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Figure 1: A sequence of images showing a cube being deformed. (Top) augmented reality images where the mesh in wireframe
is superimposed on the video stream. For the deformed mechanical mesh, the surface is displayed in the middle, the volumetric
mesh composed of tetrahedra is displayed at the bottom.

Abstract

This paper introduces an original method to perform augmented or mixed reality on deformable objects. Com-
pared to state-of-the-art techniques, our method is able to track deformations of volumetric objects and not only
surfacic objects. A exible framework that relies on the combination of a 3D motion estimation and a physics-
based deformable model used as a regularization and interpolation step allows to perform a non-rigid and robust

registration. Results are exposed, based on computer-generated datasets and video sequences of real environments
in order to assess the relevance of our approach.

Categories and Subject Descript@ascording to ACM CCS) H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Arti cial, augmented, and virtual realities 1.3.5 [Computer Graphics]: Com-
putational Geometry and Object Modeling —Physically based modeling
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1. Introduction

Augmented or Mixed Reality refers to the process of enrich-
ing or augmenting a real world environment with computer-

an overview of non-rigid registration methods, second by
presenting previous works on physics-based augmented re-
ality techniques.

generated data. Its applications are numerous for consumer
tasks such as navigation, video games or advertising...but 2.1. Non-rigid registration

there also exists a need for augmented reality in indus-
trial or medical contexts. Current medical procedures, for
instance, favominimally invasive surgerguch as laparo-
scopic surgery or interventional radiology where surgeons
have an indirect view of the operative eld and perform the
surgery through monitors using video or uoroscopic imag-
ing modalities. Thesminimally invasive surgergrocedures
are quite complex not only from a surgical skill standpoint
but also because the visual feedback is relatively incom-

Non-rigid registration is still an ill-posed problem in com-
puter vision. To solve this problem two different approaches
are distinguished: Feature-based methods and Direct meth-
ods.

In feature-based methods, a correspondence between
image-features has to be established. Distinct points called
featuresare rst extracted from input image and training im-
ages based on their qualitig their robustness to image

plete or poor. To ease the procedures, computer-generatedransformations), then a matching between features is com-

or sensor-collected information such as tumor location, ves-
sel, regions of interest...may be superimposed on the dis-
play to help the surgeons. However these information, ob-
tained through pre-operative CT scans or MRI are mostly,
for the moment, rigidly registered or even manually regis-

tered on the video streams. Such approach is not suited for

deformable targets such as organs or biologic tissues for in-
stance.

This paper proposes a framework that is able to automat-
ically track deformable objects for augmented reality pur-

poses. The main advantage of our approach is to handle vol-

umetric object and not to be limited to thin or surfacic ob-
jects. The originality of the paper is the combination of a 3D
motion estimation to detect the surface deformation of the

target and a physics-based model to interpolate the deforma-

tion over the whole model. By physics-based, we mean that
the model will undergo elastic deformations and will be me-
chanically constrained to t the tracked motion from stereo-
scopic images. It is also worth mentioning that the camera

puted. These features are eventually used to estimate the sur-
face deformations.

In computer vision, a large number of features detector
and matching algorithms have been proposed. For fast non-
rigid surface detection, Piledt al. [PLFO§ propose a wide
baseline features matching to nd correspondences between
a reference and a target image, combined with a 2D de-
formable meshes and a robust estimation technique. This ap-
proach is robust to large deformations and changes in light-
ing but fail in presence of self-occlusions due to the features
missing in occluded region. In order to reduce the num-
ber of iteration of the previous method Zlet al. [ZLO7]
used a progressive Finite Newton algorithm and an ef cient
factorization method to solve the optimization problem. In
order to track the deformations of the heart surface using
stereo endoscope images, Ridgttaal. [RBP1Q proposed
an hybrid visual tracking combining the SIFLdw04], a
modi ed Lucas-Kanade algorithm proposed by Steyaabv
al. [SMD 05 and a region-based methddPL1d. The un-

is assumed not to move over time and therefore the motion reliable measurement of the tracking are interpolated with
is only due to deformations. The contributions of the paper a Thin-Plate Spline used as 3D dense model. This approach
includes a exible and modular framework to perform the suffers from limitation when the heart surface is occluded by
tracking of deformable objects, a robust 3D motion estimator surgeons instruments.

based on the combination of a feature detector and a Kalman

Filter, and an original way to detect outliers and to constrain
the mechanical model to follow the feature motion. Exper-
imental validation is carried out in a synthetic environment
but also in a real environment with surfacic and volumetric
objects and the results exhibit the relevance of our approach.

