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Figure 1: A sequence of images showing a cube being deformed. (Top) augmented reality images where the mesh in wireframe
is superimposed on the video stream. For the deformed mechanical mesh, the surface is displayed in the middle, the volumetric
mesh composed of tetrahedra is displayed at the bottom.

Abstract
This paper introduces an original method to perform augmented or mixed reality on deformable objects. Com-
pared to state-of-the-art techniques, our method is able to track deformations of volumetric objects and not only
surfacic objects. A �exible framework that relies on the combination of a 3D motion estimation and a physics-
based deformable model used as a regularization and interpolation step allows to perform a non-rigid and robust
registration. Results are exposed, based on computer-generated datasets and video sequences of real environments
in order to assess the relevance of our approach.

Categories and Subject Descriptors(according to ACM CCS): H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Arti�cial, augmented, and virtual realities I.3.5 [Computer Graphics]: Com-
putational Geometry and Object Modeling —Physically based modeling
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1. Introduction

Augmented or Mixed Reality refers to the process of enrich-
ing or augmenting a real world environment with computer-
generated data. Its applications are numerous for consumer
tasks such as navigation, video games or advertising. . . but
there also exists a need for augmented reality in indus-
trial or medical contexts. Current medical procedures, for
instance, favorminimally invasive surgerysuch as laparo-
scopic surgery or interventional radiology where surgeons
have an indirect view of the operative �eld and perform the
surgery through monitors using video or �uoroscopic imag-
ing modalities. Theseminimally invasive surgeryprocedures
are quite complex not only from a surgical skill standpoint
but also because the visual feedback is relatively incom-
plete or poor. To ease the procedures, computer-generated
or sensor-collected information such as tumor location, ves-
sel, regions of interest. . . may be superimposed on the dis-
play to help the surgeons. However these information, ob-
tained through pre-operative CT scans or MRI are mostly,
for the moment, rigidly registered or even manually regis-
tered on the video streams. Such approach is not suited for
deformable targets such as organs or biologic tissues for in-
stance.

This paper proposes a framework that is able to automat-
ically track deformable objects for augmented reality pur-
poses. The main advantage of our approach is to handle vol-
umetric object and not to be limited to thin or surfacic ob-
jects. The originality of the paper is the combination of a 3D
motion estimation to detect the surface deformation of the
target and a physics-based model to interpolate the deforma-
tion over the whole model. By physics-based, we mean that
the model will undergo elastic deformations and will be me-
chanically constrained to �t the tracked motion from stereo-
scopic images. It is also worth mentioning that the camera
is assumed not to move over time and therefore the motion
is only due to deformations. The contributions of the paper
includes a �exible and modular framework to perform the
tracking of deformable objects, a robust 3D motion estimator
based on the combination of a feature detector and a Kalman
Filter, and an original way to detect outliers and to constrain
the mechanical model to follow the feature motion. Exper-
imental validation is carried out in a synthetic environment
but also in a real environment with surfacic and volumetric
objects and the results exhibit the relevance of our approach.

The following of the paper is organized as following. Sec-
tion 2 presents the previous works related to non-rigid reg-
istration and physics-based augmented reality.Section3 ex-
plains our approach while section4 details the experimental
results obtained on several datasets (synthetic and real).

2. Related Work

In this section we present the previous work related on Aug-
mented Reality for deformable models. First by presenting

an overview of non-rigid registration methods, second by
presenting previous works on physics-based augmented re-
ality techniques.

2.1. Non-rigid registration

Non-rigid registration is still an ill-posed problem in com-
puter vision. To solve this problem two different approaches
are distinguished: Feature-based methods and Direct meth-
ods.

In feature-based methods, a correspondence between
image-features has to be established. Distinct points called
featuresare �rst extracted from input image and training im-
ages based on their quality (i.e. their robustness to image
transformations), then a matching between features is com-
puted. These features are eventually used to estimate the sur-
face deformations.

