D. Weinland, R. Ronfard, and E. Boyer, A survey of vision-based methods for action representation, segmentation and recognition, Computer Vision and Image Understanding, vol.115, issue.2, pp.224-241, 2011.
DOI : 10.1016/j.cviu.2010.10.002

URL : https://hal.archives-ouvertes.fr/inria-00459653

R. Poppe, A survey on vision-based human action recognition, Image and Vision Computing, vol.28, issue.6, pp.976-990, 2010.
DOI : 10.1016/j.imavis.2009.11.014

I. Laptev, On space-time interest points, IJCV, vol.64, 2005.

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 2005.
DOI : 10.1109/CVPR.2005.177

URL : https://hal.archives-ouvertes.fr/inria-00548512

P. Dollár, V. Rabaud, G. Cottrell, and S. Belongie, Behavior Recognition via Sparse Spatio-Temporal Features, 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, 2005.
DOI : 10.1109/VSPETS.2005.1570899

M. Bregonzio, S. Gong, and T. Xiang, Recognising action as clouds of space-time interest points, 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009.
DOI : 10.1109/CVPR.2009.5206779

H. Wang, A. Klaser, I. Laptev, and C. Schmid, A spatio-temporal descriptor based on 3D-gradients, Proc. BMVC, 2009.

T. Tuytelaars, Dense interest points, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010.
DOI : 10.1109/CVPR.2010.5539911

A. Klaser, M. Marszalek, and C. Schmid, A Spatio-Temporal Descriptor Based on 3D-Gradients, Procedings of the British Machine Vision Conference 2008, 2008.
DOI : 10.5244/C.22.99

URL : https://hal.archives-ouvertes.fr/inria-00514853

H. Wang, A. Kläser, C. Schmid, and C. L. Liu, Action recognition by dense trajectories, CVPR 2011, 2011.
DOI : 10.1109/CVPR.2011.5995407

URL : https://hal.archives-ouvertes.fr/inria-00583818

M. C. Roh, H. K. Shin, and S. W. Lee, View-independent human action recognition with Volume Motion Template on single stereo camera, Pattern Recognition Letters, vol.31, issue.7, pp.31-639, 2010.
DOI : 10.1016/j.patrec.2009.11.017

D. Weinland, E. Boyer, and R. Ronfard, Action Recognition from Arbitrary Views using 3D Exemplars, 2007 IEEE 11th International Conference on Computer Vision, 2007.
DOI : 10.1109/ICCV.2007.4408849

URL : https://hal.archives-ouvertes.fr/inria-00544741

P. Yan, S. M. Khan, and M. Shah, Learning 4D action feautre models for arbitrary view action recognition, Proc. CVPR, 2008.

M. Z. Uddin, N. D. Thang, J. T. Kim, and T. S. Kim, Human Activity Recognition Using Body Joint-Angle Features and Hidden Markov Model, ETRI Journal, vol.33, issue.4, pp.569-579, 2011.
DOI : 10.4218/etrij.11.0110.0314

M. B. Holte, T. B. Moeslund, and P. Fihl, View-invariant gesture recognition using 3D optical flow and harmonic motion context, Computer Vision and Image Understanding, vol.114, issue.12, pp.1353-1361, 2010.
DOI : 10.1016/j.cviu.2010.07.012

W. Li, Z. Zhang, and Z. Liu, Action recognition based on a bag of 3D points, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Workshops, 2010.
DOI : 10.1109/CVPRW.2010.5543273

H. Zhang and L. E. Parker, 4-dimensional local spatio-temporal features for human activity recognition, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011.
DOI : 10.1109/IROS.2011.6094489

B. Ni, G. Wang, and P. Moulin, RGBD-HuDaAct: A color-depth video database for human daily activity recognition, Proc. ICCV Workshop on Consumer Depth Cameras for Computer Vision, 2011.

J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, and M. Finocchio, Real-time human pose recognition in parts from single depth images, Proc. CVPR, 2011.

J. Sung, C. Ponce, B. Selman, and A. Saxena, Unstructured human activity detection from rgbd images, Proc. ICRA, 2012.

L. Xia, C. C. Chen, and J. K. Aggarwal, View invariant human action recognition using histograms of 3D joints, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2012.
DOI : 10.1109/CVPRW.2012.6239233

J. Cech, J. Sanchez-riera, R. P. Horaud, and J. Matas, Scene flow estimation by growing correspondence seeds Waldboost ? learning for time constrained sequential detection, Proc. CVPR. (2011) 23. ? Sochman, 2005.

X. Alameda-pineda, J. Sanchez-riera, V. Franc, J. Wienke, J. Cech et al., RAVEL: an annotated corpus for training robots with audiovisual abilities, Journal on Multimodal User Interfaces, vol.24, issue.2, 2012.
DOI : 10.1007/s12193-012-0111-y

URL : https://hal.archives-ouvertes.fr/hal-00720734