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The paper presents a posteriori error estimates for the mixed discontinuous Galerkin approxi-
mation of the stationary Stokes problem. We consider anisotropic finite element discretizations,
i.e. elements with very large aspect ratio. Our analysis covers two- and three-dimensional do-
mains. Lower and upper error bounds are proved with minimal assumptions on the meshes.
The lower error bound is uniform with respect to the mesh anisotropy. The upper error bound
depends on a proper alignment of the anisotropy of the mesh which is a common feature of
anisotropic error estimation. In the special case of isotropic meshes, the results simplify, and
upper and lower error bounds hold unconditionally. The numerical experiments confirm the the-
oretical predictions and show the usefulness of the anisotropic error estimator. c© John Wiley
& Sons, Inc.
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I. INTRODUCTION

In this paper we consider the stationary Stokes problem with Dirichlet boundary condi-
tions in a bounded domain of the plane or of the space. In certain situations the solution
has strong directional features, like edge singularities or boundary/interior layers.

When problems with anisotropic solutions are to be discretized, isotropic meshes are
inappropriate, or they may even fail to give satisfactory results [1], indeed they would
require very small element sizes in regions where the solution is anisotropic. Exemplar-
ily we mention boundary layers where the finite elements have to be smaller than the
layer width. Consequently this implies an extreme over-refinement in the layer. In order
to avoid this drawback, a discretization has to be used which reflects the anisotropy.

Numerical Methods for Partial Differential Equations , 1 33 ()
c© John Wiley & Sons, Inc. CCC
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Shishkin (type) meshes were one of the first discretizations to achieve this, see e.g. [1, 2];
geometric layer meshes are more recent ones [3, 4, 5]. Generally speaking, so-called
anisotropic meshes are appropriate. They consist of elements where the aspect ratio can
be very large, i.e. the ratio of the radii of the circumscribed and inscribed sphere is (poten-
tially) unbounded. Although this is in contrast with the conventional, isotropic theory,
the use of anisotropic discretizations allows to achieve the same accuracy with (much)
less degrees of freedom. In our days, anisotropic elements can be applied favourably and
are frequently applied. The theoretical aspects of anisotropic discretizations is now well
understood [2, 6, 7, 8] and much efforts are undertaken to incorporate anisotropy into
fully adaptive techniques.

Recently, discontinuous Galerkin methods have beeen developed for the approximation
of different boundary value problems, like diffusion problems, see [9, 10] and the reference
cited there, or the Stokes, Navier-Stokes problems [11, 12, 13, 14, 15]. In comparison
with stantard conforming methods the discontinuous Galerkin methods have several ad-
vantages, like robustness and stability in transport-dominated regimes, and flexibility in
the mesh design.

Here we are concerned with a posteriori error estimators which are vitally important
for adaptive algorithms and quality control. Particular emphasis is given to the Stokes
problem in 3D domains since anisotropic solutions arise there generically.

For the Stokes problem, a posteriori error analyses of standard methods are available
for isotropic discretizations [16, 17, 18, 19, 20, 21], as well as anisotropic ones [22, 23].
For discontinuous Galerkin methods, a posteriori analysis starts recently. For diffusion
problems, residual error estimates are considered in [24, 25, 26], upper and lower error
bounds being proved. For the 2D Stokes problem, an upper error estimate of residual
type is proved in [27]. In these papers, the authors use isotropic meshes and therefore
the energy-norm as well as the estimator are defined using isotropic quantities like the
diameter of the elements. Therefore our goal is to extend the residual error estimator
methods to anisotropic meshes in general 2D and 3D domains. The main point is to define
an appropriate energy norm in order to obtain an (anisotropic) approximation property
proved in [26] for isotropic meshes and extended here to anisotropic ones. Note that we
will show that this property is optimal. With this property, defining appropriately the
estimator we can prove an upper error bound, as well as a lower error bound. In other
words, the proposed estimator is reliable and efficient. These results are furthermore
confirmed by numerical experiments, that show that the error estimator is asymptotically
equivalent to the error even for highly anisotropic meshes.

The paper is organized as follows. Section II. introduces the problem and some nota-
tion. The discretization and the discontinuous Galerkin method are given in Section III..
There minimal conditions on the mesh are presented and existence and uniqueness results
are proved. Section IV. is devoted to analytical tools. We first recall the non-consistent
reformulation of the DG method. We secondly prove the anisotropic approximation
property using an appropriate energy norm and show its optimality. Since nonconform-
ing meshes are allowed, we introduce adapted edge/face bubble functions and prove
some inverse inequalities. Some specific anisotropic interpolation estimates are finally
recalled. The error bounds are proved in Section V.. While all considerations are made
for anisotropic meshes, we simplify the results for the case of an isotropic discretization in
Section D. since even in that case we obtain new results (especially in 3D). The numerical
experiments of Section VI. confirm our theoretical predictions.



3

II. PRELIMINARIES AND NOTATION

Let us fix a bounded domain Ω of R
d
, d = 2 or 3, with a Lipschitz boundary. On this

domain we consider the Stokes problem

−ν∆u + ∇p = f in Ω
div u = 0 in Ω

u = 0 on ∂Ω.



 (2.1)

To obtain its weak formulation, we introduce the spaces

V = H1
0 (Ω)d := {v ∈ H1(Ω)d : v = 0 on ∂Ω},

Q = L2
0(Ω) := {q ∈ L2(Ω) :

∫

Ω

q = 0},

and the bilinear forms

a(u, v) := ν

∫

Ω

∇u : ∇v, b(v, q) := −
∫

Ω

qdiv v,

where ν > 0 is the viscosity of the fluid, ∇u means the matrix (∂jui)1≤i,j≤d (i being the

index of row and j the index of column) and div u =
∑d

i=1 ∂iui is the divergence of u.
We further use the standard notation for the contraction of two matrices A and B, i.e.,

A : B :=

d∑

i,j=1

AijBij .

According to Theorem I.5.1 of [28], for f ∈ L2(Ω)d, there exists a unique solution
(u, p) ∈ V × Q of

a(u, v) + b(v, p) = (f, v) ∀v ∈ V,
b(u, q) = 0 ∀q ∈ Q,

}
(2.2)

where (·, ·) means the inner product in [L2(Ω)]d or in L2(Ω) according to the context.
We end this section with some notation that will be used in the remainder of the

paper: For two vectors v, w ∈ R
d
, we denote by v ⊗ w the matrix whose ij-th entry is

viwj .
If D is an open subset of Ω, the L2(D)-norm is denoted by ‖ · ‖D. In the case D = Ω,

we will drop the index Ω. Furthermore for v ∈ L2(Ω), we set

MDv =
1

|D|

∫

D

v,

where |D| is the measure of D.

P
k

and Q
k

are the space of polynomials of total and partial degree not larger than k,
respectively.

In order to avoid excessive use of constants, the abbreviations x . y and x ∼ y
stand for x ≤ cy and c1x ≤ y ≤ c2x, respectively, with positive constants c, c1 and c2

independent of x, y, the triangulation Th and the viscosity parameter ν.
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III. ANISOTROPIC DISCRETIZATION

The first two sections introduce general aspects of the discretization, e.g. the DG approx-
imation. Section C. is then devoted to the introduction of anisotropic quantities. The
general mesh assumptions are discussed afterwards in Section D.. As it turns out, the
assumptions on the mesh which are introduced for anisotropic elements are quite weak,
are standard in anisotropic a posteriori error analysis [6, 29, 30, 31, 32] and are similar
to the ones for isotropic elements [26, 33, 27].

A. Discretization of the domain Ω

The domain Ω is discretized by a (possibly nonconforming) mesh Th. In 2D, all ele-
ments are either triangles or rectangles. In 3D the mesh consists either of tetrahedra
or of rectangular hexahedra, cf. also the figures of Section C.. The restriction to rect-
angle or rectangular hexahedra is only made for the sake of simplicity; the extension to
parallelogram or hexahedra is straightforward.