In computer vision, a large number of features detector
and matching algorithms have been proposed. For fast non-
rigid surface detection, Piletet al. [PLF08] propose a wide
baseline features matching to �nd correspondences between
a reference and a target image, combined with a 2D de-
formable meshes and a robust estimation technique. This ap-
proach is robust to large deformations and changes in light-
ing but fail in presence of self-occlusions due to the features
missing in occluded region. In order to reduce the num-
ber of iteration of the previous method Zhuet al. [ZL07]
used a progressive Finite Newton algorithm and an ef�cient
factorization method to solve the optimization problem. In
order to track the deformations of the heart surface using
stereo endoscope images, Richaet al. [RBP10] proposed
an hybrid visual tracking combining the SIFT [Low04], a
modi�ed Lucas-Kanade algorithm proposed by Steyanovet
al. [SMD� 05] and a region-based method [RPL10]. The un-
reliable measurement of the tracking are interpolated with
a Thin-Plate Spline used as 3D dense model. This approach
suffers from limitation when the heart surface is occluded by
surgeons instruments.

In contrast to feature-based methods, direct methods use
the entire intensity of the image instead of sparse points. In
order to register non-rigid pairs of images, Bartoli and Zis-
serman [BZ04] used Radial Basis Mappings for learning the
distortion model. The centers of the Radial Basis Mappings
are estimated in a dynamic way until a stopping criterion
is reached. In their approach, Gay-Belilleet al. [GBBS10]
consider the occluded pixels as self-occlusion area instead of
outliers and constrain the deformable model. This method al-
lows extreme occlusions but exhibits limitations to cope with
changing illuminations. Recently [HdSS12], depth camera
have been introduced in order to perform a registration of a
3D deformable mesh and a 3D point cloud.

Similar to direct methods, optical �ow constraints can be
used as an alternative to features-based method. Recently,
Hilsmannet al. [HSE10] proposed an approach using theses
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constraints regularized by a surfacic deformable mesh. This
approach was extended to recover photometric parameters to
stabilize the geometric tracking against illumination changes
and to obtain realistic re-texturing.

2.2. Physics-based Augmented Reality

In general, features-based and direct methods are combined
with deformable model to interpolate poor measurement or
missing features during surface estimation. In this section we
will present the related work using physics model instead of
geometric model.

While the topic of physics-based deformable model has
been widely studied in computer graphics (for more details,
the reader may refer to the state-of-the-art from Nealenet
al. [NMK � 06]), few works have been conducted to introduce
physics in Augmented Reality. In medicine, Santhanamet
al. [SFHL� 04] used elastic properties to simulate lungs de-
formation during inhalation. This technique was able to su-
perimpose the lungs over a patient simulator with precom-
puted deformations. Salzmannet al. [SUF08] proposed to
use physics-based model to estimate 3D shapes from monoc-
ular camera by learning local deformation.

The main contribution of this paper is to use a physics-
based model to estimate 3D deformations. While most pro-
posed method try to learn deformations from 2D surfaces,
our method uses the entire volumetric object and a prior
knowledge of its mechanical properties to estimate the defor-
mations to be superimposed into video stream. In addition to
3D estimation, the physical model is used as regulator for the
unreliable measurement of the visual tracking and as motion
compensation in poor textured area.

3. Proposed Method

This section describes our main contributions and intro-
duces our framework to robustly and ef�ciently track de-
formable objects in order to perform augmented reality. It
is worth mentioning that the described framework is mod-
ular and some components may be replaced or adapted.
For instance, the 3D estimation component (see3.1) is
based on stereographic images but can handle 3D camera or
other recent 3D motion estimation algorithms as Non-rigid
Structure from Motion [PDBX� 12] or Dense Tracking And
Mapping [NLD11]. The overall computational �ow of our
method involves two main problems which are detailed in
the following subsections: �rst, the 3D motion estimation of
the visual features; second, the computation of the model
deformation and the regularization step. The �gure2 illus-
trates the main components of our approach as well as the
data streams between components.

3.1. 3D Motion Estimation

Our 3D motion estimation approach is a feature-based
method. Distinct features are detected and tracked to esti-

Figure 2: Computational �ow of our method: The main con-
tribution relies on the combination of the tracking and the
mechanical representation.

mate the deformations of the targeted object. The proposed
framework can be used for non-rigid surface registration
from single view and can be extended to volumetric defor-
mations estimation from stereoscopic view. The computa-
tional �ow for both single and stereoscopic view is the same,
except for the three dimensional shape recovery.

In order to estimate a three-dimensional shape from
stereoscopic images, a correspondence between features de-
tected in stereo pairs has to be established. This particu-
lar step is based on the method proposed by El Hawary
et al. [EP10] who evaluate the Lucas-Kanade (LK) op-
tical �ow [ LK81] and the Speeded-Up Robust Features
(SURF) detector [BETVG08] for robotic-guided endoscopy
and shows the robustness and the accuracy of this combina-
tion and its usability for conventional laparoscopic surgery.
Since the SURF algorithm provides a descriptor, this method
can easily be extended to stereo matching.

