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ABSTRACT
Human-robot communication is often faced with the diffi-
cult problem of interpreting ambiguous auditory data. For
example, the acoustic signals perceived by a humanoid with
its on-board microphones contain a mix of sounds such as
speech, music, electronic devices, all in the presence of atten-
uation and reverberations. In this paper we propose a novel
method, based on a generative probabilistic model and on
active binaural hearing, allowing a robot to robustly perform
sound-source separation and localization. We show how in-
teraural spectral cues can be used within a constrained mix-
ture model specifically designed to capture the richness of
the data gathered with two microphones mounted onto a
human-like artificial head. We describe in detail a novel
EM algorithm, we analyse its initialization, speed of conver-
gence and complexity, and we assess its performance with
both simulated and real data.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statis-
tics—Multivariate statistics, Probabilistic algorithms; I.2.7
[Natural Language Processing]: Speech Recognition and
Synthesis

General Terms
Algorithms, Theory, Experimentation

Keywords
Blind source separation, computational auditory scene anal-
ysis, EM algorithm, learning

1. INTRODUCTION
There is an increasing interest in robots able to commu-

nicate with people in the most natural way, e.g., Fig. 1.
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Figure 1: A cocktail party robot should be able to communicate
with people in the most natural way. One fundamental task that
such a robot should be able to accomplish is to localize the speak-
ers in a room and to separate their emitted speech signals, all in
the presence of music, background noise, and reverberations.

Such robots must be endowed with the ability to reliably
process and understand sensory inputs, e.g, visual or au-
ditory data, gathered in unconstrained physical situations.
Within the field of computational auditory scene analysis
(CASA) tremendous progress was made in speech recog-
nition. Nevertheless, current approaches work well with a
single sound source often recorded with a close-range micro-
phone. A more natural setup, e.g., humanoids with their
own on-board microphones, implies to deal with much more
complex and challenging acoustic inputs involving auditory
data of various kinds (speech, prosody, music, electronic de-
vices, etc.) and originating from sparsely located multiple
sound sources, all in the presence of noise, attenuation and
reverberations.

A classical example illustrating the difficulty of model-
ing such situations is the well known cocktail party problem

(CPP) [9]. While human listeners solve this problem rou-
tinely and effortlessly, we note that it has not been prop-
erly addressed from the perspective of robot audition. Two
key aspects of CPP are localization and separation of sev-
eral sound sources. We believe that principled solutions to
these problems are some of the prerequisites for addressing
higher-level tasks in HRI such as speech and music recogni-
tion, verbal communication, dialog handling, etc.

In this paper we propose a new method for solving for
sound-source separation and localization based on a gen-



erative probabilistic model and on active binaural hearing.
More precisely, we promote a novel robot audition paradigm
based on interaural spectral features, namely the interau-

ral level difference (ILD) and the interaural phase difference

(IPD) and on a constrained mixture model specifically de-
signed to capture the richness of the binaural data recorded
with a robot head endowed with a human-like head related

transfer function (HRTF). We formally derive an EM pro-
cedure that alternates between separation (E-step) and lo-
calization (M-step). We show how our system can be fully
automatically and efficiently trained using an audiomotor
map. We analyse our algorithm in detail and we assess its
performance with both simulated and real data.

There is behavioral and physiological evidence that hu-
mans use binaural cues in order to infer the direction of
a sound. Two such cues seem to play an essential role,
namely the ILD (already mentioned) and the interaural time

difference (ITD). A number of computational models have
been recently developed for robust sound localization and
sound tracking based on ITD and/or ILD [19, 24]. How-
ever, it is well known that the spatial information provided
by interaural-difference cues within a restricted band of fre-
quency is spatially ambiguous, particularly along a roughly
vertical and front/back dimension [15]. To avoid these ambi-
guities, more accurate sound localization models incorporate
the HRTF, e.g. [12]. These approaches are based on the fact
that the particular shape of the head, pinna and torso act as
a filter depending on the emitting 3D location of the sound
source (distance, azimuth, and elevation). However, HRTF
databases are subject-specific and room-dependent (noise,
reverberations, room geometry, etc.), and only a handful of
HRTF databases are available in practice [1, 21]. This makes
them hardly applicable to a real robotic application. To
overcome these issues, the HRTF of a specific robot can be
automatically learnt using audio-motor maps [8, 10]. Such
maps are built by recording a static full-spectrum sound
source from different motor states of the robot.

