N
N

N

HAL

open science

An optimized and load-balanced portable parallel zbuffer

Henri-Pierre Charles, Laurent Lefévre, Serge Miguet

» To cite this version:

Henri-Pierre Charles, Laurent Lefevre, Serge Miguet. An optimized and load-balanced portable par-

allel zbuffer. [Research Report] RR95-25, LIP ENS Lyon. 1995. hal-00767642

HAL Id: hal-00767642
https://inria.hal.science/hal-00767642
Submitted on 23 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-00767642
https://hal.archives-ouvertes.fr

(@)
i Laboratoire de I’Informatique du Parallélisme

Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398

An optimized and load-balanced
portable parallel Zbuffer

Henri-Pierre Charles
Laurent Leféevre October 3, 1995
Serge Miguet

Research Report N© 95-25

Ecole Normale Supérieure de Lyon
I“l 46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : (+33) 72.72.80.00 Télécopieur : (+33) 72.72.80.80
Adresse électronique : lip@lip.ens—lyon fr

An optimized and load-balanced portable parallel Zbuffer

Henri-Pierre Charles
Laurent Lefevre

Serge Miguet
October 3, 1995

Abstract

This paper describes the parallel implementation of the Zbuffer algorithm on different kinds
of distributed memory machines. In computer graphics domain, the Zbuffer is one of the most
popular and fastest technique to generate a surfacic representation of a scene consisting of objects
in a 3-dimensional world. To improve this method we develop a parallel algorithm which uses an
hypercube topology, load-balancing techniques and portable global communications phases.

Keywords: Parallelism, Load-balancing methods, Synthesis

Résumé

Nous présentons dans ce rapport une implémentation parallele d’un algorithme de syntheése
d’image : le Zbuffer. Cette implémentation a été portée sur différents types de machines paralléles
a mémoire distribuée. En synthése d’image, le Zbuffer est 1'une des plus populaires et rapides
techniques pour générer une représentation surfacique d’une scéne constituée de facettes dans
un monde en trois dimensions. Pour améliorer cette technique, nous présentons un algorithme
paralléle qui tire pleinement profit d’une topologie en hypercube et de méthodes d’équilibrage de
charges. Cette implémentation est basée sur des phases de communications globales générales
qui assurent la portabilité du Zbuffer sur différentes plateformes de développement.

Mots-clés: Parallélisme, Equilibrage de charge, Synthese d’image

An optimized and load-balanced portable parallel Zbuffer *

Henri-Pierre Charles, Laurent Lefevre® and Serge Miguet
Laboratoire de I'Informatique du Parallelisme
Ecole Normale Superieure de Lyon
69364 LYON Cedex 07
France
(charles, llefevre, miguet)@lip.ens-lyon.fr

October 3, 1995

Abstract

This paper describes the parallel implementation of the Zbuffer algorithm on different kinds of dis-
tributed memory machines. In computer graphics domain, the Zbuffer is one of the most popular and
fastest technique to generate a surfacic representation of a scene consisting of objects in a 3-dimensional
world. To improve this method we develop a parallel algorithm which uses an hypercube topology,
load-balancing techniques and portable global communications phases.

1 Introduction

In recent years, many authors have studied and implemented computer graphics algorithms on parallel
architectures. The algorithms giving pictures with the best degree of reality are based on ray tracing or
radiosity techniques. They have the advantage of being highly parallel in nature, and calculation intensive
enough to produce good speedups. But they cannot be used to compute pictures in real time. The Z-Buffer
algorithm has not as many features as ray tracing but it is much faster in calculation time, and produces
nevertheless pictures with a good degree of reality.

In this paper, we have studied an implementation of the Zbuffer on parallel machines and the improve-
ments we have done to optimize the execution time. The experimentations are based on different parallel
computers based on the i860 processor, the Intel iPSC860 and the Archipel Volvox. The algorithm we will
describe 1s optimized for this specialized processor and uses intensively hypercube communications.