Since we allow nonconforming meshes, in 2D, we suppose that the intersection between
neighbouring elements is either a vertex or an edge of at least one of the two elements,
while in 3D we suppose that the intersection between neighbouring elements is either a
vertex or an edge or a face of at least one of the two elements.

Elements will be denoted by T , Ti or T ′, its edges (in 2D) or faces (in 3D) are denoted
by E, while its vertices will be denoted by x. If the mesh is conforming the set of all
(interior and boundary) edges (2D) or faces (3D) of the triangulation will be denoted by
E . If the mesh is nonconforming, then the set E is the set of edges/faces of smaller size, in
other words, if T∩T ′ is not a full edge/face of T but an edge/face of T ′, then the edge/face
of T is subdivided by the edges/faces of the neighbouring elements of T . The measure
of an element or edge/face is denoted by |T | := measd(T ) and |E| := measd−1(E),
respectively. For each element T ∈ Th, denote by nT the unit outward normal vector
along ∂T .

For our further analysis we need to define some jumps and means through any E ∈ E of
the triangulation. For E ∈ E such that E ⊂ Ω, denote by T + and T− the two elements of
Th containing E. Let q, v, τ be scalar-, vector- and matrix-valued functions, respectively,
defined on T +∪T−, and which are in H1 inside each element T±. We denote by q±, v±,
τ±, the traces of q, v, τ on E taken from T±, respectively. Then we define the mean of
q, v, τ on E by

{{
q
}}

=
q+ + q−

2
,
{{

v
}}

=
v+ + v−

2
,
{{

τ
}}

=
τ+ + τ−

2
.

The different jumps on E are now defined as follows:
[[
q
]]

= q+nT+ + q−nT− ,
[[
v
]]

= v+ · nT+ + v− · nT− ,
[[
v
]]

= v+ ⊗ nT+ + v− ⊗ nT− .

Remark that
[[
q
]]

is the jump of q but is vector-valued,
[[
v
]]

is the jump of the normal

component of v is scalar-valued, while
[[
v
]]
, the full jump of v, is matrix-valued.

For a boundary edge/face E, i. e., E ⊂ ∂Ω, there exists a unique element T + ∈ Th

such that E ⊂ ∂T +. Therefore the mean and jumps are defined as before by taking
q− = 0, v− = 0 and τ− = 0.
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If we have v ∈ [H1(T )]d for all T in Th, then we define its broken gradient ∇hv in Ω
by :

(∇hv)|T = ∇v|T , ∀T ∈ Th.

Furthermore one requires local subdomains (also known as patches). As usual, let ωT

be the union of all elements T ′ such that T ∩ T ′ ∈ E . Similarly for E ∈ E , ωE is the
union of all elements containing E.

Later on we specify additional, mild mesh assumptions that are partially due to the
anisotropic discretization.

B. The discontinuous Galerkin method

Following [14, 27], we consider the following discontinuous Galerkin approximation of
the continuous Stokes problem: Given a mesh Th and a polynomial degree k ≥ 1, we
consider the approximation spaces

Vh = {v ∈ L2(Ω)d : v|T ∈ (P k
T )d, ∀T ∈ Th},

Qh = {q ∈ L2
0(Ω) : q|T ∈ (P k−1

T ), ∀T ∈ Th},

where the space P k
T is defined as follows:

P k
T = P

k
(T ) if T is a triangle or a tetrahedron,

P k
T = Q

k
(T ) if T is a rectangle or a hexahedron.

The space Vh is equipped with the norm

‖v‖1,h :=

(
‖∇hv‖2

Ω +
∑

E∈E
h−1

E ‖
[[
v
]]
‖2

E

)1/2

,

while Qh is simply equipped with the L2(Ω)-norm.
With these notation, we define the bilinear forms ah(., .) and bh(., .) as follows:

ah(u, v) := ν
∑

T∈Th

∫

T

∇u : ∇v −
∑

E∈E

∫

E

(
{{

ν∇hv
}}

:
[[
u
]]

+
{{

ν∇hu
}}

:
[[
v
]]
)

+ νγ
∑

E∈E
h−1

E

∫

E

[[
u
]]

:
[[
v
]]
, ∀u, v ∈ Vh,

bh(u, q) := −
∑

T∈Th

∫

T

q div u +
∑

E∈E

∫

E

{{
q
}}[[

u
]]
, ∀u ∈ Vh, q ∈ Qh,

where the positive parameter γ is chosen large enough to ensure coerciveness of the
bilinear form ah (see Lemma 3.2 below).

The discontinous Galerkin approximation of problem (2.2) reads now: Find uh ∈ Vh,
ph ∈ Qh, such that

ah(uh, vh) + bh(vh, ph) = (f, vh) ∀vh ∈ Vh,

bh(uh, qh) = 0 ∀qh ∈ Qh.

}
(3.1)

For isotropic meshes Th made of rectangles or hexahedra, the mixed problem (3.1) is
well-defined since it satifies a uniform discrete inf-sup condition [34, 14]. We will prove
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in subsection E. the well-posedness of problem (3.1) for all families of meshes considered
here. Note further that the uniform inf-sup condition is not necessary to prove our error
bounds.

C. Anisotropic finite element domains T

In our exposition T can be a triangle or rectangle (2D case), or a tetrahedron, or a
(rectangular) hexahedron (3D case).

Parts of the analysis require reference elements T̂ that can be obtained from the ac-
tual element T via some affine linear transformation. The table below lists the reference
elements for each case. Furthermore for an element T we define 2 or 3 anisotropy vec-
tors pi,T , i = 1 . . . d, that reflect the main anisotropy directions of that element. These
anisotropy vectors are defined and visualized in the table below as well.

Element T Reference element T̂ Anisotropy vectors pi,T

Triangle 0 ≤ x̂, ŷ
x̂ + ŷ ≤ 1

p1,T longest edge
p2,T height vector

Rectangle 0 ≤ x̂, ŷ ≤ 1 p1,T longest edge
p2,T height vector

Tetrahedron 0 ≤ x̂, ŷ, ẑ
x̂ + ŷ + ẑ ≤ 1

p1,T longest edge
p2,T height in largest face

that contains p1,T

p3,T remaining height

Hexahedron 0 ≤ x̂, ŷ, ẑ ≤ 1 p1,T longest edge
p2,T height in largest face

that contains p1,T

p3,T remaining height

The anisotropy vectors pi,T are enumerated such that their lengths are decreasing,
i.e. |p1,T | ≥ |p2,T | ≥ |p3,T | in the 3D case, and analogously in 2D. The anisotropic
lengths of an element T are now defined by

hi,T := |pi,T |

which implies h1,T ≥ h2,T ≥ h3,T in 3D. The smallest of these lengths is particularly
important; thus we introduce

hmin,T := hd,T ≡ min
i=1...d

hi,T .
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Finally the anisotropy vectors pi,T are arranged columnwise to define a matrix

CT := [p1,T , p2,T ] ∈ R
2×2

in 2D

CT := [p1,T , p2,T , p3,T ] ∈ R
3×3

in 3D.

}
(3.2)

Note that CT is orthogonal since the anisotropy vectors pi,T are orthogonal too, and

C⊤
T CT = diag{h2

1,T , . . . , h2
d,T}.

Furthermore introduce the height hE,T over an edge/face E of an element T by

hE,T :=
|T |
|E| ·

{
1 T is rectangle or hexahedron
d T is triangle or tetrahedron.

D. Requirements on the mesh

Let us first introduce the following notation: For an element T , NT is the set of (La-
grange) nodes of P k

T , namely if T̂ is the reference triangle or tetrahedron, denote by

âi, i = 1, · · · , d + 1 its set of vertices and λ̂i, the associated barycentric coordinates, then
take

NT̂ = {x̂ =

d+1∑

j=1

λ̂j âj :

d+1∑

j=1

λ̂j = 1,

λ̂j ∈ {0,
1

k
, · · · , k − 1

k
, 1}, 1 ≤ j ≤ d + 1}.

