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ABSTRACT
Today there is a strong interest in publishing set-valued data in
a privacy-preserving manner. Such data associate individuals to
sets of values (e.g., preferences, shopping items, symptoms, query
logs). In addition, an individual can be associated with a sen-
sitive label (e.g., marital status, religious or political conviction).
Anonymizing such data implies ensuring that an adversary should
not be able to (1) identify an individual’s record, and (2) infer a sen-
sitive label, if such exists. Existing research on this problem either
perturbs the data, publishes them in disjoint groups disassociated
from their sensitive labels, or generalizes their values by assuming
the availability of a generalization hierarchy. In this paper, we pro-
pose a novel alternative. Our publication method also puts data in a
generalized form, but does not require that published records form
disjoint groups and does not assume a hierarchy either; instead, it
employs generalized bitmaps and recasts data values in a nonrecip-
rocal manner; formally, the bipartite graph from original to anony-
mized records does not have to be composed of disjoint complete
subgraphs. We configure our schemes to provide popular privacy
guarantees while resisting attacks proposed in recent research, and
demonstrate experimentally that we gain a clear utility advantage
over the previous state of the art.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administration—Se-
curity, integrity, and protection; H.2.8 [Database Management]:
Database applications—Data mining; K.4.1 [Computers and So-
ciety]: Public Policy Issues—Privacy

Keywords
privacy, anonymization, set-valued data, nonreciprocal recoding

1. INTRODUCTION
Assume a data vendor wants to publish a data set D of set-

valued data, where a record ri ∈ D consists of a set of items,
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ri = {o1, . . . , on}, drawn from a universe I. Moreover, each
record ri can potentially be associated with a sensitive label si, de-
noting a piece of information such as marital status, sexual orienta-
tion, political conviction, or income group. Several real-world data
sharing problems can be formulated by this model, even when the
data does not originally arise in a set-valued form; the set-valued
data may describe data originally presented as a bipartite graph
matching, e.g., users to preferences, or even relational database
data, where each ri contains a tuple’s attribute values.

Publishing such data in their original form, even without iden-
tifiers, compromises privacy. Thus, there is a need to transform
the data in a way that preserves information while alleviating pri-
vacy threats. There are two desiderata: First, a record ri should
not be clearly distinguishable from other records, leading to direct
exposure of its subject’s identity. Second, a sensitive label, when
present, should not be easily associable to a certain individual.

ID Jogging Swimming Tennis Soccer Religion

r1 1 1 0 0 Christian

r2 0 1 1 0 Christian

r3 1 1 0 1 Muslim

r4 0 1 1 1 Buddhist

r5 1 1 1 0 Buddhist

r6 1 0 1 1 Muslim

Table 1: Original set-valued data
Table 1 shows an example of set-valued data about the sport pref-

erences and religious affiliation of certain individuals. For each
record ri, a value of 1 at position j indicates that item j is present
in ri, whereas a 0 indicates absence. Each record in Table 1 is
uniquely identifiable by its bitmap. Thus, an adversary who is
aware of the itemset this bitmap represents can infer an individ-
ual’s presence in the data and sensitive label. For example, if Alex
knows that Barbara likes only jogging and swimming, he can iden-
tify her record as r1, and also infer that she is a Christian. We aim
to publish the data in a form that prevents such disclosures.

Previous research has noted the importance of transforming set-
valued data for privacy-preserving publication [8, 7, 9, 25, 23, 14,
2, 4], but employed transformation operations mostly unsuitable
for the nature of the data at hand. Works such as [8, 7, 2] em-
ploy random perturbation, adding noise to the data. Yet random
perturbation provides no information about the extent to which a
particular record has been perturbed, and renders outliers vulner-
able to an adversary with external knowledge [9]. On the other
hand, syntactic data transformations, such as those in [9, 25, 23,
14, 4], recast the data so that they maintain a consistency to their
original form, despite the obfuscation they undergo [17, 3]. Among
them, [25] strives for a privacy objective by selectively suppressing
some items (i.e., withholding them from publication); more refined
generalization methods are employed in [23, 14, 4], based on the
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assumption that a generalization hierarchy is applicable on the data
items in I. However, such hierarchies are not always available in
practice; for example, in the case where the set-valued data repre-
sent query logs, their construction is, by itself, a non-trivial problem
[14]. The experimental studies of [23, 14, 4] use ad hoc hierarchies,
which are clearly arbitrary. Another suggestion [15] adds and sup-
presses query log objects so as to render users indistinguishable
by a loose measure of user similarity. Last, [9] publishes exact
(public) itemsets in groups, along with a separate summary table of
(private) sensitive labels for each group. Unfortunately, this trans-
parent publication method is vulnerable to attacks by adversaries
with background knowledge of some sensitive associations: an ad-
versary who sees the exact items in a record can carry out a chain of
reasoning leading to an inference of a sensitive label, which would
be hindered if these items were obfuscated by generalization [4].
Besides, the publication model of [9] does not provide protection
against identity disclosure as generalization does [10].

ID Jogging Swimming Tennis Soccer Religion

r1 1 1 * * Christian

r3 1 1 * * Muslim

r5 1 1 * * Buddhist

r2 * * 1 * Christian

r4 * * 1 * Buddhist

r6 * * 1 * Muslim

Table 2: Data anonymized by suppression
A conventional syntactic anonymization method may partition

records in distinct groups, where all records in a group are inter-
changeable with each other. Table 2 shows an example along these
lines, applied on the data of Table 1. The privacy objective is that,
for each original record ri, there should be (at least) three records
that may be an obfuscated form of (or match) ri’s bitmap, and three
different sensitive labels that may be associated to ri. To achieve
this objective, one can suppress some bit values, so that it is not
disclosed whether the item in question is present or not, and form
two distinct groups, with records in the same group having indis-
tinguishable bitmaps and different sensitive labels. Yet even in this
simple example, a significant number of suppressions is required to
achieve the desired privacy, compromising the utility of the data.

However, it is not necessary that privacy be achieved via the for-
mation of distinct groups, as above, while the obfuscation mecha-
nism does not have to be suppression (or generalization along an
arbitrary hierarchy) either. In this paper, we propose an alternative
model. Our scheme ensures that each original record matches a
group of generalized records, yet this effect is not brought about by
creating groups of records recast so as to be identical to each other;
instead, original records match anonymized ones in a nonreciprocal
manner: when an original record s matches the anonymized form
t′ of another record t, then it is not necessary that t also matches s′.
We recast each record’s bitmap ri by only altering some of its bits
(i.e., adding or deleting items), and publish a base bitmap r′i along
with a distance bitmap di, and an edit-distance threshold ti. In or-
der to detect pairs of records of small Hamming distance, which can
be easily recast so as to match each other, we employ the Gray or-
der of bitmaps, enhanced by applying an approximation algorithm
for the Traveling Salesman Problem (TSP).