In a first part we briefly explain the sequential algorithm. Then, we present our parallel version of the
Zbuffer algorithm and we discuss the improvements in terms of parallelism, optimization, load-balancing
techniques and portability. Then we will finish with some experiments of our parallel implementation on
medical scenes.

2 Sequential algorithm

The scene is made with a set of triangles. After the vertices have been projected in the coordinate system of
the screen, the tiles have to be clipped to the size of the picture. Then, we have to determine all the pixels
of the image which are inside the projected triangles. This is done by a so called scan conversion algorithm,
which scans a triangle row by row. These pixels are then colored according to a given shading model. We
are using the Gouraud model, where the color of a vertex is determined by the cosine between the normal
to the surface and the direction of the light, and the colors of the pixels inside of the triangle result of a
bilinear interpolation based on the color of the three vertices. The main problem is to eliminate the parts

*This work was supported by the Project C3 of the French Council for Research CNRS, and by the ESPRIT Basic Research
Action 6632 “NANA2" of the European Economic Community.

of the objects which are hidden by others. This is what the Z-Buffer is used for: each time a pixel has been
drawn in a position of the picture, we note in the same position in another picture (the Z-Buffer), the Z
coordinate of that point, that is, the distance between the point and the observer. Afterwards, a pixel is
drawn in a given position, if and only if, 1ts 7 coordinate is smaller than the one previously stored in that
position of the Z-Buffer.

OO 00 0O OOV OO OV OO OO SOV OO
000000 6 00 2 0000 OOV OO
000000 6 5 2 2 0000000000

000000 6 6 5 2 2 00000000
00006 6 6 55 2 2 000000
00006 6 6 555 2 20000
07 6 6 552 2 2000000

007 T 002 2 2 0000000000
000000 2 2 00000000 00 O

Figure 1: Example of picture with 2 triangles and the associated Zbuffer

Then the sequential algorithm can be summarized by:

For All the triangles in the scene
Project the triangle in the image coordinate system
For all the pizel in a triangle
If Z coordinate of pizel< Zbuffer[pizel]
Image[pizel] = Color(pizel)
Zbuffer[pizel] = Z coordinate of pizel
EndIf
EndFor
EndFor

Some parallelizations of the Zbuffer algorithm have been proposed in the last few years for shared memory
machines|[7] or distributed memory machines [1, 4, 6]. But few of these implementations use load-balancing
techniques and many of them are limited by their large communication times. In this paper, we propose a new
technique allowing to load-balance the work among the processors and to make a clever use of hypercube
communications to lower the overhead of the algorithm. For sake of portability, all our communication
schemes are expressed with help of P.P.C.M., our parallel portable communication module.

3 Portability

To specify our algorithm, the zbuffer is defined by sequence of global communications and computations
phases. To implement it in a portable way, we use Portable Parallel Communication Module (P.P.C.M.),
which allows us to execute our applications on all our distributed-memory machines with various topologies
but without any modification of the applications.

Our current project is to design a parallel library for 3D image processing. Our goal is to write a parallel
program that is directly executable on all the parallel computers that are available in our environment. To
this purpose, we have written a library composed of a restricted set of macro-instructions which can be used
on all our differents parallel computers.

This library is oriented towards DMPCs!. We want this library to be portable, i.e. machine independent.

PPCM can be viewed as a set of different layers for different topologies. We have chosen the most useful
topologies (Ring, Grid, Hypercube). The choice of the size of a given topology is made at execution time
with a configuration program.

I Distributed Memory Parallel Computer

Parallel program using PPCM

PPCM N

/

Object for: Object for: Object for: Object for:

Choice at

compile time

iPSC 860 Volvox Tnode Network of workstations

lip%

L

Figure 2: Synopsis of PPCM

Based on these topologies we have written a set of high level global communications libraries that are
optimized for each particular interconnection scheme. This allows the programmer to write a parallel program
without any knowledge of the underlying topology.

We briefly describe the main functionnalities available in these libraries:

Global Communication is used to gather or scatter data in the parallel computer. We have implemented
the classical communication operations like broadcast, scattering, all to all for constant size messages
or variable size messages.