The problem of sound source separation has been thor-
oughly studied in the last decades and several interesting
approaches were proposed. For example, [4, 20] and many
others achieve separation with a single microphone, based on
known acoustic properties of speech signals, and are there-
fore limited to a specific type of input. Other techniques
such as independent component analysis (ICA) [6] or multi-
microphone techniques require as many microphones as the
number of sources. Several other methods use binaural lo-
calization cues for source separation [11, 14, 23]. In [11]
acoustic inputs at different frequency channels are clustered
over time by means of some assumptions on the emitted sig-
nals, and an HRTF data look-up table is used to find their
corresponding positions in space. Once exact locations are
known, up to two sources can be separated using the HRTF
at each frequency channel.

Our method is based both on clustering (localization) and
on spectral masking (separation). Spectral masking, also
called binary masking, allows the separation of an arbitrary
number of sources from a mixed signal, with the only as-
sumption that a single source is active at every frequency-
time point (f, t). This is referred to as the W-disjoint or-

thogonality assumption [25] and it has been shown to hold,
in general, for simultaneous speech signals; It is particularly
well suited for binaural recordings in realistic environments.
Recently, [14] proposed a probabilistic model for multiple

sound source separation based on interaural spatial cues.
For each sound source, a binary mask and a discrete distri-
bution over interaural time delays is provided. This can be
used to approximate the azimuth angle of the source with
a front-back ambiguity, if the distance between the micro-
phones is known.

It appears that there are very few methods that formally
combine 2D localization and separation. The first original-
ity of our approach is to formally cast the localization and
separation tasks into a generative probabilistic model that
is solved very efficiently with a novel EM algorithm. Full
details of this algorithm and its initialization as well as fa-
vorable comparisons with recent binaural-based separation
methods are presented in a companion paper [7]. The sec-
ond originality of our approach is to use an active robotic
head in order to automatically learn audio-motor maps for
a very large set of sound-source directions located in the far
field. Such a training phase incorporates an implicit model
of the HRTF and leads to a high precision both in terms of
source separation and of localization. A thorough evaluation
of the method with simulated and real data is provided, and
puts forwards this approach as a promising future tool for
auditory human-robot interactions.

The remainder of this paper is organized as follows: sec-
tion 2 describes a binaural sound representation, section 3
presents in detail the formal model as well as its associ-
ated EM algorithm, section 4 describes the data acquisition
and recording technique, section 5 presents our validation
method, experiments and results. Concluding remarks and
directions for future work are discussed in section 6.

2. BINAURAL SOUND REPRESENTATION
Both sound source localization and separation require a

proper representation of the perceived data. For localiza-
tion, one needs a content-independent representation that
contains as much spatial information as possible. For sepa-
ration, one needs a representation preserving all the richness
of the original signals. In this paper we put forward two bin-

aural representations, namely ILD and IPD spectrograms.
As already mentioned in section 1, our sound source sep-

aration method is based on binary masking. This tech-
nique consists in “filtering” the original signal by weighting
all frequency-time points corresponding to the target source
with 1 and all the other points with 0. Consequently, the
perceived signal needs to be described within a time-varying
spectral representation, a spectrogram. Spectrograms associ-
ated with each one of the two microphones are computed us-
ing a short-term fast Fourier transform (FFT) algorithm [2].
We use a time window of 64ms with 8ms overlap between two
consecutive windows, thus yielding T = 126 time-windows
for a signal lasting 1s. Since sounds are recorded at a sample
rate of 24,000Hz, each time-window contains 1,536 samples,
multiplied by a Hann window padded with zeros, for a total
length of 2,048 samples. Each window is then transformed
via FFT to obtain complex coefficients of F = 1, 024 pos-
itive frequency channels between 0 and 12,000Hz. We de-

note with s
(k)
f,t ∈ C the spectrogram value at frequency-time

point (f, t) of a signal emitted by a sound source k and with

s
(L)
f,t and s

(R)
f,t the spectrogram values perceived by the left-

and right-microphone respectively. The spectrogram of the
emitted acoustic level is defined by:

a
(k)
f,t = 10 log(|s

(k)
f,t |

2) (1)



while the spectrogram of the perceived acoustic level is de-
fined by

a
(LR)
f,t = 10 log(|s(L)

f,t |
2 + |s(R)

f,t |
2) (2)

Fig. 2-(a) and (b) show an example of spectrograms of emit-
ted and perceived acoustic levels.

(a) Emitted spectrogram (b) Perceived spectrogram

(c) ILD spectrogram (d) IPD spectrogram

Figure 2: Spectrograms corresponding to a male utterance
emitted from the left-hand side of the binaural head.