Similarly if T̂ is the reference square or cube, we set

NT̂ = {x̂ = (
i1
k

, · · · , id
k

)⊤ : ij ∈ {0, 1, · · · , k}, 1 ≤ j ≤ d}.

For an element T , we take

NT = FT (NT̂ ),

where FT is the affine transformation mapping T̂ to T . Recall that the triple (T, P k
T , ΣT )

is a Lagrange finite element with ΣT = {p(n)}n∈NT
[35]. Denote by {λT

x }x∈NT
the

associated basis of P k
T .

Let us finally set N = ∪T∈Th
NT , the set of nodes of the triangulation Th, and N (Ω) =

N ∩ Ω, the set of interior nodes.
If the mesh is nonconforming, we subdivide its elements into levels (compare with

[26]): First we say that a node n ∈ N is a hanging node of the mesh if n ∈ T ∩ T ′ and
if n ∈ NT \ NT ′ . The level zero corresponds to the elements T such that any hanging
node n of the mesh such that n ∈ T belongs to NT . The level one is the level zero of the
triangulation obtained from Th by removing the elements of level zero. The next levels
are defined iteratively.

The mesh has to satisfy some mild assumptions, see [6, 22, 26]

• A vertex of the mesh is contained only in a bounded number of elements.

• The size of neighbouring elements does not change rapidly, i.e.

hi,T1
∼ hi,T2

∀i = 1 . . . d, ∀T1 ∩ T2 6= ∅.
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• Since the mesh may be nonconforming (i.e. hanging nodes may exist), we suppose
that for any neighbouring elements T and T ′ such that T ∩ T ′ is an edge/face E′

of T ′ but not of T , then we assume that the edge/face E of T such that E ′ ⊂ E
satisfies |E| . |E′|.

• If the mesh is nonconforming, the number of levels is supposed to be bounded.

Note that the third assumption is quite realistic, since standard subdivision rules like
regular refinements or edge bisections [36] imply it, while it is satisfied by isotropic meshes
considered in [26, 27] and by nonconforming geometric layer meshes used in [3, 4, 5].

Sometimes it is more convenient to have edge/face related data instead of element
related data. Hence for E ∈ E such that E ⊂ Ω and E ⊂ T1 ∩ T2 we introduce

hmin,E :=
hmin,T1

+ hmin,T2

2
and hE :=

hE,T1
+ hE,T2

2
.

For boundary edges/faces E ⊂ ∂T simply set hmin,E := hmin,T , hE := hE,T . The second
mesh assumption readily implies

hE ∼ hE,T1
∼ hE,T2

and hmin,E ∼ hmin,T1
∼ hmin,T2

.

Note that Lemma 3.1 of [30] shows that

hmin,T . hE,T , (3.3)

and by the above assumptions, we deduce that

hmin,E . hE . (3.4)

E. Existence and uniqueness results

As usual, the mixed problem (3.1) is well-posed if ah is coercive and bh satisfies a (dis-
crete) inf-sup condition. We will now check both properties.

The coercivity of the bilinear form ah is based on the following inverse inequality:

Lemma 3.1. For all T ∈ Th and any edge/face E of T , it holds

hE‖q‖2
E . ‖q‖2

T , ∀q ∈ P k−1
T . (3.5)

Proof. By a scaling argument, we have :

‖q‖E ∼ |E| 12 ‖q̂‖Ê . |E| 12 (‖q̂‖Ê + ‖q̂‖T̂ ).

Since ‖ · ‖Ê + ‖ · ‖T̂ is a norm on P k−1

T̂
, and since all norms are equivalent in a finite-

dimensional space, we have

‖q‖2
E . |E||T |−1‖q‖2

T ,

again by a scaling argument. The conclusion directly follows from this estimate and the
property hE ∼ hE,T ∼ |E||T |−1, which is a consequence of the mesh assumptions.

Lemma 3.2. If γ > 0 is large enough, then the bilinear form ah is coercive on Vh, in
other words,

ah(vh, vh) & ‖vh‖2
1,h, ∀vh ∈ Vh.
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Proof. By the definition of ah, we have

ah(u, u) := ν‖∇hu‖2 + νγ
∑

E∈E
h−1

E ‖
[[
u
]]
‖2

E

− 2
∑

E∈E

∫

E

{{
ν∇hu

}}
:
[[
u
]]
.

Therefore by Cauchy-Scwharz’s inequality and Young’s inequality (2ab ≤ a2

ε + εb2, for
any ε > 0 and any real numbers a, b), we get

ah(u, u) ≥ ν‖∇hu‖2 + ν
∑

E∈E
(γ − ε−1)h−1

E ‖
[[
u
]]
‖2

E

− νε
∑

E∈E
hE‖

{{
∇hu

}}
‖2

E.

By Lemma 3.1 and the mesh assumptions, we arrive at

ah(u, u) ≥ ν‖∇hu‖2(1 − C1ε) + ν
∑

E∈E
(γ − ε−1)h−1

E ‖
[[
u
]]
‖2

E ,

for some positive constant C1 (independent of γ). The conclusion follows by chosing ε
and γ such that 1 − C1ε > 0 and γ − ε−1 > 0.

We now pass to the well-posedness of problem (3.1).

Lemma 3.3. If γ is large enough, problem (3.1) has a unique solution (uh, ph) ∈
Vh × Qh, for all f ∈ L2

0(Ω)d.
Proof. By the finite dimensional character of problem (3.1), it suffices to prove the

uniqueness of a solution in the homogeneous case, i.e., when f = 0. In that case, taking
first vh = uh in the first identity of (3.1) and taking into account the second one, we get

ah(uh, uh) = 0.

By the previous lemma, we deduce that uh = 0. Consequently ph satisfies

bh(vh, ph) = 0, ∀vh ∈ Vh. (3.6)

In a first step, for all T ∈ Th, we consider uT ∈ H1
0 (T )d satisfying

div uT = ph −MT ph on T,

whose existence follows from Corollary I.2.4 of [28]. Define vh on each element T by

vh|T = ΠT uT ,

where ΠT is the Fortin operator associated with the pair (Mk−1(T ), Dk−1(T )), the finite
dimensional spaces Mk(T ) and Dk(T ), where k ∈ N, corresponding to the Raviart-
Thomas elements described in the table below, see section III.3 of [37]:
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Element Mk(T ) Dk(T )

Triangle/Tetra RTk := [P
k
]d + xP̃

k
P

k

Rectangle P
k+1,k × P

k,k+1
Q

k

Hexahedra P
k+1,k,k × P

k,k+1,k × P
k,k,k+1

Q
k

Here P̃
k

means the space of homogeneous polynomials of degree k, P
k+1,k

the space

of polynomials of degree k + 1 in x1 and of degree k in x2 and P
k+1,k,k

the space of
polynomials of degree k + 1 in x1 and of degree k in x2 and x3.

By the properties of this Fortin operator, vh belongs to Vh and satisfies

div vh = ph −MT ph on T, ∀T ∈ Th,

vh|T · nT = 0 on ∂T, ∀T ∈ Th.

Consequently, for this vh we have

bh(vh, ph) = −
∑

T∈Th

∫

T

ph(ph −MT ph) = −
∑

T∈Th

∫

T

(ph −MT ph)2.

By (3.6), we then obtain that

ph = MT ph on T, ∀T ∈ Th,

in other words ph is piecewise constant.
In a second step, we define

Ωh = Ω \ Ehanging,

where Ehanging is the set of hanging edges/faces, namely

Ehanging = {E ∈ E : ∃T1, T2 ∈ Th : E = T1 ∩ T2, E is not an edge/face of T1}.
If Ωh is connected, we consider the unique solution z ∈ H1(Ωh)/R of

{
∆z = ph in Ωh,
∂z
∂n = 0 on ∂Ωh.