LoadBalance allows to make simple but efficient load balance methods based on a data balancing in
function of the load of each processor. These load balancing facilities are very useful for our image
processing applications.

Reduction is used for the simulation of a global memory with an operator applied on the data. The
operator can be and addition, a multiplication, a maximum, a minimum or a logical operator.

So our programming environment PPCM allows us to compile a same program on different parallel
computer with a given topology in a transparent and portable way.

4 Our parallel approach :

We based our new implementation on the thesis of H.P. Charles[3] and the works of S. Miguet and J. Li[4]
who have developped a parallel version of the Zbuffer on a ring of processors. Like them, our algorithm
is dedicated to a distributed memory machine, but to reduce the communication costs, we use hypercube
communications.

In this part, we will describe our parallel algorithm. In fact, we are not only interested in the computing
of a single picture but also to the computation of a sequence of pictures for various observer’s positions
(rotation, zoom...). That’s why we do the communication and computing phases for all the pictures of the
animation.

The first version of our algorithm is:

ParallelZbuffer();
Begin
Scatter(Vertices);
Scatter(Triangles);
For all picture to compute Do
// Project vertices from object to screen coordinate system
MultiBroadcast(Projected Vertices);
// Localload = Estimation(Locals Triangles);

Globalload = MultiReduce(LocallLoad);
MultiScatter(Triangles);
// Sequential Zbuffer
Output the picture
EndDo
End

The parallel parts of this algorithm have been marked with //. The others lines are call to global
communication routines.

In order to optimize the memory and computation requirement, our scene is represented by a two-levels
data structure : a set of vertices and a set of triangles. A vertex is a set of 6 real numbers which define a
point in a coordinate system and a normal for this point. A triangle is a set of 3 vertices’ indices (3 integers).

The instructions of our algorithm can be grouped into three sets : the classical Zbuffer instructions,
the load-balancing techniques and the global communication steps. We describe the differents parts of this
algorithm :

Scatter(Vertices) All the vertices of the scene are equally distributed on the parallel computer with a
PPCM function (global communication part). The vertices come from a disk or from a previous
computation on the parallel computer.

Scatter(Triangles) With the same library call, we equally distribute triangles on the parallel computer.
Note that the triangles, of a given processor, can make reference to vertices that might not be present
in the local memory of that processor.

Project vertices from object to screen coordinate system The projections are done in parallel. For
each vertex we have to do a matrix vector multiplication. Furthermore, we use the normal to shade
the vertices and assign it a R.G.B. color.

MultiBroadcast(Projected Vertices) We multi-distribute the projected vertices with a library call of
PPCM (global communication part). After this step, each processor knows all the projected vertices
of the scene even if it doesn’t use them.

LocalLoad = Estimation(Locals Triangles) Each processor computes in parallel an estimation of the
load due to its own triangles. We approximate the load associated with each row of the picture, with
the number of triangles intersecting that row (see section 5).

GlobalLoad = MultiReduce(LocalLoad) With a call to the PPCM library, we compute the global load.
This global load allows to compute for each processor which part of the picture to treat in order to
have a balanced workload.

MultiScatter(Triangles) Given the image partition, we can compute the triangles required by each pro-
cessor. Then, with a library call we multiscatter the triangles (global communication part).

Sequential Zbuffer We compute in parallel a sequential zbuffer for the part of the image owned by each
Processor.

Write the picture When all the sequential zbuffers are performed, we write the image to an output device.

We move, now, to the desciption of the dynamic load-balancing methods, we have used to improve the
execution time.

5 Load-balancing :

We have seen that the scene is sliced between the processors. But the objects are seldom uniformely
distrbuted on all the picture. Therefore we have to equally distribute the workload to avoid for some
processors to be idle while others have a large amount of work. We use a dynamic load-balancing method,
based on an elastic distribution of [5] which is composed of three parts :

e Estimation of local workload : We consider that the time to scan-convert a triangle in the final picture
is divided in two parts :

— Initialisation : The time to compute line descriptors which are useful to scan the triangle frontiers.
This time is fixed and doesn’t depend on the size of the triangle.