The Lucas-Kanade (will be referred asLK in the rest of
the paper) algorithm is an iterative optical �ow that allows
the detection of features in successive pairs of images un-
der the assumptions that the local displacement in a pixel
neighborhood is small. Based on the approach by El Hawary
et al. [EP10], the pyramidal implementation of theLK al-
gorithm [Bou02] is used because it is very well suited for
smooth deformations. TheLK algorithm is also coupled with
a Kalman Filter in order to smoothen the displacement of the
features. Indeed the sensitivity of the physics-based model
with respect to large sudden displacements may enforce the
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numerical stability of the model. Moreover those kind of dis-
placements are not expected in our context.

The Speeded-up Robust Features algorithm proposed by
et al. [BETVG08] is both a feature detector and a feature
descriptor. A descriptor is a distinct �ngerprint assigned to
each keypoint detected regard to its pixel properties and its
response to the detector. The SURF detector is based on the
determinant of the Hessian blob detector to extract distinct
keypoints. The detector is robust to af�ne transformation, ro-
tation and illumination changes, and is computationally fast
thanks to the use of integral image. The SURF is also a ro-
bust descriptor. SURF uses the Haar wavelet response of the
keypoint region to build the descriptor. The descriptors are
represented as a vector of 128 dimension.

Descriptors are used to �nd correspondences between fea-
tures in pairs of images. In our case, we used the SURF
descriptor for stereo matching to recover the 3D shape by
computing a nearest neighbor search on descriptors vectors
based on an Euclidean Distance. To �ltre false matching due
to repeated pattern, the epipolar constraints are applied in
addition with the nearest neighbor matching. The Figure3
shows the point cloud recovered from the stereo matching.

Figure 3: 3D Estimation on a Stanford Bunny with stereo
images: Top image illustrates the SURF Stereo matching
were features are detected and their descriptor is used to �nd
the correspondences between features in the images. Bottom
image is the resulting sparse 3D point cloud.

3.2. Physics-based Model

The purpose of having a physics-based model is twofold:
�rst, it will serve as a regularization step in order to discard
outliers (i.e. false-positives features that can not be part of
the tracked object) issued from the 3D motion estimation
and second, it will allow tointerpolatethe motion and de-
formation of the whole volume of the object and not only
the surface of the object. This second point is one of the
important contributions of the paper over state-of-the-art ap-
proaches which are limited to surfacic or thin objects.

There is no mechanical model that is generic enough to be
suited to every deformable object and moreover each model
is related to a certain number of parameters. Therefore in our
framework, the component related may easily be replaced to
match the speci�cities of the object being tracked. The only
assumption made is that the model is Lagrangian (which is
the case of most of the deformable models) and that can be
mechanically constrained with boundary conditions. For the
results detailed in section4, an FEM model with tetrahedral
co-rotational elements is used.

The boundary conditions will be applied on particular 3D
control points. Again, the main idea is to use the 3D motion
of the features detected on the surface toguidethe deforma-
tion of the whole object. These 3D control points may differ
from the degrees of freedom of the mechanical model since
very few assumptions are made on the model and because
we want to control the number of boundary conditions that
will be applied on the model in order to control the sim-
ulation time because it needs to be synchronized with the
video acquisition rate. This is done by adjusting the density
of the control points (fewer control points will lead to fewer
constraints). These 3D control points are generated using a
simple ray-casting algorithm with different patterns (either
regular or random distribution). The �gure4 illustrates two
types of pattern to build a set of control point according to
the camera location and direction.

Figure 4: Generation of 3D control points. Density and pat-
tern may be tweaked to build different set of control points
that will constrain the mechanical model.

To link the 3D control points of the mechanical model and
the 3D features from the recovered shape, a clustering is ini-
tially computed. Each control point de�nes a region of inter-
est (cluster) where the mechanical model may have in�uence
on the deformation. The nearest features to the control point

c The Eurographics Association 2012.