Table 3 shows a way of publishing the data of Table 1 by our
method that achieves the same privacy as the publication in Table 2,
but much higher utility. For each original record ri, the table shows
its anonymized bitmap r′i, a sensitive label, a distance bitmap di

that indicates the positions where an error may occur in r′i, and
an edit-distance threshold ti that indicates the maximum possible
number of errors among the positions indicated in di.

For example, the distance bitmap for r′5 is 0011, denoting that an

ID Jogging Swimming Tennis Soccer Religion di ti

r′1 1 1 0 1 Christian 1 0 1 1 2 bits

r′2 1 1 1 0 Christian 1 1 0 1 2 bits

r′3 0 1 1 1 Muslim 1 0 1 1 2 bits

r′4 0 1 1 1 Buddhist 1 1 0 1 2 bits

r′5 1 1 0 0 Buddhist 0 0 1 1 1 bit

r′6 1 1 1 0 Muslim 0 1 1 1 2 bits

Table 3: Data anonymized by our method

original record r represented by r′5 may differ from it at the 3rd or
4th bit. The error threshold indicates that r may only differ from
r′5 by at most 1 bit, which reduces our options to either the 3rd bit,
or the 4th, or none. Thus, three possible worlds [5] are defined, as
r may be either 1100, or 1110, or 1101. In the first case, r is r1, in
the second case it is r5, and in the third case it is r3. We emphasize
that some possible worlds might not correspond to any real record,
yet all real records that have to match an anonymized one by our
scheme are always found among the possible worlds.

Original Matches Anonymized Matches

r1 r′1, r′5, r′6 r′1 r1, r3, r4

r2 r′2, r′3, r′4 r′2 r2, r5, r6

r3 r′1, r′3, r′5 r′3 r2, r3, r4

r4 r′1, r′3, r′4 r′4 r2, r4, r6

r5 r′2, r′5, r′6 r′5 r1, r3, r5

r6 r′2, r′4, r′6 r′6 r1, r5, r6

Table 4: Original/anonymized data correspondence

Table 4 shows the correspondence between original and anony-
mized records, i.e., the anonymized records in Table 3 that each
original record in Table 1 is compatible with, and vice versa. As
each anonymized record matches three original records, and vice
versa, a privacy guarantee of 3-anonymity is achieved [20].

2. BACKGROUND AND RELATED WORK
Our work draws from two sources. The former involves the

privacy-preserving sharing of set-valued data in general, while the
latter is about the transformation by nonreciprocal recoding.

2.1 Anonymizing Set-valued Data
Research on preserving privacy in set-valued data has recently

focused on transforming the data in a way that provides a generic
privacy guarantee. The pioneering work in the field [11] transforms
the data into a band matrix by permutating rows and columns in the
original table, and forms anonymized groups on this matrix, offer-
ing the privacy guarantee that the probability of associating a record
with a particular sensitive label does not exceed a threshold 1

p
. This

method is augmented by two more approaches in [9]. The best per-
former in terms of both data utility and execution time is a scheme
that interprets itemsets as Gray codes and sorts them by their Gray-
code rank, so that consecutive records have low Hamming distance,
facilitating group formation. Still, the publication model of [11, 9]
publishes exact public items together with a summary of the fre-
quencies of sensitive labels per group; this transparency renders it
vulnerable to attacks by adversaries who are already aware of some
associations and wish to infer others [4].

Another alternative [25] opts to selectively suppress some items,
and ensures that an adversary can link an individual to (none, or) at
least k records, with at most h% thereof sharing the same sensitive
label; the h parameter is thus equivalent to 1

p
in [11, 9]. However,

in contrast to [11, 9], [25] assumes that an adversary’s knowledge
is limited to at most p items in a record. Besides, the suppression
technique of [25] results in high information loss [4, 23].

More recently, [23, 14, 4] use hierarchy-based generalization to
anonymize set-valued data, and provide privacy guarantees against
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an adversary’s capacity to link an individual to a small number of
records [23, 14], or to confidently infer any sensitive item among
the items in a record themselves [4]. However, a generalization hi-
erarchy is not always applicable and/or available, and its construc-
tion is by itself a non-trivial problem [14]. In their experimental
studies, [23, 14, 4] construct synthetic hierarchies. Under such a
synthetic hierarchy, [14] applies its proposal on the anonymization
of query logs. On the other hand, [15] anonymizes query logs,
without assuming a generalization hierarchy over query objects;
users are rendered indistinguishable according to a loose similar-
ity measure, by adding and suppressing query objects.

All methods discussed above use syntactic transformations. An-
other line of research uses random perturbation to anonymize data
[6, 21, 8, 7, 19, 2]. However, perturbation techniques can expose
the privacy of outliers in a way that syntactic methods do not [9].
The sketch-based method of [1] tries to avoid such drawbacks, pro-
viding a guarantee that renders records hardly distinguishable from
their k nearest neighbors. However, as it may not always be possi-
ble to satisfy this privacy condition, [1] resorts to suppressing out-
liers. Besides, perturbation-based transformations provide no in-
formation on how much a given record has been perturbed; in other
words, they render data in an inaccurate form, hence limit the pur-
poses they can be useful for [17]. On the other hand, syntactic
transformations hamper the data’s precision, but not its accuracy.

2.2 Nonreciprocal Recoding
As discussed, a syntactic transformation recasts the data by a still

accurate representation, albeit imprecise and coarse, with an ex-
plicit margin of error. Past research [25, 11, 9, 23, 14] applied syn-
tactic transformations under the premise that, for any two records
s, t, if s is recoded so as to match t, then t should also be recoded
so as to match s. This premise alone leads to reciprocal recoding.
Past research has also assumed that the published records need to
form disjoint groups, so that (the public parts of) all records in the
same group are recoded so as to mutually match each other.