— Scan : The time needed to scan all the pixels on the triangles to know if these pixels are visible
or hidden.

But the computing of the workload has to be very small if we don’t want to decrease the performances.
Then we have chosen the following heuristic where the workload associated to each row of the picture,
is the number of triangles which intersect that row. To avoid the scan of all the lines of each triangle
to add its unit load in the workload of the picture, we use an optimization. Let’s consider v1(z1,yl)
the upper vertex of the triangle and v3(23,y3) the lower one.

For each triangle do

Workload[y1]l=Workload[y1]+1
Workload[y3+1]=Workload[y3+1]-1

SCENE LOAD LOAD

()
''' > 1
R 2
0 After 2
- Scan array|—!
I —_— 1
0 I
= 0
= 1
1
0 1
L J=a 0

Figure 3: Computing of workload, before and after the scanning array phase

Afterwards, we only have to do a single scan of the load array, to update for each row, the number of
triangles intersecting that row (see Figure 3). This array is updated in the following way :

For each row i of the picture do
Workload[i]=Workload[i]+Workload[i-1]

e Computing of global load : Each processor must compute the global load concerning the picture to
determine which part of the final scene it has to process. This is done by a multi-reduction operation
of the local loads. Then, each processor knows its own slice and sends the unuseful triangles, presents
in its local memory, to the real owners (multi-scattering step).

So the picture is not equally distributed between the processors in terms of rows but equally distributed in
terms of work as we can see in table 1. In our first experiments, we use The University of Utah teapot, a
small scene composed of 3572 triangles. We have chosen a size of 256 by 256 pixels for the output picture
(see Figure 4).

Processors | Number of triangles | Workload | % of work | Number of rows
1 1304 650 26 63
2 1056 610 24 21
3 822 597 24 22
4 1056 632 25 149

Table 1: Triangles distribution and processors workload

We can note in Table 1 that the triangles that intersect the regions of two or more processors are
duplicated to these processors. This explains that the sum of local triangles is larger than the total number
of triangles (4238 triangles instead of 3572).

Figure 4: Example of slicing on the teapot between 4 processors

6 Experimentations :

We present next, some results of the experimentations we make with our load-balanced portable parallel
Zbuffer. The first experimentations have been done on the teapot composed of 1970 vertices distributed
beween 3572 triangles (see Figure 4). We have decided to compare our implementation on an hypercube
topology with the one proposed by S. Miguet and J. Li[4] based on a ring of processors. The times are given
for two sizes of pictures : 256 by 256 pixels and 512 by 512 pixels.

In Figure 5, we can see that the use of a parallel machine decreases widely the time of computing the
Zbuffer on the teapot picture. We see the improvements between the sequential version (with one processor)

Execution time (in mili-seconds)

3500 | | | |
4
3000 Hypercube 512 44—
Ring 512 —4—
2500 - Hypercube 256 /— -
Ring 256 -x- -
2000
1500
1000
500
0 ! ! ! ! ! !
1 2 3 4 5 6 7 8

Number of processors

Figure 5: Execution time on teapot 256 and 512

and parallel implementation with an hypercube of dimension 1 to 3 (eight processors). When we use the ring
there are small differences of time for the 256 by 256 resolution as compared to the 512 by 512 resolution.
But to eficiency compare the two parallel versions, we must compare them to the sequential version. That’s
why, in the next figures, we plot the acceleration factor (speed-up) of our Zbuffer :

Sequential version time

Speed up = Parallel version time
Speed Up
6
5 - Hypercube 512 &—

Ring 512 44—
4 | Hypercube 256 £—
Ring 256 -x- -

3 =
9 il
18 -
0 | | | | | |

1 2 3 4 5 6 7 8

Number of processors
Figure 6: Speed-Up on teapot 256 and 512

For a small picture we can see on figure 6 that the acceleration factor quickly stagnates when we use a
ring of processors. In a general way, we note that the bigger the picture size is, the better the acceleration
factor is when we use an hypercube topology. This is due to the fact that the communication volume is
independant of the resolution, whereas the computation linearly grows with the resolution. The relative
importance of communications decreases with the size of the image and, since the workload is well balanced,
the eficiency of our parallel Zbuffer gets close to 100%. On the teapot scene, we go 5.6 times faster than the
sequential version, when we use an hypercube of dimension 3.

