Singular values of multiple eta-quotients for ramified primes

Abstract : We determine the conditions under which singular values of multiple $\eta$-quotients of square-free level, not necessarily prime to~$6$, yield class invariants, that is, algebraic numbers in ring class fields of imaginary-quadratic number fields. We show that the singular values lie in subfields of the ring class fields of index $2^{k' - 1}$ when $k' \geq 2$ primes dividing the level are ramified in the imaginary-quadratic field, which leads to faster computations of elliptic curves with prescribed complex multiplication. The result is generalised to singular values of modular functions on $X_0^+ (p)$ for $p$ prime and ramified.
Type de document :
Article dans une revue
LMS Journal of Computation and Mathematics, London Mathematical Society, 2013, 16, pp.407-418. 〈http://dx.doi.org/10.1112/S146115701300020X〉. 〈10.1112/S146115701300020X〉
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00768375
Contributeur : Andreas Enge <>
Soumis le : vendredi 19 juillet 2013 - 18:20:06
Dernière modification le : jeudi 11 janvier 2018 - 06:22:36
Document(s) archivé(s) le : lundi 21 octobre 2013 - 11:15:49

Fichiers

zweig.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Andreas Enge, Reinhard Schertz. Singular values of multiple eta-quotients for ramified primes. LMS Journal of Computation and Mathematics, London Mathematical Society, 2013, 16, pp.407-418. 〈http://dx.doi.org/10.1112/S146115701300020X〉. 〈10.1112/S146115701300020X〉. 〈hal-00768375v2〉

Partager

Métriques

Consultations de la notice

570

Téléchargements de fichiers

528