Nevertheless, this reciprocity assumption is not required by a pri-
vacy condition; it is redundant. This redundancy was noted by [3],
observing that “there is no privacy reason” therefor. Contempo-
raneously, [12] revisited this question in the context of microdata
anonymization, and noted that dropping the reciprocity assump-
tion allows for improved data utility; the model of global (1, k)-
anonymity [12] guarantees, by nonreciprocal recoding, that an in-
dividual is associated with at least k recoded records, as the pop-
ular k-anonymity model conventionally does using reciprocal re-
coding. Later, [24] observed that the techniques of [12] do not
ensure that each such association is equiprobable, and provided a
nonreciprocal-recoding algorithm that guarantees k associations of
probability 1

k
, using randomization.
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Figure 1: Nonreciprocal recoding in graph view

We illustrate nonreciprocal recoding with two kinds of directed
graphs. A generalization graph shows how the values of origi-
nal records match those of anonymized records. A directed edge
(ri, r

′
j) in a generalization graph indicates that the anonymized

record r′j should include original record ri among its possible worlds.

Figure 1(a) shows the generalization graph for the example in the
previous section. We present two views of this graph: a bipartite
view, as well as as a unified view where a single node represents
both the original record ri and the anonymized record r′i. For in-
stance the fact that r′1 matches r1, r3, and r4 is represented by the
edges (r1, r

′
1), (r3, r

′
1) and (r4, r

′
1), respectively.

The privacy principle of k-anonymity [20] requires that each
original record ri have at least k equally probable matches among
anonymized records R′. Under the conventional reciprocity as-
sumption, this property is easily satisfied by forming groups of k
records mutually matching each other within each group. However,
when we drop the reciprocity assumption, we need to spell out the
requirements for k-anonymity to be satisfied. It has been shown
by [12, 24] that, to achieve k-anonymity by nonreciprocal recod-
ing, it suffices to ensure that each original record ri has exactly k
matches in R′ (i.e., k outgoing edges in the generalization graph),
and each anonymized record r′i also has exactly k matches in R
(i.e., incoming edges); of course the same effect can be achieved
with any k′ > k, but then k′-anonymity is attained. In other words,
it suffices to ensure that the data’s generalization graph is k-regular.
From such a graph we can generate k disjoint assignments [24].
The generalization graph in Figure 1(a) is 3-regular, hence ensures
3-anonymity. In order to create a k-regular generalization graph,
[24] suggests the method of ring generalization: given k, a gener-
alization graph is constructed as a ring, linking each of n records,
ri, to itself and its k−1 successors by a given cyclical order. The
generalization graph in Figure 1(a) is a ring generalization graph
for the order {r2, r4, r3, r1, r5, r6}.

On the other hand, an assignment graph shows a particular one-
to-one correspondence between original and anonymized records
(i.e., an assignment); it provides the assumed identities of anony-
mized records, and may be used as a guide when assigning non-
generalized attributes (e.g., sensitive labels) to them. An assign-
ment graph is a subset of the generalization graph. Figure 1(b)
shows a possible assignment for our example in bipartite and uni-
fied view. To satisfy the equal probability requirement of k-anony-
mity, we should ensure that each edge in a generalization graph is
equally likely to participate in a chosen assignment. This result can
be achieved by selecting one of k disjoint assignments uniformly
at random. Furthermore, in order to resist attacks based on knowl-
edge of some anonymized tuples’ identities and/or of the algorithm
itself, the set of k disjoint assignments to choose from is generated
by a randomization scheme [24]. Each assignment is generated
by iteratively extracting cycles from the generalization graph (in
unified view) via random walks, until all records are covered. We
illustrate a simple example of this process in Figure 2.

r2 

r1 r3 

r2 |r1’ 

r1 |r2’ r3 

r2 |r1’ 

r1 |r3’ r3 | r2’ 

(a) (b) (c) 

Figure 2: Iterative cycle extraction
Figure 2(a) depicts a 2-regular generalization graph for a data

set of 3 records, and the first step of the process, which extracts
the cycle r1 → r2 → r1 by random walk. Then, the graph is up-
dated to reflect the matching choices made so far. The node that
originally stood for r1 (and r′1) now stands for r1 and its match,
r′2, while the node that stood for r2 (and r′2) now stands for r2 and
r′1; thus, the two chosen matches now appear as self-loops (Figure
2(b)). We can now proceed to extract another cycle, potentially de-
stroying some of the previously selected matches (i.e., de-selecting
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the self-loops of those nodes as matches of our choice) in case the
new cycle passes through the same nodes, yet without ever reduc-
ing the number of matched nodes; some matches may be replaced
by others, but no previously matched node is left orphan. Such a
new cycle, namely r3 → r1/r′2 → r3, is shown in Figure 2(b). This
cycle replaces the match of r1 to r′3, while it matches r3 to r′2 in-
stead. With these new matches our task is completed, as all records
in the generalization graph have been covered. Figure 2(c) shows
the chosen assignment graph, composed of self-loop singletons.

Unfortunately, the time complexity of the randomization-based
scheme in [24] is O(kn2). Noting this complexity, [24] suggests
that this scheme be applied on top of a partitioning scheme, so as
to improve the utility within each partition. We aim to provide a
general-purpose anonymization scheme by nonreciprocal recoding
that can be applied on a full set-valued data set (or any data set
amenable to bitmap representation) and achieve high data utility.

3. DEFINITIONS AND PRINCIPLES
We consider a set-valued dataset D = (R, S) of n records. R =

{r1, . . . , rn}, where ri is the non-sensitive part of record i and
S = {s1, . . . , sn} is a set of sensitive labels of records, with the
sensitive label of record i denoted as si. Each ri is represented as
a bitmap of b bits, where b is the cardinality of the universe I a
record draws items from. The value of the bit at position j, ri,j ,
denotes the presence or absence of the jth item in I in/from ri.
We aim to obfuscate the non-sensitive parts of records, producing
R′ = {r′1, . . . , r′n}, where r′i is the anonymized version of ri.

We say that an original record ri and an obfuscated record r′j
match each other when r′j is possibly an obfuscated from of ri.
We then define the privacy guarantees of k-anonymity [20] and �-
diversity [18] in the context of set-valued data as follows:

DEFINITION 1. An anonymized set-valued data setD′=(R′, S)
satisfies k-anonymity with respect to the original data D=(R, S)
iff each original record ri ∈ D matches at least k published records
in D′, each having, from an adversary’s perspective, equal proba-
bility (at most 1

k
) to be the true match of ri. D′ satisfies �-diversity

with respect to D iff each ri ∈ D matches at least � published
records, each associated with a different sensitive label s ∈ S and
having equal probability (at most 1

�
) to be the true match of ri.

