtime system uses the intermediate copy on main RAM memory to perform the actual broad-
cast from there. If point-to-point communications are dominating, such as with the 11pts-256
and 11pts-128 matrices, the GPU-GPU transfer mode outperforms the GPU-CPU-GPU mode.
On the contrary, if the broadcast-like operations are dominating, such as with the audikw_1
matrix, the GPU-CPU-GPU mode outperforms the other scheme. Indeed, for this latter matrix,
even with a packed scheme, the volume of data exchange to assemblep is high.

9 Conclusion

We have proposed a task-based formulation of the CG algorithm. We managed to re�ne the task
�ow up to removing almost all synchronizations and ensuring an e�cient pipelining of the task
�ow such that GPUs are almost fully exploited. There is a trade-o� between task granularity and
concurrency, controlled by the number of block-rows. Our performance assessment has shown
that the optimum case consistently corresponds to a perfect matching between the number of
blocks and the number of GPUs, meaning that bene�ts in terms of scheduling opportunities
by splitting the matrix in a larger number of blocks are by far dominated by the penalty of
operating at a smaller granularity. Contrary to dense linear algebra, where state-of-the art
dynamic scheduling algorithms are su�cient to achieve nearly optimum performance, scheduling
opportunities are thus much more constrained for CG. As a result, each individual scheduling
decision may be fatal to the overall performance and we have proposed a carefully de�ned static
scheduling algorithm to prevent such e�ects. This statement also tells us what is (and what is
not) a runtime system. A runtime system is a software layer that allows the user to express
what to do (which task �ow, which scheduling algorithm, . . . ) and delegate the question ofhow
to do it (and how to do it e�ciently) to a third party. This approach also ensures performance
portability of the code, as illustrated with the bene�ts of being immediately able to run the
code with another low-level communication mechanism and still fully exploit the potential of the
platform.

We managed to design a task �ow such that all tasks are almost perfectly pipelined. However,
we have exhibited that a synchronization point remains (the task graph has a width equal to one
after the �rst dot). This synchronization is due to the numerical dependencies in CG. We have
shown that an e�cient scheduling may almost fully hide the penalty due to this synchronization
point. However, if the execution of the SpMV tasks is not well balanced, the synchronization may
then prevent us to perform an e�cient pipeline, which signi�cantly impacts the performance, as
we have shown with the audikw_1 matrix. To overcome this limit, one possibility would consist
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of splitting the matrix with �ner criterion (for instance, balancing the actual execution time of
the SpMV occurring on each block-row) than the basic one we have used, based on balancing
the number of non zero elements in each block-row. Another possibility to go further would
be to consider another mathematical formulation of CG where the pipelining is expressed not
within each iteration as proposed in this work, but between the iterations. Such a mathematical
reformulation was �rst proposed for GMRES [26] and recently extended to CG in [27].

This work will be extended to other standard Krylov methods in order to design a task-based
library. Ultimately, we aim at designing task-based algebraic domain decomposition methods
similar to [28]. Task-based Krylov methods will thus enable us to pipeline the computation
of the preconditioner with the Krylov iterations. We also plan to assess our solvers on mul-
ticore platforms enhanced with GPUs, using both CPU cores and GPUs to fully bene�t from
heterogeneous machines.
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