The following of the paper is organized as following. Sec-
tion 2 presents the previous works related to non-rigid reg-
istration and physics-based augmented reality. Se&iex
plains our approach while sectidrdetails the experimental
results obtained on several datasets (synthetic and real).

2. Related Work

In this section we present the previous work related on Aug-
mented Reality for deformable models. First by presenting

In contrast to feature-based methods, direct methods use
the entire intensity of the image instead of sparse points. In
order to register non-rigid pairs of images, Bartoli and Zis-
serman BZ04] used Radial Basis Mappings for learning the
distortion model. The centers of the Radial Basis Mappings
are estimated in a dynamic way until a stopping criterion
is reached. In their approach, Gay-Belileal. [GBBS1(
consider the occluded pixels as self-occlusion area instead of
outliers and constrain the deformable model. This method al-
lows extreme occlusions but exhibits limitations to cope with
changing illuminations. RecenthHdSS12, depth camera
have been introduced in order to perform a registration of a
3D deformable mesh and a 3D point cloud.

Similar to direct methods, optical ow constraints can be
used as an alternative to features-based method. Recently,
Hilsmannet al.[HSE1(Q proposed an approach using theses
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constraints regularized by a surfacic deformable mesh. This
approach was extended to recover photometric parameters tg
stabilize the geometric tracking against illumination changes
and to obtain realistic re-texturing.

2.2. Physics-based Augmented Reality

In general, features-based and direct methods are combined
with deformable model to interpolate poor measurement or
missing features during surface estimation. In this section we
will present the related work using physics model instead of
geometric model.

While the topic of physics-based deformable model has |
been widely studied in computer graphics (for more details,
the reader may refer to the state-of-the-art from Nealen
al. [NMK 06]), few works have been conducted to introduce
physics in Augmented Reality. In medicine, Santharetm
al. [SFHL 04] used elastic properties to simulate lungs de-
formation during inhalation. This technique was able to su-
perimpose the lungs over a patient simulator with precom-
puted deformations. Salzmamet al. [SUFOg proposed to Figure 2: Computational ow of our method: The main con-
use physics-based model to estimate 3D shapes from monoc-tribution relies on the combination of the tracking and the
ular camera by learning local deformation. mechanical representation.

The main contribution of this paper is to use a physics-
based model to estimate 3D deformations. While most pro-
posed method try to learn deformations from 2D surfaces,

our method uses the entire volumetric object and a prior mate the deformations of the targeted object. The proposed
knowledge of its mechanical properties to estimate the defor- framework can be used for non-rigid surface registration
mations to be superimposed into video stream. In addition to from single view and can be extended to volumetric defor-
3D estimation, the physical model is used as regulator for the mations estimation from stereoscopic view. The computa-
unreliable measurement of the visual tracking and as motion tjonal ow for both single and stereoscopic view is the same,
compensation in poor textured area. except for the three dimensional shape recovery.

In order to estimate a three-dimensional shape from
stereoscopic images, a correspondence between features de-
This section describes our main contributions and intro- tected in stereo pairs has to be established. This particu-
duces our framework to robustly and ef ciently track de- lar step is based on the method proposed by El Hawary
formable objects in order to perform augmented reality. It et al. [EP1Q who evaluate the Lucas-Kanade (LK) op-
is worth mentioning that the described framework is mod- tical ow [LK81] and the Speeded-Up Robust Features
ular and some components may be replaced or adapted.(SURF) detectorBETVGOS§ for robotic-guided endoscopy
For instance, the 3D estimation component (88 is and shows the robustness and the accuracy of this combina-
based on stereographic images but can handle 3D camera ottion and its usability for conventional laparoscopic surgery.
other recent 3D motion estimation algorithms as Non-rigid  Since the SURF algorithm provides a descriptor, this method
Structure from Motion PDBX 12] or Dense Tracking And can easily be extended to stereo matching.