These guarantees ensure that an adversary knowing the non-sen-
sitive part of all records, i.e. R, shall not be able to identify the
true match of a record ri (and its sensitive value) with probability
higher than 1

k

`
1
�

´
. The twin problems of k-anonymization and

�-diversification for set-valued data call for satisfying these guar-
antees with a low reduction of the utility of the original data:

PROBLEM 1. Given a data set D = (R, S), transform D to an
anonymized formD′ that satisfies k-anonymity (�-diversity), main-
taining as much of the data utility as possible.

We describe a collection of matches encompassing a complete
set of original and anonymized records as an assignment.

DEFINITION 2. Given a set-valued data set D = (R, S) and
an anonymized version thereof, D′ = (R′, S), an assignment α
from D to D′ is an one-to-one mapping from D to D′, denoted as
α = {(ri1 , r′j1), . . . , (rin , r′jn

)}, such that each ri∈D is mapped
to exactly one r′j ∈D′, where ri matches r′j . In each pair (ri, r

′
j) ∈

α, we say that ri is the preimage of r′j and r′j is the postimage of
ri. Two assignments αp and αq are disjoint if αp ∩ αq = ∅.

In order to achieve k-anonymity, we need to ensure that there ex-
ist k disjoint assignments from original records in D to records in

D′. After we have constructed a set of k such desired assignments,
we can determine the values of records in D′ therefrom, such that
each record r′i ∈ D′ is indeed compatible to (i.e., matches) the
records mapped to it. Last, we can select one of these k assign-
ments as the one that defines the true matches between D and D′
and publish any other attributes of our data accordingly. This rea-
soning extends to the case of �-diversity, with the additional provi-
sion that the � matches assigned to a record r in � different assign-
ments should have different sensitive labels from each other.

A set of m disjoint assignments defines m distinct matches inD′
for each ri ∈ D (i.e., one by each assignment), and vice versa, i.e.,
m distinct matches in D for each r′i ∈ D′. The net result can be
represented by means of a generalization graph [24].

DEFINITION 3. Given a set-valued data set D = (R, S) and
its anonymized version D′ = (R′, S), a generalization graph G =
(V, E) is a directed graph in which each vertex v ∈ V stands for
an original/anonymized record ri ∈ D and r′i ∈ D′, and an edge
(vi, vj) ∈ E is present iff ri matches r′j .

Our definition corresponds to the unified view of such a graph
(see Figure 1(a)). In a bipartite view, the vertex standing for an
original record ri is separate from that standing for its anonymi-
zed form r′i. A set of m disjoint assignments defines a general-
ization graph in which each vertex has exactly m outgoing and m
incoming edges, i.e., an m-regular generalization graph. As [24]
has shown, the reverse is also true, that is, an m-regular generaliza-
tion graph effectively defines m disjoint assignments.

In our publication model, we publish the anonymized data D′=
(R′, S), while for each anonymized record r′i we also publish a
distance bitmap di, which denotes with value 1 the bits where r′i
may differ from any of its matches, and a distance threshold ti,
which upper-bounds the number of different bits between r′i and
its matches, hence ti does not exceed the number of 1 bits in di.
Taken together, di and ti compactly define a set of possible worlds
[5], one of which corresponds to the true match of r′i.

4. METHODOLOGY
Our overall methodology consists of the following five steps.
First, we order the data records by a cyclical order, the Gray-

TSP order. The utility achieved by our anonymization scheme
depends on the extent to which neighboring records in this order
are close to each other by some distance metric, hence limit the
afflicted information loss. In order to achieve such an outcome, we
start out with the order defined by the Gray code of itemset bitmaps,
also used by [9], and enhance it further via a local approximate
solution to the Traveling Salesman Problem (TSP). For the same
purpose [24] uses the order defined by a Hilbert curve in the space
of attribute value domains; this approach is unsuitable for the high-
dimensional space defined by set-valued data.

Second, we create an m-regular generalization graph, where m
is k or �. For k-anonymization, we build such a graph as a ring
over the Gray-TSP order. On the other hand, in the case of �-diver-
sification, a ring generalization graph would not satisfy the privacy
requirements. Therefore, we propose a Greedy Assignment Ex-
traction algorithm, which extracts � disjoint assignments from the
dataset’s complete graph under a constraint derived from the �-di-
versity requirement, guided by the Gray-TSP order, and forms an
�-regular generalization graph from their union; the greedy charac-
ter of this process aims to achieve low information loss.

Third, we extract m random disjoint assignments from the gen-
eralization graph, employing a random walk, as in [24] (see Section
2.2). Yet, in contrast to [24], we do not aim to create cycles via the
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walk, backtracking whenever we reach a dead-end. We propose a
Closed Walk method instead: we allow the followed path to revisit
vertices and continue, unobstructed by dead-ends. Thus, we gain a
significant efficiency advantage that enables our algorithm to scale
and run smoothly over a full data set. The random character of this
process renders our scheme resistant to adversaries having knowl-
edge of the algorithm [5] or of some anonymized tuples’ identities1

[24]. Besides, this same closed walk is employed for greedy as-
signment extraction (see above) as well.

Fourth, we pick up one of the extracted k (�) assignments uni-
formly at random. This assignment defines the putative identity
and (when such exists) sensitive label of each anonymized record
r′i. The non-deterministic nature of this step guarantees that each
preimage of r′i has the same probability to be chosen.

Fifth, for each anonymized record, we set its base bitmap r′i,
distance bitmap di, and distance threshold ti, as a function of its
m preimages. Let P(r′i) be the set of m preimages of r′i. For
the sake of data utility, the values in r′i should be similar to those
of its preimages. To achieve this result, we employ a bit voting
method: the pth bit of r′i is set as the most common pth bit value
among its preimages (ties are resolved arbitrarily). For example,
if P(r′i) = {1100, 1011, 0101}, then r′i is set to be 1101; while
r′i is not identical to any of its preimages, each one of its bits has
the most common value among those in P(r′i). Thus, the value
of r′i minimizes the sum of Hamming distances among r′i and its
preimages. We emphasize that there is no privacy loss caused by
this provision. The match of a record is chosen with equal prob-
ability among all the matches in the generalization graph. The bit
voting method has no effect on this choice; it only reveals informa-
tion on what single items are frequent in the data, which is the kind
of information we wish to give. Next, the value of the pth bit of
di is set to 0 iff the pth bit is the same among all preimages of r′i;
otherwise it is set to 1, denoting that at least one preimage differs
from r′i in that position. Last, the distance threshold ti is measured
as the maximum Hamming distance among r′i and its preimages,
ti = max{H(r′i, rj)∀rj ∈ P(r′i)}. Eventually, di and ti define a
set of possible worlds that is a superset of P(r′i).