The W-disjoint orthogonality assumption implies that a
single sound source emits at a given frequency-time point
(f, t). Let k be that source, the HRTF model provides a rela-
tionship between emitted and perceived spectrogram points
at (f, t):

s
(L)
f,t = h(L)(xk, f)s

(k)
f,t and s

(R)
f,t = h(R)(xk, f)s

(k)
f,t (3)

where xk ∈ R
3 denotes the 3D position of sound source k in

a robot-centered coordinate frame (the origin of this frame
is the midpoint between the two microphones and the x, y,
and z axes pointing towards the left microphone, the head-
top and in front of the head) and h(L) and h(R) denote the
left and right HRTF. The latter functions depend on both
the emitter’s position and the frequency and they act as
linear filters on the emitted signal. The HRTFs are mainly
determined by the shape of the head, pinna and torso of the
listener, e.g, the robot-mounted dummy-head in our case.
The interaural transfer function (ITF) Î is defined by the
ratio between the left- and right-HRTF:

I(xk, f) =
h(R)(xk, f)

h(L)(xk, f)
∈ C (4)

We can now define the interaural spectrogram as the ratio
between the left- and right-microphone spectrograms:

Îf,t =
s
(R)
f,t

s
(L)
f,t

(5)

From (3), (4) and (5) one may notice that if the source
k emitting at time-frequency point (f, t) is located at xk

then Îf,t ≈ I(xk, f). The equality is only approximate
due to the sensor noise and FFT errors. Therefore, at a
given frequency-time point, the interaural spectrogram value

If,t does not depend on the emitted spectrogram value s
(k)
f,t

but only on the source position xk. We finally define the
ILD spectrogram α and the IPD spectrogram φ as the log-
amplitude and phase of the complex interaural spectrogram
Îf,t, e.g., Fig. 2-(c) and (d):

αf,t = 20 log |Îf,t| ∈ R and φf,t = arg(Îf,t) ∈ ]−π, π] (6)

3. SEPARATION AND LOCALIZATION
This section starts by describing how a training set of

interaural parameters can be built out of a sound dataset
annotated with sources positions. After formally stating the
problem, we then introduce our novel probabilistic model for
interaural parameters in a mixture of point sound sources.
We finally detail a new version of the EM algorithm for
this model, allowing to achieve simultaneous sound sources
separation and localization based on learned positions.

3.1 Building a Training Set
We first explain how a training set of interaural param-

eters can be built out of a sound dataset annotated with
sources positions. Let X = {xn}

N
n=1 be a set of 3D coordi-

nates in the robot centered frame that we already described
above. If a single sound source n emits white noise from
xn ∈ X , let {αn

f,t}
F,T
f=1,t=1 and {φn

f,t}
F,T
f=1,t=1 be the per-

ceived ILD and IPD spectrograms. The mean ILD vector

µ(xn) = (µn
1 . . . µ

n
f . . . µ

n
F )⊤ ∈ R

F associated with xn is de-
fined by taking the temporal mean of α at each frequency
channel:

µf (xn) =
1

T

TX

t=1

αn
f,t (7)

Similarly, the mean IPD vector ξ(xn) = (ξn
1 . . . ξ

n
f . . . ξ

n
F )

is the temporal mean of the IPD spectrogram φ at each
frequency channel:

ξf (xn) = arg
1

T

TX

t=1

exp(jφn
f,t) ∈ ]−π, π] (8)

The components of the mean IPD vector are estimated in
the complex domain in order to avoid problems due to phase
circularity, as suggested in [16]. White noise is used because
it contains equal power within a fixed bandwidth at any
center frequency: the source n is therefore the only source
emitting at each frequency-time point (f, t), and µf and
ξf are thus approximating the log-amplitude and phase of

Î(., f). The set X of 3D sound-source positions as well as
the mappings µ and ξ will be referred to as the training data
to be used in conjunction with the sound-source separation
and localization algorithm described below.

3.2 Problem Formulation
We suppose that there are K sound sources randomly lo-

cated in the robot’s environment and that these K sources
emit simultaneously sounds with unknown spectrograms from
the unknown locations {xk}

K
k=1 ⊂ X . From the acous-

tic inputs perceived by the robot’s microphone pair, one
can build the ILD and IPD spectrograms {αf,t}

F,T
f=1,t=1 and

{φf,t}
F,T
f=1,t=1 as already described. The goal of the sound-

source separation and localization algorithm is to associate



each perceived frequency-time point (f, t) with one of the
sound sources and to estimate their 3D locations.

The observed αf,t and φf,t are useful only if there is a
significant signal at (f, t). To identify such significant ob-

servations we estimate the perceived acoustic level aLR
f,t with

(2) and we retain only those frequency-time points for which
the acoustic level is above a threshold, aLR

f,t > ǫf . One em-
pirical way to choose the thresholds (one at each frequency)
is to measure the highest perceived acoustic level at each f
in the absence of emitting sound sources. These thresholds
are typically very low compared to perceived acoustic levels
due to natural sounds, and allow to filter out frequency-
time points corresponding to the “room silence”. We call
level mask the associated spectral mask. We denote by Mf

the number of significant observation at f and by αf,m and
φf,m the m-th significant ILD and IPD observations at f .