Mapping NLD11]. The overall computational ow of our ] ]

method involves two main problems which are detailed in  The Lucas-Kanade (will be referred B in the rest of

the following subsections: rst, the 3D motion estimation of ~the paper) algorithm is an iterative optical ow that allows
the visual features; second, the computation of the model the detection of features in successive pairs of images un-

3. Proposed Method

deformation and the regularization step. The g@rélus- de_r the assumptions that the local displacement in a pixel
trates the main components of our approach as well as the Neighborhood is small. Based on the approach by El Hawary
data streams between components. et al. [EP1Q, the pyramidal implementation of theK al-

gorithm [Bou03 is used because it is very well suited for
smooth deformations. THe&K algorithm is also coupled with

a Kalman Filter in order to smoothen the displacement of the
Our 3D motion estimation approach is a feature-based features. Indeed the sensitivity of the physics-based model
method. Distinct features are detected and tracked to esti- with respect to large sudden displacements may enforce the

3.1. 3D Motion Estimation
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numerical stability of the model. Moreover those kind of dis-  3.2. Physics-based Model

placements are not expected in our context, The purpose of having a physics-based model is twofold:

The Speeded-up Robust Features algorithm proposed by rst, it will serve as a regularization step in order to discard
et al. [BETVGOY is both a feature detector and a feature outliers {.e. false-positives features that can not be part of
descriptor. A descriptor is a distinct ngerprint assigned to the tracked object) issued from the 3D motion estimation
each keypoint detected regard to its pixel properties and its and second, it will allow tanterpolatethe motion and de-
response to the detector. The SURF detector is based on theformation of the whole volume of the object and not only
determinant of the Hessian blob detector to extract distinct the surface of the object. This second point is one of the
keypoints. The detector is robust to af ne transformation, ro- important contributions of the paper over state-of-the-art ap-
tation and illumination changes, and is computationally fast proaches which are limited to surfacic or thin objects.
thanks to the use of integral image. The SURF is also a ro-
bust descriptor. SURF uses the Haar wavelet response of the
keypoint region to build the descriptor. The descriptors are
represented as a vector of 128 dimension.

There is no mechanical model that is generic enough to be
suited to every deformable object and moreover each model
is related to a certain number of parameters. Therefore in our
framework, the component related may easily be replaced to

Descriptors are used to nd correspondences between fea- Match the speci cities of the object being tracked. The only
tures in pairs of images. In our case, we used the SURF assumption made is that the model is Lagrangian (which is
descriptor for stereo matching to recover the 3D shape by the case of most of the deformable models) and that can be
Computing a hearest neighbor search on descriptors Vectorsmechanica”y constrained with boundary conditions. For the
based on an Euclidean Distance. To ltre false matching due results detailed in sectioh an FEM model with tetrahedral
to repeated pattern, the epipolar constraints are applied in Co-rotational elements is used.
addition with the nearest neighbor matching. The FigRire

) ) The boundary conditions will be applied on particular 3D
shows the point cloud recovered from the stereo matching.

control points. Again, the main idea is to use the 3D motion
of the features detected on the surfacgualethe deforma-
tion of the whole object. These 3D control points may differ
from the degrees of freedom of the mechanical model since
‘ very few assumptions are made on the model and because
we want to control the number of boundary conditions that
- . will be applied on the model in order to control the sim-
N ulation time because it needs to be synchronized with the
N video acquisition rate. This is done by adjusting the density
AN of the control points (fewer control points will lead to fewer
N constraints). These 3D control points are generated using a
. simple ray-casting algorithm with different patterns (either
regular or random distribution). The gurgillustrates two
types of pattern to build a set of control point according to
the camera location and direction.

Figure 4: Generation of 3D control points. Density and pat-
tern may be tweaked to build different set of control points

that will constrain the mechanical model.
Figure 3: 3D Estimation on a Stanford Bunny with stereo

images: Top image illustrates the SURF Stereo matching ) ) )

were features are detected and their descriptor is used to nd 10 link the 3D control points of the mechanical model and

the correspondences between features in the images. Bottorrtn€ 3D features from the recovered shape, a clustering is ini-

image is the resulting sparse 3D point cloud. tially computed. Each control point de nes a region of inter-
est (cluster) where the mechanical model may have in uence
on the deformation. The nearest features to the control point
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are assigned to the cluster by a combined weighted mean: afrom the stereo matching and unreliable features are re-
weighted mean on the Hessian responses of the SURF de-moved. Each 3D feature which does not belong to a cluster

tector and the Shepard's Inverse Distance Weighting (IDW).
The formula used is as follow:

n
D(p)= & Wdi
i=1

WhereD is the weighted displacement of the the control
point p, n the total number of neighbors addthe displace-
ment of the featuré W is the weight assigned to each fea-
ture and is as follow :

Ca)?
. R hj
aj= 1(Wjj)2

WhereR is the radius of the cluster in 3D spadg,the
distance of the feature from the control point antthe total
number of neighbors.