By Theorem 23.3 of [38], z belongs to H3/2−ǫ(Ωh), for any ǫ > 0 and consequently
setting v = ∇z, vh = Π0

hv is meaningful, belongs to Vh and satisfies

div vh = ph on T, ∀T ∈ Th,

vh|T · nT = 0 on E ∈ Ehanging, E ⊂ T, ∀T ∈ Th,

vh|T · nT = 0 on E ∈ E ∩ ∂Ω, E ⊂ T, ∀T ∈ Th,
[[
vh

]]
= 0 on E, ∀E ∈ E \ Ehanging .

Here above and below Π0
h means the Fortin operator associated with the pairs (M0(T ), D0(T )).

These properties imply that

bh(vh, ph) = −
∑

T∈Th

∫

T

(ph)2, (3.7)



11

and therefore ph = 0.
If Ωh is not connected, we write

Ωh = ∪I
i=1Ω

i
h,

where each Ωi
h is connected. For each i = 1, · · · , I, let zi ∈ H1(Ωi

h)/R be the unique
solution of

{
∆zi = ph −MΩi

h
ph in Ωi

h,
∂zi

∂n = 0 on ∂Ωi
h.

As before zi belongs to H3/2−ǫ(Ωi
h), for any ǫ > 0, and consequently setting v = ∇zi on

each Ωi
h, we may define vh = Π0

hv, which belongs to Vh and satisfies

bh(vh, ph) = −
I∑

i=1

∫

Ωi
h

(ph −MΩi
h
ph)2.

This yields

ph = MΩi
h
ph in Ωi

h, ∀i = 1, · · · , I,

or equivalently ph is constant on each Ωi
h.

To conclude we need to build another vh in Vh and that satisfies (3.7). For that
purpose, denote by F , the set of the edges/faces E of any T ∈ Th such that E ⊂
∂Ωi

h ∩ ∂Ωj
h, for some i 6= j, E ⊂ Ω and E 6∈ Ehanging. Any E ∈ F is a finite union of

elements from Ehanging, we then fix one FE ∈ Ehanging such that FE ⊂ E. We consider
the domain

Ω̃h = Ωh ∪ {FE : E ∈ F}.
Since

∫
Ω̃h

ph =
∫
Ω

ph = 0 and Ω̃h is connected, we may consider the unique solution

w ∈ H1(Ω̃h)/R of
{

∆w = ph in Ω̃h,
∂w
∂n = 0 on ∂Ω̃h.

As before we take vh = Π0
h(∇w) which belongs to Vh. Let us show that

∑

E∈E

∫

E

{{
ph

}}[[
vh

]]
= 0. (3.8)

Indeed by construction
[[
vh

]]
= 0 on any E ∈ E \ Ehanging; on the other hand, any

F ∈ Ehanging is included into an edge/face E of F , therefore the above sum reduces to

∑

E∈E

∫

E

{{
ph

}}[[
vh

]]
=
∑

E∈F

∑

F∈Ehanging:F⊂E

∫

F

{{
ph

}}[[
vh

]]
.

Now for a fixed E ∈ F , we denote by T the element in Th such that E is an edge/face
of T . Then by the definition of the sets Ωi

h, the element T is included into a unique Ωi
h,

the other elements T ′ such that E ∩ T ′ belongs to Ehanging being included into a set Ωj
h,

with j 6= i. Consequently
{{

ph

}}
= mE ∈ R on the whole E and therefore

∑

E∈E

∫

E

{{
ph

}}[[
vh

]]
=
∑

E∈F
mE

∑

F∈Ehanging :F⊂E

∫

F

[[
vh

]]
.
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This means that (3.8) holds if one can show that

∑

F∈Ehanging :F⊂E

∫

F

[[
vh

]]
= 0,

for all edge/face E ∈ F .
We now fix E ∈ F and use the above notation. The properties of Π0

h and the boundary
condition satisfied by w imply that (recalling that any element of F ∈ Ehanging is a full
edge/face of a unique element from Th, that we write TF )

∫

E

vh|T · nT =

∫

E

(∇w) · nT =

∫

FE

(∇w) · nT ,

∫

F

vh|TF
· nTF

=

∫

F

(∇w) · nTF
= 0, ∀F ∈ Ehanging, F ⊂ E, F 6= FE ,

∫

FE

vh|TFE
· nTFE

=

∫

FE

(∇w) · nTFE
.

These identities yield
∑

F∈Ehanging :F⊂E

∫

F

[[
vh

]]
=

∫

E

vh|T · nT −
∑

F∈Ehanging :F⊂E

∫

F

vh|TF
· nTF

= 0,

and lead to the requested identity.
The identity (3.8) and again the properties of Π0

h allow to conclude that (3.7) holds
for the last element vh.

Note that we have proved the implication:

bh(vh, ph) = 0, ∀vh ∈ Vh ⇒ ph = 0,

which is equivalent to the non uniform inf-sup condition:

sup
vh∈Vh

bh(vh, qh)

‖vh‖1,h
≥ βh‖qh‖,

for some βh > 0.

IV. ANALYTICAL TOOLS

Since we treat anisotropic elements, some analytical tools which are known from the
standard theory have to be reinvestigated. This is mainly due to the fact that the aspect
ratio of the elements is no longer bounded, as it is the case with isotropic elements.

We emphasize on an approximation result, some inverse inequality and to anisotropic
interpolation error estimates. In that last case, the use of anisotropic elements leads
to a so-called alignment measure, cf. below. It is important to notice that this align-
ment measure is not a (theoretical or practical) obstacle to efficient and reliable error
estimation.

A. The perturbed formulation

Following [10, 39, 27], we introduce a non-consistent reformulation of the variational
problem (3.1). For that purpose we define the space

V (h) = H1
0 (Ω)d + Vh,
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equipped with the broken energy norm ‖v‖1,h. Let us further introduce the auxiliary
(matrix-valued) space

Σh = {τ ∈ L2(Ω)d×d : τ|T ∈ (P k
T )d×d, ∀T ∈ Th}.

At this stage we introduce the lifting operators L : V (h) → Σh and M : V (h) → Qh as
follows:

∫

Ω

L(v) : τ dx =
∑

E∈E

∫

E

[[
v
]]

:
{{

τ
}}

, ∀τ ∈ Σh,

∫

Ω

M(v)q dx =
∑

E∈E

∫

E

[[
v
]]{{

q
}}

, ∀q ∈ Qh.

The above lifting operators has the following stability properties (compare with [10,
39, 27]):

Lemma 4.1. For all v ∈ V (h) it holds

‖L(v)‖2 + ‖M(v)‖2 .
∑

E∈E

∫

E

h−1
E |
[[
v
]]
|2.

Proof. For v ∈ Vh, take τ = L(v) ∈ Σh, then by the definition of L(v), we may write

‖L(v)‖2 =

∫

Ω

L(v) : τ dx =
∑

E∈E

∫

E

[[
v
]]

:
{{

τ
}}

.

By Cauchy-Schwarz’s inequality we obtain

‖L(v)‖2 ≤
∑

E∈E
‖
[[
v
]]
‖E‖

{{
τ
}}
‖E.

But a standard scaling argument and the fact that all norms are equivalent in a finite
dimensional space yield

‖
{{

τ
}}
‖E . h

−1/2
E

∑

T⊂ωE

‖τ‖T . (4.1)

Inserting this estimate in the previous one leads to

‖L(v)‖2 .
∑

E∈E
h
−1/2
E ‖

[[
v
]]
‖E

(
∑

T⊂ωE

‖τ‖T

)
.

Using the discrete Cauchy-Schwarz’s inequality we arrive at

‖L(v)‖2 .
∑

E∈E

∫

E

h−1
E |
[[
v
]]
|2.