The observed data will be denoted by A = {αf,m}
F,Mf

f=1,m=1

and Φ = {φf,m}
F,Mf

f=1,m=1.
We also introduce the missing data, i.e., a set of unob-

served variables zf,m ∈ {0, 1}K , such that zf,m,k = 1 if ob-
servations αf,m and φf,m were generated by source k, and
zf,m,k = 0 otherwise. The W-disjoint orthogonality con-
straint can therefore be written as:

KX

k=1

zf,m,k = 1 ∀(f,m) (9)

Variables zf,m are also called data-to-source assignments

at (f,m), and Mk = {zf,m,k}
F,Mf

f=1,m=1 corresponds to the
binary spectral mask associated with sound-source k. Fi-

nally, we denote with Z = {zf,m}
F,Mf

f=1,m=1 the set of all
missing data. The problem of simultaneous localization and
separation amounts to estimate the sound-source locations
{yk}

K
k=1 and the masking variables Z, given the number of

sound sources K and the observed data A and Φ.

3.3 A Constrained Mixture Model
We assume that both the ILD and IPD observed data are

drawn from normal distributions. The conditional likelihood
of the observation αf,m given its assignment to sound source
k, i.e., zf,m,k = 1 and located at xk is therefore drawn from
a 1D Gaussian distribution centered at µf (xk) and with
variance σ2

f,k:

P (αf,m|zf,m,k,xk, σf,k) = N (αf,m|µf (xk), σ2
f,k)

=
1

(2π)1/2σf,k
exp

 
−

(αf,m − µf (xk))2

2σ2
f,k

!
(10)

For simplicity, the expression zf,m,k = 1 is replaced by
zf,m,k in probabilities. Since the IPD data lie on the circle
]−π, π], they should be modeled by a circular normal distri-
bution. As proposed in [14], we approximate the wrapped
normal distribution with a 1D Gaussian. The conditional
likelihood of the observation φf,m given its assignment to
sound source k located at xk is given by:

P (φf,m|zf,m,k,xk, ρf,k) = ∠N (φf,m|ξf (xk), ρ2
f,k)

=
1

(2π)1/2ρf,k
exp

 
−

∆(φf,m, ξf (xk))2

2ρ2
f,k

!
(11)

where ρ2
f,k is the IPD variance associated with source k at

frequency f and the ∆ function is defined by

∆(x, y) = arg(ej(x−y)) ∈ ]−π, π] (12)

The distribution ∠N (ξ, ρ2) approximates the normal dis-
tribution on the circle ]−π, π] when ρ is small relative to
2π. Preliminary experiments on IPD spectrograms of white
noise showed that this assumption holds in the general case.

Note that in our model, the source positions act as latent
constraints on Gaussian means and thus tight the observa-
tions at different frequency channels. Such an approach can
also be used to tight auditory and visual observations, as
recently done in [13].

As emphasized in [14], the well known correlation between
ILD and IPD does not contradict the assumption that Gaus-
sian noises corrupting the observations are independent. Un-
der this assumption, the conditional likelihood of the ob-
served data (αf,m, φf,m) given its assignment to source k
located at xk and with variances σ2

f,k and ρ2
f,k is

P (αf,m, φf,m|zf,m,xk, σf,k, ρf,k) =

N (αf,m|µf (xk), σ2
f,k) × ∠N (φf,m|ξf (xk), ρ2

f,k) (13)

The prior probability of assigning an observation to a sound
source writes:

P (zf,m,k) = πf,k (14)

Finally, we denote by Θ the set of all the parameters of our
binaural mixture model:

Θ =


{xk}; {πf,k}; {σ2

f,k}; {ρ2
f,k}

ffF,K

f=1,k=1

(15)

3.4 The Separation-Localization Algorithm
The problem of both source separation and source local-

ization can now be expressed as an optimal parameter esti-
mation problem, namely the maximization of the observed-
data log-likelihood over the parameters Θ:

eΘ = arg max
Θ

L(A,Φ; Θ) (16)

In order to keep the model as general as possible, there is no
assumption on the emitted sounds as well as the way their
spectra are spread across the frequency-time points. There-
fore, we assume that all the observations are independent:

L(A,Φ; Θ) = log P (A,Φ|Θ)

=
FX

f=1

MfX

m=1

logP (αf,m, φf,m|Θ) (17)