We now elaborate on the elements of our approach.

4.1 The Gray-TSP Order
The Gray code, or reflected binary code [13], is a binary numeral

system where two successive values differ in only one bit, i.e. their
Hamming distance is 1. Table 5 depicts an example of Gray encod-
ing for the decimals from 0 to 7.

Decimal 0 1 2 3 4 5 6 7

Binary 000 001 010 011 100 101 110 111

Gray 000 001 011 010 110 111 101 100

Table 5: An example of Gray coding
An itemset drawing items from a universe I of b items may

take one of 2b values. A Gray order defined over these values,
expressed as bitmaps, provides a guide for sorting a dataset D of
records drawing items from I. Nevertheless, a typical real-world
data setD contains much fewer records than the 2b possible records
(bitmaps) of size b. In effect, even after the records in D are sorted
by the Gray order of their bitmaps, there will still be large gaps, i.e.
large Hamming distances, between consecutive records.

To mitigate this drawback, we use the Gray order only as an
initialization step, and then enhance it via a local application of

1Furthermore, our scheme impedes attacks that calculate the sta-
tistical likelihood of possible worlds, such as the deFinetti attack
[16]; to launch such an attack, an adversary would have to calcu-
late the likelihood of each possible assignment, and therefor find
the number of possible assignments, a #P-complete problem.

an approximation algorithm for the Traveling Salesman Problem
(TSP). In particular, we first sort D by its Gray order, to obtain
a sorted version, σ(D). Then we divide σ(D) into segments. In
each segment Si, we fix the position of the first and last record, rf

and rl, and treat each record ri ∈ Si as a node vi in a complete
weighted graph G(V, E), where each edge (vi, vj)∈E is weighted
by the Hamming distance among the records corresponding to its
incident nodes, H(ri, rj). We aim to locally reorder the internal
records in Si so as to reduce the total sum of Hamming distances
among consecutive records. This problem amounts to solving the
TSP on G. As the TSP is NP-hard, we apply an efficient genetic
algorithm therefor [22], with vf as origin and vl as destination.

We divide σ(D) into segments so as to avoid applying the TSP
algorithm on the full size of the data. We emphasize that our strat-
egy does not aim to acquire the optimal TSP solution, but only to
leverage a TSP algorithm in order to improve upon the Gray or-
der. We fix the first and last record in each segment so as to fa-
cilitate the transitions among segments, preserving the Hamming
distances provided by the Gray order at these breakpoints. Ideally,
these breakpoints should be placed at positions where the Ham-
ming distance between consecutive records in the Gray order is
small. To achieve this effect, we design a dynamic programming
(DP) algorithm that finds appropriate breakpoints. This DP algo-
rithm receives as parameters the minimum and maximum segment
size allowed, m and M respectively, and detects the optimal way
of partitioning D into segments under these constraints, so that the
sum of Hamming distances at breakpoints is minimized. Let C(i)
be the minimum sum of Hamming distances for partitioning the
first i records in σ(D). C(i) is recursively computed as:

C(i) = min
j∈[i−M,i−m]

{C(j) +H(rj , rj+1)}, C(0) = 0 (1)

In Equation 1, the j variable goes through all the allowed posi-
tions for the last breakpoint in the examined prefix of σ(D), and
chooses the best among them. The overall solution is obtained by
computing C(n) in O

`
(M−m)n

´
= O(n). Eventually, after par-

titioning σ(D) into segments and locally enhancing each of them
by TSP, we arrive at a Gray-TSP order of D, denoted as φ(R).

4.2 The Closed Walk
We now describe our Closed Walk algorithm for assignment ex-

traction. We apply this algorithm in both our k-anonymization and
�-diversification algorithms. In the former, we use it only to extract
k disjoint assignments from a k-regular ring generalization graph
over the Gray-TSP order, using all its n×k edges and making walk
choices in a random manner. In the latter, we use it first to extract
� assignments from the complete directed graph of the data so as
to define our �-regular generalization graph of n×� edges, mak-
ing walk choices in a greedy manner and assisted by the Gray-TSP
order (see Section 4.4); then, we reapply a random closed walk to
extract � disjoint assignments from this �-regular graph, so as to
render our scheme proof against sophisticated adversaries.

Our algorithm works in m rounds. Each round generates an as-
signment Ai, disjoint from previously generated ones, by iterative
cycle extraction (see Section 2.2); it repetitively starts from a ran-
dom node, takes a walk to build a cycle along edges that have not
been traversed before (neither in previous rounds nor in the current
one); when the walk is closed, the graph is updated so as to ren-
der all selected edges as self-loops; this process is repeated until
all nodes are covered; the final set of selected edges represents the
generated assignment; m rounds generate m disjoint assignments.

The algorithm in [24], which we call WMC, obeys the constraint
that a node cannot be revisited by the same random walk. Thus,
WMC encounters a dead-end in situations where there is no avail-
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able next hop to move to, as it has previously traversed all nodes
adjacent to its current position; then it backtracks and attempts to
correct a previous decision. Such backtracking may occupy most
of its running time, manifesting its worst-case O(kn2) complexity.

In contrast, when our algorithm arrives at a position where all
next hops have been visited by the current walk, it revisits one of
them, say u, anyway; thereby, it creates a deviant cycle starting
from and ending at u. This deviant cycle is henceforward ignored,
and the walk proceeds until it closes by reaching the node it started
from. In graph theory terms, while WMC strives to directly build a
cycle, i.e., a closed walk that does not revisit any vertex, our algo-
rithm takes a plain closed walk and simply ignores deviant cycles.

r1 

r2 

r3 

r4 r5 

Walk step 
Backtrack

r1 

r2 

r3 

r4 r5 ① 

② 

③ 

④ 

⑤ 

④ 

③
 

⑥ 

⑦ 

r1 

r2 

r3 

r4 r5 ① 

② 

③ 

④ ⑤ 

⑥ 

(a) Generalization graph (b) Backtracking (c) Closed-walking

Figure 3: Backtracking vs. Closed-walking
We illustrate the difference between backtracking and closed-

walking by extracting a cycle from the 2-regular generalization
graph in Figure 3(a). Let the first round start from r4, and ran-
domly pick its first 4 hops as in Figure 3(b). Then WMC encoun-
ters a dead-end, as r1 and r3, the two adjacent nodes of r2, are
already in the walk; thus, it backtracks to r3 (Step 5). At r3, there
is still no other available next hop, as r5 has been visited. In effect,
WMC backtracks onto r1 (Step 6), where it eventually selects a le-
gitimate alternative next hop, r4, and thus completes a cycle (Step
7). Altogether, it takes 7 steps to detect cycle r4 → r5 → r1 → r4.