As similar estimate holds for v ∈ V (h) since for v ∈ H1
0 (Ω),

[[
v
]]

= 0 and then L(v) = 0.

A similar argument is used for the estimation of ‖M(v)‖2.
With these lifting operators, we introduce the perturbed forms

ãh(u, v) := ν

∫

Ω

∇hu : ∇hv − ν

∫

Ω

(L(u) : ∇hv + L(v) : ∇hu)
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+ νγ
∑

E∈E
h−1

E

∫

E

[[
u
]]

:
[[
v
]]
, ∀u, v ∈ V (h),

b̃h(v, q) := −
∑

T∈Th

∫

T

q div v +
∑

E∈E

∫

Ω

M(v)q, ∀v ∈ V (h), q ∈ L2(Ω).

As ãh (resp. b̃h) coincides with ah (resp. bh) on Vh × Vh (resp. Vh ×Qh), the discrete
mixed problem (3.1) is equivalent to

ãh(uh, vh) + b̃h(vh, ph) = (f, vh) ∀vh ∈ Vh,

b̃h(uh, qh) = 0 ∀qh ∈ Qh.

}

Introducing the bilinear form

Ah((u, p); (v, q)) := ãh(u, v) + b̃h(v, p) − b̃h(u, q), ∀(u, p), (v, q) ∈ V (h) × L2(Ω),

problem (3.1) is also equivalent to

Ah((uh, ph); (vh, qh)) = (f, vh), ∀(vh, qh) ∈ Vh × Qh.

Now on V (h) × L2(Ω), we introduce the (natural) discontinuous Galerkin norm

‖(v, q)‖2
DG := ν‖v‖2

1,h + ν−1‖q‖2, ∀(v, q) ∈ V (h) × L2(Ω).

Lemma 4.1 and Cauchy-Schwarz’s inequality directly lead to the continuity of Ah on
V (h) × L2(Ω):

Lemma 4.2. For all (u, p), (v, q) ∈ V (h) × L2(Ω), one has

|Ah((u, p); (v, q))| . ‖(u, p)‖DG‖(v, q)‖DG.

Finally we need the following stability of Ah on H1
0 (Ω)d × L2

0(Ω):

Lemma 4.3. For any (u, p) ∈ H1
0 (Ω)d × L2

0(Ω), there exists (v, q) ∈ H1
0 (Ω)d × L2

0(Ω)
such that

Ah((u, p); (v, q)) ≥ ‖(u, p)‖2
DG and ‖(v, q)‖DG . ‖(u, p)‖DG.

Proof. The proof is exactly the one given in Lemma 4.3 of [40] since for (u, p), (v, q) ∈
H1

0 (Ω)d × L2
0(Ω), the bilinear form Ah reduces to the continuous one

Ah((u, p); (v, q)) := ν

∫

Ω

∇u : ∇v −
∫

Ω

pdiv v +

∫

Ω

qdiv u,

and is then independent of the mesh.

B. An approximation result

On Vh we introduce the other norm

|||v|||21,h := ‖∇hv‖2 + |v|21,h,
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where the semi-norm | · |1,h is defined by

|v|1,h :=

(
∑

E∈E

∫

E

hEh−2
min,E |

[[
v
]]
|2 ds

)1/2

.

Note that the property (3.4) directly implies that

‖v‖1,h . |||v|||1,h, ∀v ∈ Vh. (4.2)

Consequently the norm ||| · |||1,h is stronger than the norm ‖ · ‖1,h. For a isotropic mesh,
the converse inequality holds with a constant independent of the mesh size, while it is
not the case for anisotropic meshes.

Now we denote by V c
h = Vh∩H1

0 (Ω)d, the space of continuous element of Vh and set V ⊥
h

the orthogonal complement of V c
h in Vh with respect to the inner product corresponding

to the norm ||| · |||1,h. The reason of this choice will be justified at the end of the section.

Theorem 4.4. For all vh ∈ V ⊥
h , one has

|||vh|||1,h . |vh|1,h ≤ |||vh|||1,h.

In other words the semi-norm | · |1,h is a norm on V ⊥
h equivalent to the new norm ||| · |||1,h

(with constant of equivalence independent of the mesh size).
To prove the above equivalence, we follow the line of section 2.1 of [26] (see also

Appendix A of [40]).

Lemma 4.5. For all vh ∈ Vh and any T ∈ Th, it holds

‖∇vh‖T . |T |1/2h−1
min,T

(
∑

x∈NT

|vh|T (x)|2
)1/2

. (4.3)

Proof. By a scaling argument we may write

‖∇vh‖T = |T |1/2‖B−⊤
T ∇̂v̂h‖T̂ ,

where BT is the matrix of the affine transformation FT that maps T̂ to T . Since ‖B−⊤
T ‖ .

h−1
min,T (see [6]), we may write

‖∇vh‖T . |T |1/2h−1
min,T ‖∇̂v̂h‖T̂ .

As all norms are equivalent on any finite-dimensional space, we conclude that

‖∇vh‖T . |T |1/2h−1
min,T




∑

x̂∈N
T̂

|v̂h(x̂)|2



1/2

.

The conclusion directly follows.

Lemma 4.6. Let vh ∈ Vh and E ∈ E. Then we have

‖
[[
vh

]]
‖E ∼ |E|1/2

(
∑

x∈N∩E

|
[[
vh

]]
(x)|2

)1/2

(4.4)
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Proof. Set w :=
[[
vh

]]
(which belongs to the finite-dimensional space (P

k
(E))d or

(Q
k
(E))d according to the context), by a scaling argument we have

‖
[[
vh

]]
‖E ∼ |E|1/2‖ŵ‖Ê.

Since ŵ belongs to a finite-dimensional space and is uniquely determined by the nodal
values at N̂T ∩ Ê, we conclude as before by finite dimensionality.

Lemma 4.7. For all vh ∈ Vh we have

inf
wh∈V c

h

‖∇h(vh − wh)‖ . |vh|1,h. (4.5)

Proof. Assume first that the mesh is conforming. Following Theorem 2.2 of [26]
(see also Lemma A.3 of [40]) we take

wh =
∑

x∈N (Ω)

v̄xλx,

where the nodal values of wh are given by

v̄x =
1

Nx

∑

T∈Th:x∈T

vh|T (x),

where Nx =
∑

T∈Th:x∈T 1 is the number of elements of Th having x has node. By Lemma
4.5 for any T ∈ Th we have

‖∇(vh − wh)‖2
T . |T |h−2

min,T

∑

x∈NT

|vh|T (x) − v̄x|2.

Now for an internal node x by the definition of v̄x and the use of discrete-Cauchy-
Schwarz’s inequality we get

|vh|T (x) − v̄x|2 ≤ 1

Nx

∑

T ′∈Th:x∈T ′

|vh|T (x) − vh|T ′(x)|2

≤
∑

T ′∈Th:x∈T ′

|vh|T (x) − vh|T ′(x)|2.

This estimate in the above one yields

‖∇h(vh − wh)‖2 .
∑

T∈Th

|T |h−2
min,T{

∑

x∈NT

∑

T ′∈Th:x∈T ′

|vh|T (x) − vh|T ′(x)|2

+
∑

x∈NT ∩∂Ω

|vh|T (x)|2}.

Using the mesh assumptions, we get

‖∇h(vh − wh)‖2 .
∑

E∈E
hE |E|h−2

min,E{
∑

T,T ′∈Th:E=T∩T ′

∑

x∈N (Ω)∩E

|vh|T (x) − vh|T ′(x)|2

+
∑

T∈Th:E⊂T

∑

x∈N∩E∩∂Ω

|vh|T (x)|2}

=
∑

E∈E
hE |E|h−2

min,E

∑

x∈N∩E

|
[[
vh

]]
(x)|2.
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The conclusion follows by Lemma 4.6.
If Th is nonconforming, we simply follow the proof of Theorem 2.3 of [26], taking into

account the mesh assumptions and using the two above Lemmas.
Theorem 4.4 directly follows from this Lemma, since the estimate (4.5) directly implies

that

inf
wh∈V c

h

|||vh − wh|||1,h . |vh|1,h, ∀vh ∈ Vh.