It is well established that the direct optimization of (17)
is difficult because of the presence of many local maxima.
Therefore we recast the problem within the framework of
maximum likelihood with missing data, i.e., Z in (13), which
is traditionally solved via expectation-maximization (EM).
The EM algorithm alternates between estimating the ex-

pected complete-data log-likelihood (E-step) using the cur-
rent model parameters and maximizing this likelihood over
the model parameters given the current posterior probabil-
ities (M-step). The posterior probability rf,m,k of zf,m,k is
defined by:

rf,m,k = P (zf,m,k|αf,m, φf,m; Θ) (18)

As it will be detailed below, the E-step of the proposed algo-
rithm computes the posterior probabilities of assigning each



spectrogram point to a sound source k (separation-step),
while the M-step maximizes the expected complete-data log-
likelihood with respect to the model parameters Θ, namely
the priors, the variances and, most notably, the source loca-
tions {xk}

K
k=1 (localization-step).

One of the most interesting properties of EM algorithms
is that the log-likelihood L in (16) is increased at each EM
iteration and hence it converges to a local maximum. An
outline of the proposed EM method is provided in Algo-
rithm 1. The finally estimated posterior probabilities allow
to compute the binary spectral masks Mk associated with
each source k while the final parameters xk provide esti-
mates for the source locations. v(p) denotes the value of
variable v at iteration p, and v(P) denotes its final value.
The E-step, M-step, initialization and convergence check are
detailed below.

Algorithm 1 Separation-Localization EM

1: Input: A, Φ, {µ(xn)}N
n=1, {ξ(xn)}N

n=1, K

2: Output: {x(P)
k }K

k=1, {Mk}
K
k=1

3: Θ(0) := initialize

4: p := 0
5: while !converged do

6: p := p+ 1

7: {r(p)
f,m,k} := E-step(Θ(p−1))

8: Θ(p) := M-step({r(p)
f,m,k}f,m,k)

9: end while

10: Mk := (k == arg max
k′

r
(P)
f,m,k′)

F,Mf

f=1,m=1

Based on Bayes’ formula and on marginalization rules,
the E-step computes the current posterior probabilities con-
ditioned by the previously estimated parameters, i.e., (13):

r
(p)
f,m,k :=

πf,kP (αf,m, φf,m|zf,m; Θ(p−1))PK
i=1 πf,iP (αf,m, φf,m|zf,m; Θ(p−1))

(19)

The expected complete-data log-likelihood can now be
written as:

Q(Θ|Θ(p−1)) = E
(Z|A,Φ;Θ)

[log P (A,Φ,Z|Θ)]

=

FX

f=1

MfX

m=1

KX

k=1

r
(p)
f,m,k log πf,kP (αf,m, φf,m|zf,m; Θ) (20)

The M-step maximizes (20) with respect to Θ:

Θ(p) := eΘ = arg max
Θ

Q(Θ|Θ(p−1)) (21)

By combining (13) with (20) the problem becomes equiv-
alent to minimizing:

FX

f=1

MfX

m=1

r
(p)
f,m,k

 
log

 
σ2

f,k

πf,k

!
+ log

 
ρ2

f,k

πf,k

!
+

(xf,m − µf (xk))2

σ2
f,k

+
∆(φf,m, ξf (xk))2

ρ2
f,k

!
(22)

which can be easily differentiated with respect to {πf,k}f ,
{σf,k}f and {ρf,k}f to obtain closed-form expression, con-
ditioned by xk, for the optimal values of these parameters.
These expressions are then subtituted in (22), which is eval-
uated for all xk ∈ X to find the optimal position x̂k, and

deduce all the other optimal parameters. Interested readers
can find a detailed solution in [7].

As already mentioned, EM converges to a local maximum
of the observed data log-likelihood function L. However, the
non-injectivity of the interaural functions µf and ξf leads to
a very large number of these maxima, especially when the
set of learned positions X , i.e., section 3.1, is large. This
makes the algorithm to be very sensitive to initialization. A
common way to avoid being trapped in local maxima may be
to initialize the parameters at random, but such a strategy
cannot be directly applied here: First, because the cardinal-
ity of the parameter set Θ is very large and second, because
there is no straightforward way to initialize the variances
σ2

f,k and ρ2
f,k. Another possibility may be to randomly ini-

tialize the source assignment variables Z and then proceed
with the M-step, but extensive experiments with simulated
data revealed that the algorithm very rarely converged to a
global maximum (in less than 0.1% of the cases). We there-
fore decided to adopt a method that combines these two
initialization strategies by randomly perturbating both the
source locations and the source assignments.