Figure 3(c) shows how our closed-walk algorithm resolves the
same conflict. At Step 5, instead of backtracking, we revisit r1,
thereby creating deviant cycle r1→r3→r2→ r1. Nodes r3 and
r2, are duly removed from the cycle. In step 6, we move on to
r4 and close cycle r4→r5→r1→ r4, constructed in only 6 steps.
The step difference between backtracking and closed-walking can
be arbitrarily large; for a deviant cycle of p edges, backtracking
may have to perform p extra steps so as to annul the deviation; as
we show in Section 5.3, such O(p) differences, accumulated over
many deviations, translate to a significant efficiency advantage.

Algorithm 1: Assignment extraction by Closed Walk

Data: The dataset φ(R) and φ(R′) sorted in Gray-TSP order; The privacy
level m; Current round r

Result: An assignment Ar

Ar ←{(ui, u′
i)} where ui ∈ φ(R) and u′

i ∈ φ(R′) ;1
L←R;2
while L �= ∅ do3

visited← new empty list;4
Pick ui ∈ L at random;5
u′

j ← Pick(ui, φ(R), φ(R′), visited);6
add (ui, u′

j) to visited;7
while u′

j �= u′
i do8

ux ← u s.t. (u, u′
j) in Ar ;9

u′
y ← Pick(ux, φ(R), φ(R′), visited);10

add (ux, u′
y) to visited; set the child of u′

j to be u′
y ;11

u′
j ← u′

y ;12
Update Ar with the matchings in the cycle;13
Remove nodes matched with nodes in the cycle from L;14

return Ar ;15

Algorithm 1 provides the pseudo-code for assignment extraction
by closed walk. It first initializes an assignment Ar (Line 1), in
which each ui is matched with u′i. This assignment does not need

to be valid; some of the matches (edges) in it may have already
been used by previous assignments. Our task is to update Ar with
valid matchings. We set L as the list of unprocessed nodes, initially
all nodes in the graph (Line 2). After a cycle is found, its nodes are
removed from L, hence |L| is monotonically decreasing. Then we
enter a cycle-discovery loop, to be terminated when all nodes have
been assigned to a cycle, i.e. when L = ∅ (Lines 3-14). For each
cycle to be created, we initialize a visited data structure (Line 4),
which keeps track of each visited node and its previously traversed
next hops. This structure facilitates two objectives: (i) we prefer
visiting previously unvisited nodes, so that we do not create deviant
cycles; we only do so when no unvisited next hop node is available;
(ii) when we do revisit a node v, we should not reselect a previously
traversed next hop, lest we reiterate the same deviant cycle.

We initiate a cycle by picking up a node ui∈L at random (Line
5). Then we select a next hop, u′j (Line 6); our method for picking
up u′j is either random or greedy; this point makes the difference
between a Random Walk, used for extracting random assignments
from a generalization graph with both our k-anonymization and
�-diversification schemes, and a Greedy Walk, used for extracting
assignments from the complete graph to build an �-regular general-
ization graph for �-diversification. In both cases, we always choose
a next hop not used in a previous assignment; the choice (either
random or greedy) is preferably made among next hops not already
visited in the current walk either; if such options are not available,
then we choose among visited ones, creating a deviant cycle. We
elaborate further on the greedy choice in the next section.

Once the next hop has been chosen, the pair (ui, u
′
j) is added

to the visited data structure (Line 7). Then a loop iterates until
the cycle under construction is closed by reaching u′i (Lines 8-12).
At each iteration, we pick (Line 9) the current preimage ux of the
selected next hop u′j in assignment Ar , choose a new next hop, u′y ,
for ux (Line 10), add the pair (ux, u′y) to the visited structure, and
set u′y as the child of u′j , so as to retrieve the created cycle later
(Line 11). The matching (ux, u′y) is not registered in the extracted
assignment Ar at this point, as it may yet be updated by later steps
of the same walk. We then assign u′y to u′j and proceed with the
next hop (Line 12). When the internal while loop (Lines 8-12)
terminates, a cycle has been discovered; then assignment Ar is up-
dated with the matchings in that discovered cycle (Line 13). This
update may annul some matchings created by a previous cycle. Yet
the overall process is progressive, as at least one new record from L
is added to the set of matched records with each cycle; previously
matched records may re-orient their matches (i.e., their preimage
and postimage), but they do not become unmatched. Last, the set
of newly matched nodes is removed from L, hence cannot be se-
lected as a starting point of a cycle again (Line 14). Once all nodes
are removed from L, an assignment has been extracted.

While our algorithm’s worst-case complexity is quadratic, it per-
forms less redundant steps than WMC [24], and is therefore more
efficient. This algorithm rests on the assumption that the walk can
always be closed by returning to the starting node without reusing
any edge. The following theorem justifies this assumption.

THEOREM 4.1. In a directed graph G where each node u has
the same number mu of incoming and outgoing edges, if there is
a path from node v to v′, then there exists a path from v′ to v that
does not reuse any edge in the path from v to v′ .

PROOF. Consider the graph G′ consisting of all nodes and edges
in G except the edges along the path from v to v′, and with an addi-
tional edge from v to v′. Each node in G′ has the same number of
incoming and outgoing edges, as we have deleted one incoming and
one outgoing edge from each node along the path, and the added
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Figure 4: Workflow and publication details in our methodology
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Figure 5: Extracted assignments in our example
edge from v to v′ compensates for the edges these nodes have lost.
If a path from v′ to v exists in G′, then it also exists in G, and, by
the definition of G′, does not reuse any edge in the path from v to
v′. Thus, it suffices to prove that such a path exists in G′.

Assume there is no such path. Then consider W , the set of nodes
in G′ that can be reached from v′; v′ is in W and has at least one
outgoing edge (given that it has an incoming edge), hence W is
non-empty. By definition, each outgoing edge from a node in W
leads to a node in W , hence is an incoming edge to W . Since each
node in G′ has an equal number of incoming and outgoing edges,
it follows that each edge incoming to W is also outgoing from W .
By our assumption, v does not belong to W , hence the edge from
v to v′ is incoming to, but not outgoing from W . By reductio ad
absurdum, it follows that there is a path from v′ to v in G′, hence
in G, that does not reuse any edge in the path from v to v′.