The Shepard's IDW allows the nearby feature to the con-
trol point to have the largest weight and by then the largest
in uence in term of deformation. Combining this in uence
with the Hessian response allows to prevent from poor mea-
surement during the tracking. In a large sens, this formula
combine mechanical properties (radius and control point
repartition) to image properties (features robustness pro-
vided by the detector). The FiguBdllustrate the clustering
phase.

Figure 5: Clustering phase : (Top) Image illustrates the two
views of 3D point cloud estimated from stereo matching. The
Blue sphere represents the outliers. (Bottom) Image is a rep-

resentation of the clusters. Red sphere represent the Control

Points and the Green sphere the reliable features (neighbor).

is consider as outliers. In the Figubethe blue sphere rep-
resents the unreliable features. Once the clustering has been
done, mechanical springs are set between features position
and 3D control points in order to constraint the deformable
model to match the deformation of the real object.

4. Experimental Results

In this section we present the experimental result of our ap-
proach. In order to provide both qualitative and quantita-
tive evaluation of our approach two kind of experiments are
conducted: The rst ones are based on synthetic data that
are computer-generated in order to easily and quantitatively
compare the reference deformed mesh and the one obtained
with our approach. The second set of experiments is per-
formed on real sequences where only a qualitative evaluation
is available.

We rst present some details about the framework imple-
mentation. We then validate the clustering phase by compar-
ing the three aforementioned weighted technique: the Hes-
sian response, the Inverse Distance Weighting and the com-
bination of both. We also compare the repartition of con-
trol points on the surface and compute the accuracy of each
repartition. Finally, we present result for both synthetic and
real sequences from single and stereoscopic view.

4.1. Implementation details and experimental set-up

The feature descriptor and the Optical Flow algorithm were
implemented in C++ using the OpenCV 2.4 library and the
open source framework SOFACF 07]. For synthetic data
experimentation, the stereographic images were rendered us-
ing SOFA graphics engine. The real sequences were ac-
quired by a stereoscopic camera with a resolution of 640
480, a focal length of 3.7 mm and a baseline of 50 mm. The
frames were acquired with a frame-rate of 30 fps.

4.2. Synthetic Data

We evaluate the accuracy of the registration by calculating
the Hausdorff Distance as a metric between the reference
3D mesh (that undergo a synthetic deformation) and the tar-
get 3D mesh (that undergo the deformation controlled by the
tracked control points). This metribNR02] is the reference
metric for comparing two meshes in the Computer Graphics
and the Reconstruction scienti c community. In the follow-
ing experiments, we use the RMSE (Rounded Mean Square
Error) of the Hausdorff Distance as the metric.

For this evaluation we use three models: A Stanford
Bunny, a Human Liver and a Cube, and three types of de-
formations, Large, Local and Small. The Fig@dlustrate

By processing the clustering phase, false correspondencesthe trained synthetic data.
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Figure 6: The trained synthetic data : From left to right : Ears deformations of the Stanford Bunny, large, small and local Cube
deformation, local Human Liver deformation in opposite direction. The volumetric mesh composed of tetrahedra is displayed
in blue. The xed constraints are represented by red markers and the direction of the force eld applied is illustrated by the
green lines.

4.2.1. Clustering comparative study Mesh | Deformations | Random | Regular
. Bunny Local 0.052386| 0.052600
IE order toI de_forrrr: the 3bD mesh, th(e; désplra]\cemenf el_d o_f Small 0.043528 | 0.032852
the contro dpgmt as t]?f e comp_H:e.. ac cofntro ﬁ?mt is Cube Cocal 0061583 0.076890
represented by a set of features. The in uence of each feature Large 0.086755 [ 0.087234
on the displacement eld of the control point is weighted
b iahted based he f ity (Hessi Liver Locall 0.133816| 0.165863
y a weighted mean based on the feature quality (Hessian Cocal 0171843 0.195849

Response to SURF Detector) and the distance of the feature
from the control point. The table below shows the results of
a comparative study of the weighted techniques:

more accurate than the regular distribution particularly when

Mesh | Def. | Hessian | IDW Combi. the mesh is geometrically complex but overall the two meth-
Bunny | Local | 0.084219| 0.053334| 0.052600 ods provides acceptable RMSE errors with the same order
Small | 0.030478| 0.033544] 0.032852 of magnitude.