This lead us to develop a stochastic initialization proce-
dure similar to the stochastic EM (SEM) algorithm [5]. The
idea of exploiting stochasticity to escape from local maxima
is a commonly used principle in global optimization [26].
The SEM algorithm includes a stochastic step (S) in be-
tween the E and the M steps, during which random samples
Rf,m,k ∈ {0, 1} are drawn from the posteriors rf,m,k. These
samples are then used instead of the posterior probabili-
ties during the M-step. To initialize our algorithm, we first
set all the posterior probabilities to 1/K and then proceed
through the following step sequence: S M* E S M, where
the M*-step is a variation of the M-step in which the sources’
positions are drawn randomly from X instead of computing
{x̂k}k. Experiments with simulated data showed that this
technique converged to a global optimal solution in over 10%
of the cases. More advanced techniques may also be used to
improve the convergence rate, and are detailed in [7].

In practice, twenty stochastic initializations are used in
order to increase the chances of correct convergence, and
only the one providing the best log-likelihood after two iter-
ations is eventually iterated until the convergence criteria is
satisfied. The algorithm stops either when the log-likelihood
gain is less than 1%, or after pmax = 20 iterations. Indeed,
from two hundred simulated experiments (see section 5.2),
we concluded that, on an average, the algorithm converges
in eleven iterations.

3.5 Algorithm Complexity
Both the E- and S-steps are linear in the total number

of significant observations,
P

f Mf and in the number of
sound sources, K. The M-step is linear in the number
of frequency channels F and in the number N of source
locations available in the training set X . In the case of
simulated data using one-second long signals composed of
two sources, the values of these parameters are: K = 2,
F = 1024,

P
f ,Mf = 70, 000, and N = 10, 800. With a

Matlab implementation executed on a 2.53GHz Intel-Xeon
processor, we obtained the following average running times:
49ms (E), 1030ms (S), 2520ms (M) and 24ms (M*). The
most time-consuming part of the algorithm is its initializa-
tion (20 stochastic initializations iterated 2 times) which
takes 195.9 seconds, while each subsequent EM iteration



takes 2.569 seconds, amongst which 98% corresponds to se-
lecting all optimal x̂k in X . Careful algorithm and software
optimization will allow, however, to obtain realistic execu-
tion times needed for human-robot interactions scenarios,
e.g., one to two seconds.

4. DATA ACQUISITION
In order to build the training set introduced in section 3.1,

we developed a technique to learn a large number of sound
source locations in an entirely unsupervised and automated
way using the motor system of a binaural robot head. This
technique is initially inspired from the sensorimotor theories
of early development in psychology, suggesting that experi-
encing the sensory consequences of voluntary motor actions
was necessary for an organism to learn the perception of
space [17]. In particular [3] argued that naive organisms
such as humans and echo-locating bats could learn sound
localization based solely on acoustic inputs and their rela-
tion to motor states. This idea was experimentally validated
using a robot system in [8].

Figure 3: A binaural head is placed onto an agile device that
can perform precise and reproducible pan and tilt motions (left).
The emitter (a loud-speaker) is placed in front of the robot head
at approximately 2.7 meters (right).

Sound acquisition is performed with a Sennheiser MKE
2002 acoustic dummy-head linked to a computer via a Beh-
ringer ADA8000 Ultragain Pro-8 digital external sound card.
The head is mounted onto a robotic system with two rota-
tional degrees of freedom: a pan motion and a tilt motion
(see Fig. 3). This device was specifically designed to achieve
precise and reproducible movements. The emitter – a loud-
speaker – is placed at approximately 2.7 meters ahead of the
robot, as showed on Fig. 3. The loud-speaker’s input and
the microphones’ outputs were handled by two synchronized
sound cards in order to simultaneously record and play. All
the experiments were carried out in real-world conditions,
i.e., a room with natural reverberations and background
noise due to computer fans. All the recordings are publicly
available1. We believe that such a large audio-motor data
set has no equivalent today, and is therefore a contribution
in its own right.

Rather than placing the emitter at known 3D locations
around the robot, it was kept in a fixed reference position
while the robot recorded emitted sounds from different mo-
tor states. Consequently, a sound source direction is di-
rectly associated to a pan-tilt motor state (ψ, θ) rather than
a 3D point in space. A robot trained in such a way would
therefore be able to perform the head movement pointing to-

1http://perception.inrialpes.fr/~Deleforge/CAMIL_
Dataset/

ward an emitting sound source in an entirely unsupervised
way, without needing the inverse kinematics, the distance
between microphones, or any other parameters.

Recordings were made from 10, 800 uniformly spread mo-
tor states: 180 pan rotations ψ in the range [−180◦, 180◦]
(left-right) and 60 tilt rotations θ in the range [−60◦, 60◦]
(top-down). The associated set of 3D source positions X ⊂
R

3 could be deduced using the direct kinematic model of the
robot given in [8]. However, the speaker was located in the
far field of the head during experiments (> 1.8 meters), and
[18] showed that HRTFs mainly depend on the sound source
direction while the distance has fewer impact in that case.
That is why sound source locations will be expressed with
angles in the rest of the paper.