4.3 A Coherent Example
Figure 4 carries the example in the introduction forward by illus-

trating all elements of our methodology. The 3-regular ring gener-
alization graph in Figure 1(a) is already defined on the Gray-TSP
order over the dataset. Figure 4(a) shows how this order is cre-
ated. The six records are first sorted by their Gray order, reducing
the sum of their Hamming distances from 14 to 12. The applica-
tion of the TSP algorithm further reduces this distance to 10. The
Gray-TSP order (r2, r4, r1, r3, r5, r6) is then used in the graph of
Figure 1(a), whose edges are also shown in Figure 4(a). The val-
ues of anonymized records are defined by the majority vote of each
record’s preimages in the graph, as also shown in Figure 4(a). The
details of voting are shown for record r′3 as example, in Figure 4(c).
Furthermore, Figure 5 depicts the three disjoint assignments we ex-
tract. Eventually, we randomly pick one of these; assume the one
in Figure 4(c) is chosen. We use this assignment as a guide to as-
sign presumed identities and any other attributes, such as sensitive
labels, to our six records, as in Figure 4(b). The anonymized data
we obtain are the same as those in Table 3. However, for the sake of
simplicity, in that table we did not yet present the effect of assign-
ing sensitive values according to a randomly selected assignment.

4.4 Greedy Assignment Extraction
The solution in our example applies our k-anonymization algo-

rithm and satisfies 3-anonymity. By chance, it also happens to sat-
isfy 3-diversity, as each original record matches three anonymized
records of different sensitive values. However, in order to system-
atically address the �-diversification problem, we need to ensure

that the generalization graph we work with satisfies the �-diver-
sity requirement, i.e., matches each original record to � anonymi-
zed postimages of different sensitive values. Such a generalization
graph cannot be built by applying a simple rule over a given order.
However, we can eschew the a priori construction of a generaliza-
tion graph altogether. Instead, we start out by assuming a complete
generalization graph, i.e. a graph where an edge exists from ev-
ery preimage to every postimage, extract � assignments therefrom,
and build the generalization graph we eventually use as the union
of these � assignments. Assuming the full data set satisfies �-di-
versity (is �-eligible [18]), such � assignments can be extracted, so
that each record obtains �-diverse matches. The burden falls upon
our closed-walk algorithm to take sensitive values in consideration
when picking next hops. We now outline our method for picking
up next hops in a manner that satisfies the �-diversity requirement,
i.e., ensures that each postimage a record is matched to a sensi-
tive value different from those it was previously matched to, while
otherwise making greedy decisions for the benefit of utility. Algo-
rithm 2 presents a pseudo-code for this greedyPick method, to be
used in our closed-walk algorithm (Section 4.2).

Algorithm 2: greedyPick(u, φ(R), φ(R′), visited)

i← the rank of u in φ(R);1
last← false;2
for j ← 0 to n

2 + 1 do3
u′

1← record at rank i + j mod n in φ(R′);4
u′

2← record at rank i− j mod n in φ(R′);5
Su ← sens. labels of records previously matched with u;6
for p← 1 to 2 do7

if (u, u′
p) ∈ any A1 . . . Ar−1 or visited then8

u′
p ← null;9

if u′
p.s ∈ Su then10
u′

p ← null;11
if u′

1 and u′
2 both are null then12

continue loop;13
u′ ← u′

p ∈ {u′
1, u′

2} s.t. H(u′
p, u) is minimum;14

if � ux, s.t. (ux, u′) ∈ visited then15
u′′ ← u′; break loop;16

if last = false then17
u′′ ← u′; last← true;18

return u′′;19

In a nutshell, given a preimage u and the TSP-Gray-sorted node
lists φ(R) and φ(R′), greedyPick aims to return an eligible post-
image for u that is close to u by Hamming distance, while pre-
ferring unvisited nodes to visited ones. The rank of u in φ(R)
is denoted as i (Line 1). We use a boolean, initialized as false
(Line 2), which indicates whether an option of last resort has been
reached, so that a deviant cycle may be created by picking up as
next hop a node already visited in the current walk. While such
an option is not preferred, it can be opted for if no other choice is
available. For the sake of utility, we prefer to select a postimage
that is close to u in the Gray-TSP order. We progressively search
for such a postimage in Lines 3-20. In each iteration we consider
the next two candidate records, u′1 and u′2, that are one position
further away from u (in two directions along the Gray-TSP order)
than previously considered ones (Lines 4-5), and try to match ei-
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ther u′1 or u′2 with u, while satisfying the following criteria: (i) u
cannot be matched to a record it has been matched to in a previous
assignment; (ii) in case u is being revisited (i.e., a deviant cycle
is created), it cannot be matched again to a next-hop record it was
already matched to in this walk, lest we reiterate the same deviant
cycle indefinitely (see Section 4.2); (iii) for �-diversity to be sat-
isfied, u cannot be matched to a record having the same sensitive
label as a match of u in a previous assignment. In case both u′1 and
u′2 fail these criteria, the loop continues to the next iteration (Lines
6-13). Otherwise, we pick the one that has the lowest Hamming
distance to u as u′ (Line 14), while also ensuring that a node not
previously visited in the current walk is preferred to an already vis-
ited one. If u′ has not been previously visited, the loop terminates
and u′ is returned as u′′ (Lines 15-16). Otherwise, if no option of
last resort has been set before, u′ is marked as the best such option
(Lines 17-18). Thus, u′ will be eventually returned, unless a more
preferable option is found in a subsequent iteration.

We emphasize the greedy character of the process. As φ(R) is
sorted by the Gray-TSP order, and we always pick up u′ as close
as possible to u, we expect their Hamming distance to be small;
at the same time, we avoid u′ with sensitive labels already picked
up in previous assignments. To that end we maintain the set Su of
sensitive labels already assigned to u (Line 6). After u′ is picked
as a match for u, its label is also added to Su. Eventually, our gen-
eralization graph is created as the union of � disjoint assignments
extracted by closed walk using our greedyPick method.