In particular for vh ∈ V ⊥
h , this estimate reduces to

|||vh|||1,h = inf
wh∈V c

h

|||vh − wh|||1,h . |vh|1,h.

Let us show that this estimate (4.5) is optimal in the sense that the inverse estimate
holds in some particular cases and therefore the factor hEh−2

min,E in |vh|1,h cannot be

chosen smaller (for instance the factor h−1
E is not convenient, see below). For that purpose

take the unit square Ω = (−1, 1)2 subdivided by the anisotropic mesh Th described in
Figure 1 obtained in the following way: subdivide the x1 interval into 2 intervals [−1, 0]
and [0, 1] and the x2 interval into 2n uniform intervals [yi, yi+1], i = −n, · · · , n − 1 with
yi = ih, h = 1

n .

−1 1

−1

1

h

ωx

�����������������������������������������������������
�����������������������������������������������������
�����������������������������������������������������
�����������������������������������������������������
�����������������������������������������������������
�����������������������������������������������������

���������������������������������������������������
���������������������������������������������������
���������������������������������������������������
���������������������������������������������������
���������������������������������������������������
���������������������������������������������������

FIG. 1. The anisotropic mesh on the unit square for n = 5.

This yields a rectangular subdivision of Ω made of anisotropic rectangles. Subdividing
each rectangle into two triangles, we get the desired anisotropic triangulation, which is
conforming and satisfies our mesh assumptions. Consider the space Vh based on the
triangulation Th in the case k = 1. Denote by x the node of the triangulation situated
at the origin. Now we fix vh in Vh with a support on the patch ωx, in the form

vh|T = (vT , 0)⊤λx, ∀T ⊂ ωx,

with some constants vT , where λx is the standard hat function associated with x. Since
the first component vh1 of vh is zero outside ωx and is continuous in Ω \ ωx, we clearly
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have

inf
wh∈V c

h

‖∇h(vh − wh)‖ = inf
α∈R

‖∇h(vh1 − αλx)‖.

Now in view of the form of vh1 we may write

inf
α∈R

‖∇h(vh − αλx)‖2 = inf
α∈R

∑

T⊂ωx

(vT − α)2‖∇λx‖2
T ,

and a direct calculation gives

α =

∑
T⊂ωx

vT ‖∇λx‖2
T∑

T⊂ωx
‖∇λx‖2

T

.

We further readily check that

‖∇λx‖2
T = h(1 + h−2), ∀T ⊂ ωx,

and therefore

α =
1

4

∑

T⊂ωx

vT .

At this stage we take vT = v if T is included in the half-plane x1 ≥ 0 and vT = v′ if
T is included in the half-plane x1 ≤ 0. With this choice, we have

α =
v + v′

2
,

and consequently

inf
α∈R

‖∇h(vh − αλx)‖2 = (v − v′)2h(1 + h−2). (4.6)

On the other hand for the above choice we have

|vh|21,h =
∑

i=1,2

hEi
h−2

min,Ei
(v − v′)2

∫

Ei

λ2
x,

where E1 and E2 are the two edges of E having x as node and included in the x2-axis
(see Figure 1). As hEi

= 1 and hmin,Ei
= h, we get

|vh|21,h =
2

3
h−1(v − v′)2.

This identity and (4.6) show that in that case we have

inf
wh∈V c

h

‖∇h(vh − wh)‖ ∼ |vh|1,h,

and therefore the estimate (4.5) is optimal.
Remark that for the above choice we have

∑

E∈E

∫

E

h−1
E |
[[
vh

]]
|2 =

2

3
(v − v′)2h,

and therefore the estimate

inf
wh∈V c

h

‖∇h(vh − wh)‖2 .
∑

E∈E

∫

E

h−1
E |
[[
vh

]]
|2

is not true.
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C. Bubble functions, extension operator, and inverse inequalities

The proof of our lower bound requires the use of some bubble functions and extension
operators that satisfy certain properties.

We start with the standard case of a conforming mesh. We need two types of bubble
functions, namely bT and bE associated with an element T and an edge/face E, respec-
tively. For a triangle or a tetrahedron T , denoting by λaT

i
, i = 1, · · · , d+1, the barycentric

coordinates of T and by aE,T
i , i = 1, · · · , d the vertices of the edge/face E ⊂ ∂T we recall

that

bT = (d + 1)d+1
d+1∏

i=1

λaT
i

and bE,T = dd
d∏

i=1

λaE,T

i

.

Similarly for a rectangle/hexahedron T and an edge/face E of T , bT is the unique

element in Q
2
(T ) such that

bT = 0 on ∂T,

and equal to 1 at the center of gravity of T ; while the function bE,T is the unique element

in Q
2
(T ) such that

bE,T = 0 on ∂T \ E,

and is equal to 1 at the center of gravity of E.
The edge/face bubble function bE is defined on ωE by

bE|T = bE,T on T ⊂ ωE .

One recalls that

bT = 0 on ∂T, bE = 0 on ∂ωE, ‖bT ‖∞,T = ‖bE‖∞,ωE
= 1.

In 2D for the edge Ê ⊂ ∂T̂ included into the x̂-axis, then the extension Fext(v̂Ê) of

v̂Ê ∈ C(Ê) to T̂ is defined by Fext(v̂Ê)(x̂, ŷ) = v̂Ê(x̂). For an edge E ⊂ ∂T , using the

affine transformation FT mapping T̂ to T and Ê to E, Fext(vE)(x, y) = Fext(v̂Ê)(x̂, ŷ).
We proceed similarly in 3D.

Now we may recall the so-called inverse inequalities that are proved using classical
scaling techniques (cf. [36] for the isotropic case and [6] for the anisotropic case).

Lemma 4.8 Inverse inequalities. Assume that Th is conforming. Let T ∈ Th and

E an edge/face of T . Let vT ∈ P
k0(T ) and vE ∈ P

k1(E), for some nonnegative integers
k0 and k1. Then the following inequalities hold, the inequality constants depending on
the polynomial degree k0 or k1 but not on T , E or vT , vE.

‖vT b
1/2
T ‖T ∼ ‖vT ‖T , (4.7)

‖∇(vT bT )‖T . h−1
min,T ‖vT ‖T , (4.8)

‖vEb
1/2
E ‖E ∼ ‖vE‖E , (4.9)

‖Fext(vE)bE‖T . h
1/2
E,T‖vE‖E , (4.10)

‖∇(Fext(vE)bE)‖T . h
1/2
E,T h−1

min,T ‖vE‖E . (4.11)

In the nonconforming case, the element bubble functions are defined in the same
manner. On the contrary, edge/face bubble functions have to be modified for the hanging
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edges/faces. More precisely, assume that E ′ ∈ Ehanging is such that E′ ⊂ T ∈ Th but is
not a full edge/face of T . Then we introduce an artificial element T ′ such that T ′ ⊂ T ,
E′ is a full edge/face of T ′ and that satisfies

|T ′| ∼ |T |, (4.12)

hmin,T . hmin,T ′ . (4.13)

Indeed if T is a triangle/tetrahedron, then T ′ is the triangle/tetrahedron obtained
by joining E′ to the vertex of T opposite to the edge/face E of T containing E ′ (see
Figure 2). If T is a rectangle/hexahedron, then T ′ is the rectangle/hexahedron defined
by T ′ = E′× I, when T = E× I, E being the edge/face E of T containing E ′ (see Figure
3).

E′

T ′
T ′

E′

FIG. 2. Definition of T ′ for a triangle T (left) and a tetrahedron T (right).