At each motor state, five binaural recordings of one second
each were made while the speaker emitted different sounds.
Sound 1 corresponds to white noise, and was used to build
the training set (section 3.1). Sounds 2, 3 and 4 form the
test set (see section 5.3), and correspond respectively to a
woman pronouncing“Bonjour!”, a man pronouncing“Un pe-

tit café?”, and a flute melody. Sound 0 corresponds to“room
silence” and was used to determine the perceived acoustic
level threshold ǫf during tests (see section 3.2).

5. EXPERIMENTS AND RESULTS

5.1 Performance Evaluation
Algorithm 1 was tested and validated using the database

described in the previous section. In all presented results,
a source is considered as correctly localized if the algorithm
could locate it within 2◦ of absolute angular error in both
azimuth and elevation. For real mixtures (section 5.2), the
separation was evaluated using standard metrics, namely
Source-to-Distortion Ratio (SDR) and Source-to-Interferen-
ces Ratio (SIR), proposed in [22]. These metrics are based
on the decomposition of the estimated signal into the tar-
get signal, the error term coming from other interfering sig-
nals, and the error term coming from unexplained artifacts.
Another term can be added to evaluate background noise
reduction, but this is outside the scope of this work. Once
the decomposition is achieved, the SDR is defined by the ra-
tio of energy between the target and the error terms, while
the SIR is the ratio of energy between the target and the
interference term only. Both these metrics are expressed in
decibels. As they are computed from 1D signals, the masked
left and right microphone spectrograms were converted back
to temporal signals using the inverse FFT, and concatenated
to evaluate the quality of binaural-based separation.

SDR and SIR scores obtained with our algorithm are given
together with upper and lower bounds. The upper bound
corresponds to the SDR of the ground truth mask or oracle

mask [25], which is set to 1 at every spectrogram point in
which the target signal is at least as loud as the combined
other signals and 0 everywhere else. The lower bound cor-
responds to the SDR and SIR in the original mixture. The
level mask described in section 3.2 was applied to all signals
so that only separation of significant observations could be
evaluated.

For tests made on simulated spectrograms, since there is
no 1D signal to compare with, the separation was evaluated
by a pointwise 6= operation between estimated and oracle
binary masks: we define the mask error by the ratio of points
in the estimated mask that differs from the oracle mask.



5.2 Simulated Data
To validate our model we first tested the algorithm on

simulated data. We simulated ILD and IPD spectrograms
with F = 1024 frequency channels from 0 to 12, 000Hz, and
10 to 126 significant observations per channel (Mf randomly
drawn for each f). First, K source positions x1 . . .xK are
randomly drawn from X . Then, each spectrogram point
(f,m) is randomly assigned to one of the K sources, and we
generate ILD and IPD observations αf,m and φf,m using the
distributions N (µf (xk), σ2

f (xk)) and ∠N (ξf (xk), ρ2
f (xk)),

where σ2
f (xk) and ρ2

f (xk) correspond to ILD and IPD vari-
ances of white noise emitted from xk, and are estimated
from the dataset. A total of 200 mixtures composed of 2 to
5 sources were generated, and K was set to the correct num-
ber of sources for each test. Table 1 shows the percentage
of correctly localized sources, the mean mask error obtained
over all sources, and the mean mask error obtained with
randomly generated binary masks.

Table 1: Mean localization and separation results for 200 simu-
lated mixtures of 2 to 5 sources.

K
Correctly Estimated Mask Random Mask

Localized(%) Error(%) Error(%)
2 99.2 20.7 50.0
3 91.2 25.4 55.6
4 54.1 28.9 62.5
5 14.4 29.3 68.0

These results show that our model is very well suited for
both separation and localization tasks. A very high localiza-
tion accuracy is achieved for mixtures composed of 2 and 3
sources. When the number of sources is higher, the number
of observations per source decreases while the number of lo-
cal maxima of the log-likelihood function increases, leading
to poorer results.

5.3 Real Mixtures from Learned Positions
Three sounds were used to test the algorithm with real

data: male speech, female speech, and flute melody (see sec-
tion 4). Mixtures were obtained by summing raw binaural
signals from the dataset, corresponding to randomly drawn
positions in X . ILD and IPD spectrograms were computed
from these mixtures, and only significant observations cor-
responding to points with a higher acoustic level than the
corresponding background mixtures were kept, as described
in section 2.

First, 200 mixtures for each possible pair of test sounds
were generated, resulting in 1, 200 localization-separation
tasks. Mean results obtained with our method for all these
tasks as well as mean results for correctly localized sources
only are shown in Table 2. SDR and SIR scores are com-
pared to those of the original mixture and oracle mask.