Haouchine N.,Dequidt J.,Kerrien E.,Berger M-O.,Cotin S. / Physics-based Augmented Reality for 3D Deformable Object

are assigned to the cluster by a combined weighted mean: a
weighted mean on the Hessian responses of the SURF de-
tector and the Shepard's Inverse Distance Weighting (IDW).
The formula used is as follow:

D(p) =
n

å
i= 1

Widi

WhereD is the weighted displacement of the the control
point p, n the total number of neighbors anddi the displace-
ment of the featurei. Wi is the weight assigned to each fea-
ture and is as follow :

wi =
( R� hi

Rhi
)2

å n
j= 1( R� h j

Rhj
)2

WhereR is the radius of the cluster in 3D space,hi the
distance of the feature from the control point andn the total
number of neighbors.

The Shepard's IDW allows the nearby feature to the con-
trol point to have the largest weight and by then the largest
in�uence in term of deformation. Combining this in�uence
with the Hessian response allows to prevent from poor mea-
surement during the tracking. In a large sens, this formula
combine mechanical properties (radius and control point
repartition) to image properties (features robustness pro-
vided by the detector). The Figure5 illustrate the clustering
phase.

Figure 5: Clustering phase : (Top) Image illustrates the two
views of 3D point cloud estimated from stereo matching. The
Blue sphere represents the outliers. (Bottom) Image is a rep-
resentation of the clusters. Red sphere represent the Control
Points and the Green sphere the reliable features (neighbor).

By processing the clustering phase, false correspondences

from the stereo matching and unreliable features are re-
moved. Each 3D feature which does not belong to a cluster
is consider as outliers. In the Figure5 the blue sphere rep-
resents the unreliable features. Once the clustering has been
done, mechanical springs are set between features position
and 3D control points in order to constraint the deformable
model to match the deformation of the real object.

4. Experimental Results

In this section we present the experimental result of our ap-
proach. In order to provide both qualitative and quantita-
tive evaluation of our approach two kind of experiments are
conducted: The �rst ones are based on synthetic data that
are computer-generated in order to easily and quantitatively
compare the reference deformed mesh and the one obtained
with our approach. The second set of experiments is per-
formed on real sequences where only a qualitative evaluation
is available.

We �rst present some details about the framework imple-
mentation. We then validate the clustering phase by compar-
ing the three aforementioned weighted technique: the Hes-
sian response, the Inverse Distance Weighting and the com-
bination of both. We also compare the repartition of con-
trol points on the surface and compute the accuracy of each
repartition. Finally, we present result for both synthetic and
real sequences from single and stereoscopic view.

4.1. Implementation details and experimental set-up

The feature descriptor and the Optical Flow algorithm were
implemented in C++ using the OpenCV 2.4 library and the
open source framework SOFA [ACF� 07]. For synthetic data
experimentation, the stereographic images were rendered us-
ing SOFA graphics engine. The real sequences were ac-
quired by a stereoscopic camera with a resolution of 640�
480, a focal length of 3.7 mm and a baseline of 50 mm. The
frames were acquired with a frame-rate of 30 fps.

4.2. Synthetic Data

We evaluate the accuracy of the registration by calculating
the Hausdorff Distance as a metric between the reference
3D mesh (that undergo a synthetic deformation) and the tar-
get 3D mesh (that undergo the deformation controlled by the
tracked control points). This metric [NA02] is the reference
metric for comparing two meshes in the Computer Graphics
and the Reconstruction scienti�c community. In the follow-
ing experiments, we use the RMSE (Rounded Mean Square
Error) of the Hausdorff Distance as the metric.

For this evaluation we use three models: A Stanford
Bunny, a Human Liver and a Cube, and three types of de-
formations, Large, Local and Small. The Figure6 illustrate
the trained synthetic data.
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Figure 6: The trained synthetic data : From left to right : Ears deformations of the Stanford Bunny, large, small and local Cube
deformation, local Human Liver deformation in opposite direction. The volumetric mesh composed of tetrahedra is displayed
in blue. The �xed constraints are represented by red markers and the direction of the force �eld applied is illustrated by the
green lines.