E′T ′

T ′

E′

FIG. 3. Definition of T ′ for a rectangle T (left) and a hexahedron T (right).

Recalling that the third mesh assumption means that |E ′| ∼ |E|, we directly get the
property (4.12) since

|T ′| = |E′|hE′,T ′ = |E′|hE,T ∼ |E|hE,T = |T |.
On one hand, Lemma 3.1 of [30] shows that

hmin,T ∼ ρ(T ),

where we recall that ρ(T ) is the diameter of the largest inscribed sphere of T . On the
other hand, it is well known that

ρ(T ) ∼ |T |
|∂T | .

Consequently the second property (4.13) holds if one can show that

|∂T ′| . |∂T |.
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If T is a rectangle or a hexahedron, this estimate is direct since |E ′| ≤ |E| (with the
above notation). For a triangle or a tetrahedron, this estimate follows from the triangular
inequality.

With the help of this artificial element, we define bE′,T as follows:

bE′,T =

{
bE′,T ′ on T ′,
0 on T \ T ′.

We finally define bE on ωE as before. Remark that the builded function bE belongs to
H1

0 (ωE). Moreover the next inverse inequalities hold.

Lemma 4.9 Inverse inequalities. If Th is nonconforming, then the assertions of
Lemma 4.8 are valid for any element T ∈ Th and E ∈ E ∩ T .

Proof. We only need to reconsider the estimates (4.10) and (4.11) in the case when
E′ ∈ E is such that E′ ⊂ T ∈ Th but is not a full edge/face of T . In that case, using the
above notation, we first apply the inverse inequalities (4.10) and (4.11) in T ′, which can
be written

‖Fext(vE′)bE′‖T ′ . h
1/2
E′,T ′‖vE′‖E′ ,

‖∇(Fext(vE′)bE′)‖T ′ . h
1/2
E′,T ′h

−1
min,T ′‖vE′‖E′ .

The requested estimates directly follow by using the properties hE′,T ′ = hE′,T , (4.13)
and the fact that bE′ = 0 on T \ T ′.

D. Anisotropic interpolation error estimates

In order to obtain an accurate discrete solution uh, it is obvious to align the elements
of the mesh according to the anisotropy of the solution. It turns out that this intuitive
alignment is also necessary to prove sharp upper error bounds. In particular the proof
employs specific interpolation error estimates. However, these interpolation estimates do
not hold for general meshes; instead the mesh has to have the aforementioned anisotropic
alignment with the function to be interpolated.

In order to quantify this alignment, we introduce a so-called alignment measure
m1(v, Th) which was originaly introduced in [29].

Definition. [Alignment measure] Let v ∈ H1(Ω)d be a vector valued function, and Th

be a triangulation. The alignment measure m1( · , · ) is then defined by

m1(v, Th) :=

( ∑
T∈Th

h−2
min,T ‖∇v · CT ‖2

T

)1/2

‖∇v‖ . (4.14)

By definition one has m1(v, Th) ≥ 1. For arbitrary isotropic meshes one obtains that
m1(v, Th) ∼ 1. The same is achieved for anisotropic meshes Th that are aligned with the
anisotropic function v. Therefore the alignment measure is not an obstacle for reliable
error estimation.

Since the focus of our work is on a posteriori error estimation, we refer to [41, 29] for
some discussions on this alignment measure.

Contrary to the (standard) Galerkin method where the interpolant has to be continu-
ous, here we do not need its continuity since our interpolant only needs to belong to Vh.
Therefore the projection on piecewise constant function is sufficient. For v ∈ L2(Ω), we
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recall that this projection Mhv is given by

(Mhv)|T = MT v, ∀T ∈ Th.

For a vector-valued function v, we define its projection Mhv componentwise.

Lemma 4.10 Local interpolation error bounds. Let v ∈ H1
0 (Ω). Then

‖v −MT v‖T . ‖C⊤
T ∇v‖T , ∀T ∈ Th, (4.15)

hE‖v −MT v‖2
E . ‖C⊤

T ∇v‖2
T , ∀T ∈ Th, E ∈ E ∩ T. (4.16)

Proof. The first inequality (4.15) has been proven in [29, Lemma 4]. The same
scaling argument and the compact embedding of H1(T̂ ) into L2(Ê) yield the second
estimate.

Lemma 4.11 Global interpolation error bounds. Let v ∈ H1
0 (Ω)d. Then

∑

T∈Th

h−2
min,T ‖v −MT v‖2

T . m1(v, Th)2‖∇v‖2, (4.17)

∑

E∈E
hEh−2

min,E‖
{{

v −Mhv
}}
‖2

E . m1(v, Th)2‖∇v‖2. (4.18)

Proof. Direct consequence of the previous lemma and the definition of the alignment
measure.

V. ERROR ESTIMATES

Here we present our main results, namely reliable and efficient error estimation on
anisotropic meshes. Our main contributions are the anisotropic character of the er-
ror estimates, the proof of the upper error bound with our mesh assumptions and the
proof of the lower bound.

A. Residual error estimators

The exact residuals are defined by

RT := f − (−ν∆uh + ∇ph) on T.

Define the gradient jump in normal direction by

JE,n :=

{ [[
ν∇huh − phI

]]
for E ∈ E such that E ⊂ Ω,

0 for boundary edges/faces E.

Definition. [Residual error estimator] The local and global residual error estimators
are defined by

η2
T := h2

min,T ν−1‖RT ‖2
T + ν‖div uh‖2

T

+
∑

E∈E:E⊂∂T

(
h2

min,T h−1
E ν−1‖JE,n‖2

E + νhEh−2
min,E‖

[[
uh

]]
‖2

E

)
,

η2 :=
∑

T∈Th

η2
T .
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B. Proof of the upper error bound

We proceed as [27] with the necessary adaptations due to the anisotropy of the mesh.
According to the results from the previous section, we define the following modified

discontinuous Galerkin norm on V (h) × L2(Ω)

‖(v, q)‖2
DGM := ν|||v|||21,h + ν−1‖q‖2 = ν‖∇hv‖2 + ν|v|21,h + ν−1‖q‖2.

Note that

‖(v, q)‖DG . ‖(v, q)‖DGM , ∀(v, q) ∈ V (h) × L2(Ω),

and that

‖(v, q)‖DG = ‖(v, q)‖DGM , ∀(v, q) ∈ H1
0 (Ω) × L2(Ω).

We start with the following estimate:

Lemma 5.1. Let (v, q) ∈ H1
0 (Ω)d × L2

0(Ω), then we have

|(f, v −Mhv) −Ah((uh, ph); (v −Mhv, q))| . m1(v, Th)η‖(v, q)‖DG.

Proof. Elementwise integrations by parts lead to

(f, v −Mhv) −Ah((uh, ph); (v −Mhv, q))

=
∑

T∈Th

(

∫

T

RT · (v −Mhv) −
∫

T

qdiv uh)

+
∑

E∈E

∫

E

JE,n ·
{{

v −Mhv
}}

− νγ
∑

E∈E
h−1

E

∫

E

[[
uh

]]
:
[[
v −Mhv

]]

+ν

∫

Ω

L(uh) : ∇h(v −Mhv) +

∫

Ω

M(uh)q.