Cube | Local | 0.084395| 0.088675| 0.076890
Large | 0.083171| 0.092020| 0.087234
Locall | 0.193037| 0.165178| 0.165863
Local2 | 0.200634| 0.211516| 0.195849 The gure 7 illustrates results from our non-rigid tracking

on the different synthetic data-sets that we used and several

The weighted mean based on the combination of the steps of the deformation (initial situation, intermediate con-

Hessian responses and the The Shepards's Inverse Distanceguration, and nal con guration). From a qualitative stand-
Weighting gives the best result in term of accuracy. The point, the results of the nal con guration exhibits a good
Shepards's Inverse Distance Weighting gives results almost correlation between the reference mesh and the tracked one.
similar to this combination in some cases. However, intro-

ducing the feature quality in the Shepard's IDW prevent the

4.2.3. Registration results

Liver

registration from poor tracking measurement. 4.3. Augmented Reality
22 C | points distributi The previous setup was also tested on real sequences. Stereo-
4.2.2. Control points distribution scopic view of a cube deformation and a single view of a

The control points distribution has an important in uence paper shrinking.
on the mesh deformation. A poor distribution of the control
points reduces the accuracy of the registration. In addition,
since the features are considered as outliers if they do not be-
long to a cluster, interesting features to track may be ignored.
In this study, we make the assumption that a large number of
control point increase the registration accuracy. Beside the
number of control points, their distribution impacts on the
registration. Thus we compare two methods of distribution,
a random distribution and a regular distribution.

The SURF detector was able to extract 2445 features from
left image and 2436 from right image. The stereo matching
algorithm found 2251 correspondences based on the SURF
descriptor which is more than 90%. A rst Iter based on
the bounding box limits of the 3D mesh reduced the num-
ber of correspondences to 298. On the 131 initial control
point randomly distributed on the cube surface, 83 clusters
were build. The clustering reduced the number of correspon-
dences to 105 features. During thi€ Optical Flow tracking,

The random distribution of the control points shows to be 5 features were lost from the 105 tracked which represent
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Figure 7. Synthetic datasets on various meshes and defor-
mations. The left image represents the initial condition, the
middle one an intermediate motion and the rightmost one
the nal con guration. The reference mesh is displayed with

plain faces whereas our algorithm provides deform meshes
displayed in wireframe (orange lines). The results exhibit a
good matching of the reference mesh and the tracked one.

less the 5%. The Figurgillustrates the stereo matching and
the clustering result.

The paper shrinking from a single view illustrated in Fig-
ure9 shows that only four control points (one in each corner)

were needed to constraint the mechanical model of the paper

to shrink. The mechanical model is not directly constrained
by the control point motion. Mechanical springs linked to
each control point allow the motion to be smoother. The g-
ure 1 illustrates results based on real cube deformation and
the non-rigid tracking that is computed. Moreover, given the

video sequence, it is remarkable that occlusions due to the

tool motion are compensated by the mechanical model.

5. Conclusions

In this paper we present a new physics-based method for 3D

non-rigid registration. The results presented show that our
tracking algorithm can track and estimate three-dimensional

¢ The Eurographics Association 2012.

Figure 8: Stereo Matching and Clustering on a real cube:
Top image illustrates the Stereo detection and matching.
Only matched features are shown. Bottom left image is the
initial repartition of control point (Black sphere) and the re-
sulting 3D point cloud (Blue sphere). Bottom right image
illustrates the clusters. Red sphere represents the control
points and Green sphere the 3D features.

motion of various deformations. We have introduced a
framework that combines 3D robust motion estimation and
clustering and regularization process based on a volumetric
mechanical mesh. Quantitative validation has been carried
out on synthetic data and visual assessment has been per-
formed on real video sequences. Future works will include
quantitative validation on real datasets and we will try to
confront our algorithm against real situations such as laparo-
scopic procedures. Further investigation will be conducted to
estimate the robustness of our method with respect to occlu-
sions and illumination changes.
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