4.2.1. Clustering comparative study

In order to deform the 3D mesh, the displacement �eld of
the control point has to be computed. Each control point is
represented by a set of features. The in�uence of each feature
on the displacement �eld of the control point is weighted
by a weighted mean based on the feature quality (Hessian
Response to SURF Detector) and the distance of the feature
from the control point. The table below shows the results of
a comparative study of the weighted techniques:

Mesh Def. Hessian IDW Combi.
Bunny Local 0.084219 0.053334 0.052600

Cube
Small 0.030478 0.033544 0.032852
Local 0.084395 0.088675 0.076890
Large 0.083171 0.092020 0.087234

Liver
Local1 0.193037 0.165178 0.165863
Local2 0.200634 0.211516 0.195849

The weighted mean based on the combination of the
Hessian responses and the The Shepards's Inverse Distance
Weighting gives the best result in term of accuracy. The
Shepards's Inverse Distance Weighting gives results almost
similar to this combination in some cases. However, intro-
ducing the feature quality in the Shepard's IDW prevent the
registration from poor tracking measurement.

4.2.2. Control points distribution

The control points distribution has an important in�uence
on the mesh deformation. A poor distribution of the control
points reduces the accuracy of the registration. In addition,
since the features are considered as outliers if they do not be-
long to a cluster, interesting features to track may be ignored.
In this study, we make the assumption that a large number of
control point increase the registration accuracy. Beside the
number of control points, their distribution impacts on the
registration. Thus we compare two methods of distribution,
a random distribution and a regular distribution.

The random distribution of the control points shows to be

Mesh Deformations Random Regular
Bunny Local 0.052386 0.052600

Cube
Small 0.043528 0.032852
Local 0.061583 0.076890
Large 0.086755 0.087234

Liver
Local1 0.133816 0.165863
Local2 0.171843 0.195849

more accurate than the regular distribution particularly when
the mesh is geometrically complex but overall the two meth-
ods provides acceptable RMSE errors with the same order
of magnitude.

4.2.3. Registration results

The �gure 7 illustrates results from our non-rigid tracking
on the different synthetic data-sets that we used and several
steps of the deformation (initial situation, intermediate con-
�guration, and �nal con�guration). From a qualitative stand-
point, the results of the �nal con�guration exhibits a good
correlation between the reference mesh and the tracked one.

4.3. Augmented Reality

The previous setup was also tested on real sequences. Stereo-
scopic view of a cube deformation and a single view of a
paper shrinking.

The SURF detector was able to extract 2445 features from
left image and 2436 from right image. The stereo matching
algorithm found 2251 correspondences based on the SURF
descriptor which is more than 90%. A �rst �lter based on
the bounding box limits of the 3D mesh reduced the num-
ber of correspondences to 298. On the 131 initial control
point randomly distributed on the cube surface, 83 clusters
were build. The clustering reduced the number of correspon-
dences to 105 features. During theLK Optical Flow tracking,
5 features were lost from the 105 tracked which represent
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Figure 7: Synthetic datasets on various meshes and defor-
mations. The left image represents the initial condition, the
middle one an intermediate motion and the rightmost one
the �nal con�guration. The reference mesh is displayed with
plain faces whereas our algorithm provides deform meshes
displayed in wireframe (orange lines). The results exhibit a
good matching of the reference mesh and the tracked one.

less the 5%. The Figure8 illustrates the stereo matching and
the clustering result.

The paper shrinking from a single view illustrated in Fig-
ure9 shows that only four control points (one in each corner)
were needed to constraint the mechanical model of the paper
to shrink. The mechanical model is not directly constrained
by the control point motion. Mechanical springs linked to
each control point allow the motion to be smoother. The �g-
ure1 illustrates results based on real cube deformation and
the non-rigid tracking that is computed. Moreover, given the
video sequence, it is remarkable that occlusions due to the
tool motion are compensated by the mechanical model.

5. Conclusions

In this paper we present a new physics-based method for 3D
non-rigid registration. The results presented show that our
tracking algorithm can track and estimate three-dimensional

Figure 8: Stereo Matching and Clustering on a real cube:
Top image illustrates the Stereo detection and matching.
Only matched features are shown. Bottom left image is the
initial repartition of control point (Black sphere) and the re-
sulting 3D point cloud (Blue sphere). Bottom right image
illustrates the clusters. Red sphere represents the control
points and Green sphere the 3D features.

motion of various deformations. We have introduced a
framework that combines 3D robust motion estimation and
clustering and regularization process based on a volumetric
mechanical mesh. Quantitative validation has been carried
out on synthetic data and visual assessment has been per-
formed on real video sequences. Future works will include
quantitative validation on real datasets and we will try to
confront our algorithm against real situations such as laparo-
scopic procedures. Further investigation will be conducted to
estimate the robustness of our method with respect to occlu-
sions and illumination changes.
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