For the following experimentations we use a medical scene representing a skull (see Figure 8) composed
of 39837 vertex distributed between 77408 triangles.

Speed Up

10 ~
gL L
6 -
4 —]
Hypercube 5
9 Rlng —+—t
q
0 ! ! ! \ ! ! !
2 4 6 8 10 12 14 16

Number of processors

Figure 7: Speed-Up on skull scene

On the figure 7 we can see that the difference of acceleration between the two topologies are more
important. When we use an hypercube of 16 processors we go 10.6 times faster while the speed-up of the
teapot is limited to 8.3. The use of the hypercube topology is very interesting for this application, even if
the communication time is not preponderant regarding of computing time of the Zbuffer.

7 Discussion

We have shown in the previous experiments that the relative performances of our parallel Zbuffer are good,
but we also see that the absolute performances are not as interesting as we could expected. This is due to
the fact that our sequential Zbuffer 1s not completely optimized for sake of portability. But on some of our
target machine (iPSC 860 and Volvox machine), we could optimize the scanning phase to take advantage of
the specialized hardware of i860 processor. For example we could hand-code the projection from the object
to the screen coordinate system (use of pipelined multiplier and adder of the i860) and the interpolation part
of the Zbuffer to use the graphic capabilities of the i860. Our parallel version could also be optimized by
avoiding the multibroadcast step which distribute all the vertices to all the processors even if each processor
doesn’t need all the vertices. We could replace that by a two steps request-answer scheme, where each
processor asks to its neighbours which vertices it needs and then send vertices required by other processors.

8 Conclusion and future work :

In this study we have shown that to achieve high level absolute performances it is necessary to optimize a
parallel program for the specialized target topology and for a particular hardware. Parallel implementations
of the Zbuffer algorithm achieve good speedup, but their absolute performances (polygons per second) cannot
be compared to the performances of specialized hardware for computer graphics. But by using some hand-
coded parts of the Zbuffer, we could improve the sequential time of the renderer and then optimize the
parallel application.

The use of an hypercube topology and load-balancing methods have widely improved our parallel Zbuffer
in terms of acceleration and eficiency. Moreover the use of our portable parallel communication module has
allowed an easy developement of our application and the test of several topologies and machines in a portable
way.

By parallelizing this algorithm we obtain very good performances with speedup from 9 to 10 for medical
scenes (80000 triangles) with 16 processors using a hypercube topology. But our program will be more per-

Figure 8: Example : Skull

formant for the computation of a set of images, when the polygons are already present in local memory and
need only a global communication step to be correctly distributed between processors. Our next develope-
ments will concern the improvements of the Zbuffer to compute an animation with an use of a frame-to-frame
coherence.

References

[1] Thomas W. Crockett, Tobias Orlof. A Parallel Rendering Algorithm for MIMD Architectures. NASA
1-18605. June 1991

[2] Henri-Pierre Charles. PPCM : A portable communication module. Technical report. 92-04. June 1992

[3] Henri-Pierre Charles. De la micro-optimisation & ’algorithme paralléle. Theése du LIP - FEcole Normale
Supérieure de Lyon - France. February 1993.

[4] Serge Miguet, Jian-Jin Li. Z-buffer on a transputer-based machine. Report 90-30. November 1990

[6] Serge Miguet, Yves Robert. Elastic load-balancing for image-processing algorithms. Proceedings of First
International Conference of the Austrian Center for Parallel Computation. 1991

[6] T. Theoharis. Exploiting parallelism in the graphics pipeline. Technical report PRG-54. Oxzford University
Computing Laboratory. June 1986

[7] Scott Whitman. Multiprocessors Methods for Computer Graphics Rendering. Jones and Bartlett Publish-
ers. 1992