Dataset # records n Avg. size Universe size |I|
Chess 3,196 37 75

Pumsb 49,046 75 7,117

Table 6: Dataset information
5. EXPERIMENTAL EVALUATION

We now evaluate our schemes experimentally. We use two real-
life set-valued data: Pumbs and Chess, available at the UCI Ma-
chine Learning Repository.2 Table 6 presents the data specifica-
tions. Pumsb contains transactions representing a sample of re-
sponses from the Los Angeles – Long Beach area census question-
naire. Such data sets are used in targeted marketing campaigns for
identifying a population likely to respond to a particular promotion.
Chess contains 37-attribute board-descriptions for chess endgames.
The first 36 attributes describe the board, while the last attribute is
the classification: "win" or "nowin". For the evaluation of our �-
diversification scheme, we have introduced sensitive labels in all
data in a consistent manner. We obtain the empirical distribution
of sensitive labels from the histogram of occupation values from
the census data3 of 1990, and assign to each record a randomly
sampled sensitive label. The extracted census data has 3,030,728
records with 470 distinct occupation attribute values.

We evaluate our schemes in: (i) the information loss incurred by
the anonymization process; (ii) the accuracy in answering aggre-
gate queries over the data; and (iii) runtime efficiency and scalabil-
ity. Our algorithms were implemented in Java and experiments ran
on a 4 CPU, 2.4GHz Linux server with 8GB RAM.

5.1 Information Loss
We first assess the information loss caused by our techniques.

We evaluate our k-anonymization scheme on the benefit brought
about by the TSP-Gray sorting, in terms of reducing information
loss. In the case of �-diversification, we compare against CAHD
(Correlation-aware Anonymization of High-dimensional Data), the
most recommended anonymization scheme proposed in [9].

2Online at http://archive.ics.uci.edu/ml/datasets/
3Online at http://usa.ipums.org/usa/

CAHD partitions records in groups, assisted by a Gray order,
so that the distribution of sensitive labels within groups satisfies a
privacy requirement p, equivalent to �-diversity for p = 1

�
. Eventu-

ally, the data is published by breaking the associations among indi-
vidual records and their sensitive labels. In order to render CAHD
comparable to our scheme, we apply our publication model on the
data obtained from CAHD as well, i.e., we generalize the bitmaps
of records within a group to their most representative bit values by
our bit voting scheme. To measure the error inflicted by this model,
we propose an Error Rate (ER) metric, defined as the average ratio
of the number of bits flipped in the published base bitmap r′i of an
original record ri to the number of bits valued 1 in ri.

We measure ER for the anonymized Pumsb and Chess data. In
all our experiments, we set the chunk-size range in Gray-TSP sort-
ing to [300, 350]. To evaluate the benefit brought about by our sort-
ing scheme, we prepare each data set in two different orders: one
using the Gray order only and another using our Gray-TSP order,
and apply ring-based nonreciprocal generalization on each. Fig-
ures 6(a,e) show our ER results as a function of the k parameter.
Remarkably, lower ER values are achieved with the Gray-TSP or-
der than with the plain Gray order; this result confirms that the TSP
enhancement bears fruits in terms of containing information loss.
We emphasize that the Gray-only technique is also using nonrecip-
rocal recoding. Figures 6(b,f) show our results on �-diversification,
comparing our complete nonreciprocal method (NR) to CAHD,
as a function of �. The results show a clear utility advantage for
NR, which is gained thanks to both nonreciprocal recoding and our
TSP-based enhancement of the Gray order.

5.2 Answering Aggregation Queries
Next, we study the accuracy achieved with anonymized data over

aggregation queries. We propose two types of queries, which count
records based on whether a certain itemset is present in or absent
from them. Given In⊆I and Ex⊆I , these types are defined as:

Type I: Select COUNT(r) FROM R′ WHERE In ⊆ IS(ri);

Type II: Select COUNT(r) FROM R′ WHERE Ex∩IS(ri) = ∅;

A Type I (II) query counts records with certain items present (ab-
sent). We first specify the size of In and Ex based on the average
number of records and the universe size in each dataset. In par-
ticular, the values of (|In|, |Ex|) for Pumsb and Chess are (1, 5)
and (3, 4), respectively. We randomly select |In| items from I
to form In, and |Ex| items from I to form Ex. For each tested
value of k, we run 500 random queries, and measure the query er-

ror (QE), defined as QE = |Co−Ca|
n

, where Co (Ca) is the result
obtained from the original (anonymized) data and n the size of the
dataset. Figures 6(c,d,g,h) show the average QE results. Again, our
TSP-based method permits lower query error than the variant using
only a Gray-code order, while our nonreciprocal �-diversification
scheme clearly outperforms CAHD.

5.3 Runtime Results
We now evaluate the benefit brought about by our closed-walk

algorithm for assignment extraction as compared to the backtrack-
ing algorithm in [24]. Figure 7(a) presents the time needed for as-
signment generation in k-anonymization by both algorithms on the
Pumsb data, as a function of k. Our closed walk offers a clear effi-
ciency benefit. We also examine scalability in data size. We obtain
data sets of size 2×, 4×, 8× and 16× that of Chess by duplication
and random perturbation. We ran both compared methods on these
data, with k set to 16. Figure 7(b) shows our results on logarithmic
axes. Our closed-walk method maintains an advantage of almost
one order of magnitude with increasing data size. We also evaluate
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the scalability of our �-diversification technique vis-à-vis CAHD on
the same data, setting � to 6. Figure 7(c) shows our results. For our
technique, the measured time includes the time for TSP-Gray sort-
ing, greedy assignment generation for building the generalization
graph, and random assignment generation for the sake of privacy
(see Section 4). Expectedly, our method requires more time than
CAHD, but presents a similarly scalable growth trend. Arguably,
the extra time is a reasonable cost for the utility benefits it brings.

6. CONCLUSION
In this paper we revisited the problem of sharing set-valued data

while conforming to k-anonymity-like and �-diversity-like privacy
guarantees. We proposed a novel nonreciprocal anonymization
scheme for such data, whereby it is not required that original records
match anonymized ones in groups. In the process, we brought the
state of the art for nonreciprocal anonymization forward in terms
of efficiency, applied it on whole data sets, and developed a special
method for nonreciprocal �-diversification. Our technique comes
along with a novel way to devise a cyclical order over set-valued
records, employing the Gray-code order and improving on it by
applying a TSP algorithm. Our experimental study demonstrates
that our schemes preserve data utility to a degree not achieved by
previous methods; the extra runtime required compared to CAHD
is an affordable price to pay for the benefits we gain. In the fu-
ture, we plan to investigate how nonreciprocal anonymization tech-
niques can be applied to other types of data, e.g. spatial data.
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