A very high localization rate is obtained, with 84.6% of
the 1, 200 test sound sources localized with less that 2◦ er-
ror in both azimuth and elevation. In addition, significant
improvements of SDR and SIR ratios over the original mix-
tures are achieved. This is particularly true for SIR ratios
that almost reached oracle ratios in some tests. This shows
that although our algorithm generates some artifacts in the
target sound signal during the spectral masking process, it is
able to considerably reduce the volume of the interferer and

Table 2: Mean angle error, SDR (Source-to-Distortion Ratio)
and SIR (Source-to-Interferences Ratio) for real mixtures of 2
sound sources.

Ang Err(◦) SDR(dB) SIR(dB)
Original - 0.05 0.05
Us (All sources) 11.5 4.11 14.3

Us (Loc: 84.6%) 0.18 5.17 15.2

Oracle - 17.9 39.6

thus significantly improve the perceived quality. Finally, we
note that SDR and SIR ratios are always better when the
algorithm could correctly localize the sound source, which
demonstrates the importance of localization cues for sound
sources separation.

A second experiment was made with 200 mixtures of the
three test sounds emitting altogether from random positions
in X , resulting in 600 localization-separation tasks. Results
are displayed in a similar fashion in Table 3.

Table 3: Mean angle error, SDR and SIR for real mixtures of 3
sound sources.

Ang Err(◦) SDR(dB) SIR(dB)
Original - -3.61 -3.61
Us (All sources) 35.5 -4.03 3.21

Us (Loc: 45.2%) 0.18 0.09 7.29

Oracle - 14.5 32.7

Although performances significantly decrease for this very
challenging task (a 1s mixture of 3 equally loud sounds is
hard to decipher even for humans), we note that the algo-
rithm could still accurately localize almost half of the 600
individual sources, while significantly improving their SDR
and SIR with respect to the original mixture.

5.4 Real Mixtures from Unlearned Positions
The last experiment is also the most challenging one. In-

deed, we tested the ability of our algorithm to separate
sound sources emitting from positions outside the train-
ing set. More precisely, we made several test recordings in
which two loud speakers were simultaneously emitting dif-
ferent sounds while the robot stayed in its reference position
(0◦, 0◦). One of the loud speaker was placed in a frontal po-
sition corresponding to the training dataset, while the sec-
ond one was manually placed in 21 side positions around
the robot, with a 10◦ to 90◦ azimuth distance and 0◦ to 30◦

elevation distance. These experiments were repeated for the
six possible pairs of test sounds, resulting in 252 separation-
localization tasks. The frontal loud speaker was correctly
localized at (0◦, 0◦) in 95.2% of the mixtures tested. Lo-
calization performances for the side loud speaker were not
evaluated, as no ground truth was available. Table 4 shows
the mean SDR and SIR scores of each source obtained with
our approach, the original mixture, and the oracle mask.

Despite a decrease of performances with respect to sound
mixtures from learned positions, the significant improve-
ment of SIR obtained in realistic cocktail-party like scenarios
puts forward our approach as a promising tool for auditory
human-robot interactions.



Table 4: Mean SDR and SIR of frontal and side speakers

Frontal Frontal Side Side
SDR(dB) SIR(dB) SDR(dB) SIR(dB)

Original -0.28 -0.28 0.32 0.32
Us -1.09 3.01 -3.30 5.69

Oracle 18.29 40.64 18.63 40.13

6. CONCLUSION AND FUTURE WORK
Traditionally, computational auditory scene analysis was

addressed with either a close-range or an array of micro-
phones and using simulated or anechoic audio data. We
propose to bridge the gap between constrained and uncon-
strained audio analysis and to apply CASA to HRI. We pro-
pose a system integrating the audio-motor abilities of a robot
within a unified framework, and performing sound-source
separation and localization in a realistic cocktail-party like
scenario. By providing a genuine audio-motor database and
presenting encouraging results obtained from these data, we
presented a benchmark for the unexplored field of sensori-
motor learning for robot audition.

One of the most interesting and promising directions will
be to extend our model to a continuous space of sound source
positions. This could be done using the manifold structure
of interaural parameters studied in detail in [8]. By approx-
imating this manifold by local tangent spaces, the size of
the training set could be considerably reduced, thus speed-
ing up the M-step, while improving the localization of sound
sources from unknown places. Dynamic models incorporat-
ing moving sound sources and head movements could also
be included based on this idea. Finally, a “garbage” source
class could be added to our model in order to better deal
with background and non-point sources. We believe that
these ideas combined with careful algorithm and software
optimization could lead to a novel robot hearing paradigm
within the emerging field of human-robot interaction.
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