Applying Cauchy-Schwarz’s inequality we obtain

|(f, v −Mhv) −Ah((uh, ph); (v −Mhv, q)| ≤
(
∑

T∈Th

‖div uh‖2
T

)1/2

‖q‖

+

(
∑

T∈Th

h2
min,T ‖RT‖2

T

)1/2(∑

T∈Th

h−2
min,T ‖v −Mhv‖2

T

)1/2

+

(
∑

E∈E
h2

min,Eh−1
E ‖JE,n‖2

E

)1/2(∑

E∈E
h−2

min,EhE‖
{{

v −Mhv
}}
‖2

E

)1/2

+ν

(
∑

E∈E
h−3

E h2
min,E‖

[[
uh

]]
‖2

E

)1/2(∑

E∈E
hEh−2

min,E‖
[[
v −Mhv

]]
‖2

E

)1/2

+ν

(
∑

T∈Th

h2
min,T ‖L(uh)C−T

T ‖2
T

)1/2(∑

T∈Th

h−2
min,T ‖∇h(v −Mhv)CT ‖2

T

)1/2

+‖M(uh)‖‖q‖.
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We conclude by the estimate (3.4) and Lemmas 4.1 and 4.11 since ‖C−T
T ‖2 = h−1

min,T

[6].
With the help of this Lemma we can obtain the requested upper error bound for our

anisotropic DG discretization.

Theorem 5.2. Let (u, p) ∈ H1
0 (Ω)d × L2

0(Ω) be the unique solution of (2.2) and
(uh, ph) ∈ Vh × Qh be the unique solution of (3.1). Denote by uc

h ∈ V c
h the orthogonal

projection of uh on V c
h corresponding to the orthogonal decomposition of Vh introduced in

section B.. Let (v, q) ∈ H1
0 (Ω)d×L2

0(Ω) be the pair obtained in Lemma 4.3 corresponding
to (u − uc

h, p − ph). Then the error is bounded globally from above by

‖(u − uh, p − ph)‖DG . ‖(u − uh, p − ph)‖DGM . m1(v, Th)η. (5.1)

Proof. Following subsection 4.4 of [27], we first write uh = uc
h + u⊥

h , with uc
h ∈ V c

h

and u⊥
h ∈ V ⊥

h , corresponding to the orthogonal decomposition of Vh introduced in section
B.. Consequently we may write

‖(u − uh, p − ph)‖2
DGM ≤ 2‖(u − uc

h, p − ph)‖2
DGM + 2ν|||u⊥

h |||21,h,

and by Theorem 4.4, we deduce that

‖(u − uh, p − ph)‖2
DGM . ‖(u − uc

h, p − ph)‖2
DGM + ν|u⊥

h |21,h.

As
[[
u⊥

h

]]
=
[[
uh

]]
, in view of the definition of η, we arrive at

‖(u − uh, p − ph)‖2
DGM . ‖(u − uc

h, p − ph)‖2
DGM + η2. (5.2)

So it remains to estimate ‖(u − uc
h, p − ph)‖2

DGM , which reduces to

‖(u − uc
h, p − ph)‖2

DGM = ν‖∇h(u − uc
h)‖2 + ν−1‖p − ph‖2 = ‖(u − uc

h, p − ph)‖2
DG.

Using Lemma 4.3 we then may write

‖(u − uc
h, p − ph)‖2

DG ≤ Ah((u − uc
h, p − ph); (v, q))

= Ah((u − uh, p − ph); (v, q)) + Ah((u⊥
h , 0); (v, q)).

Using (2.2) and (3.1), we arrive at

‖(u − uc
h, p − ph)‖2

DG ≤ (f, v −Mhv) −Ah((uh, ph); (v −Mhv, q))

+ Ah((u⊥
h , 0); (v, q)).

Lemmas 4.2 and 5.1 lead to

‖(u − uc
h, p − ph)‖2

DG . (m1(v, Th)η + ‖u⊥
h ‖1,h)‖(v, q)‖DG.

By the estimate (4.2), and arguments already used above, we have

‖u⊥
h ‖1,h . η.

These two estimates and the bound ‖(v, q)‖DG . ‖(u− uc
h, p− ph)‖DG from Lemma 4.3

lead to

‖(u − uc
h, p − ph)‖DGM = ‖(u − uc

h, p − ph)‖DG . m1(v, Th)η. (5.3)

The conclusion follows from the two estimates (5.2) and (5.3).
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C. Proof of the lower error bound

Theorem 5.3 Lower error bound. For all elements T , the following local lower
error bound holds:

η2
T . ν‖∇h(u − uh)‖2

ωT
+ ν−1‖p − ph‖2

ωT
+ ν

∑

E∈E:E⊂T

hEh−2
min,E‖

[[
u − uh

]]
‖2

E . (5.4)

Proof. The estimate

h2
min,T ν−1‖RT ‖2

T + ν‖div uh‖2
T + ν−1

∑

E∈E:E⊂T

h2
min,T

hE
‖JE,n‖2

E (5.5)

. ν‖∇h(u − uh)‖2
ωT

+ ν−1‖p − ph‖2
ωT

was proved in Theorem 6.2 of [22] for ν = 1 and a conforming mesh using bubble
functions, integration by parts and the inverse inequalities from Lemma 4.8. The proof
is similar when ν 6= 1 and in the nonconforming case using the new edge/face bubble
functions introduced in section C. and the inverse inequalities from Lemma 4.9. We give
it for the sake of completeness.

We bound each of the residuals separately.

Element residual: Set wT := RT bT ∈ H1
0 (T )d and integrate by parts to obtain

∫

T

RT · wT =

∫

T

(−ν∆(u − uh) + ∇(p − ph)) · wT

= ν

∫

T

(∇(u − uh) − (p − ph)I) : ∇wT

≤ (ν‖∇(u − uh)‖T + ‖p− ph‖T ) ‖∇wT ‖T .

The inverse inequalities (4.7) and (4.8) imply

‖RT ‖T . h−1
min,T (ν‖∇(u − uh)‖T + ‖p− ph‖T ). (5.6)

Divergence: Since u is divergence free, one directly concludes

‖div uh‖T = ‖div (u − uh)‖T ≤
√

d ‖∇(u − uh)‖T . (5.7)

Normal jump: For E ∈ E such that E ⊂ Ω, we may write ωE = T1 ∪ T2 and assume

that T ≡ T1. Recall that JE,n ∈ P
l
(E)d for some l ∈ N depending on the chosen finite

element space. Set

wE := Fext(JE,n)bE ∈ H1
0 (ωE)d.

Partial integration on ωE yields
∫

ωE

f · wE =

∫

ωE

(−ν∆u + ∇p) · wE =

∫

ωE

(ν∇u − pI) : ∇wE .

By elementwise partial integration we further conclude (recalling that if E is not equal
to T1 ∩ T2, then bE|T1∩T2

is equal to zero outside E)

−
∫

E

JE,n · wE =

2∑

i=1

∫

∂Ti

(ν∇uh − phI)n · wE
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=

∫

ωE

(ν∇uh − phI) : ∇wE −
2∑

i=1

∫

Ti

(−ν∆uh + ∇ph) · wE .

The above identity and Cauchy-Schwarz’s inequality then imply
∫

E

JE,n · wE =

∫

ωE

(ν∇(u − uh) − (p − ph)I) : ∇wE

−
2∑

i=1

∫

Ti

(f − (−ν∆uh + ∇ph)) · wE

≤ (ν‖∇h(u − uh)‖ωE
+ ‖p− ph‖ωE

) ‖∇wE‖ωE

+

2∑

i=1

‖RTi
‖Ti

‖wE‖Ti
.

The inverse inequalities (4.9)–(4.11) from Lemma 4.8 or 4.9 and the previous bound
(5.6) of ‖RTi

‖Ti
imply

h2
min,T

hE
‖JE,n‖2

E . ν2‖∇h(u − uh)‖2
ωE

+ ‖p − ph‖2
ωE

. (5.8)

For a boundary edge/face nothing needs to be done since JE,n ≡ 0 there.
The estimate (5.5) directly follows from (5.6) to (5.8). The conclusion readily follows

from this estimate (5.5) since
[[
u − uh

]]
= −

[[
uh

]]
.

Corollary. [Global lower error bound] The following global lower error bound holds:

η . ‖(u − uh, p − ph)‖DGM . (5.9)

Consequently if m1(v, Th) ∼ 1, we have the next equivalence

η ∼ ‖(u − uh, p − ph)‖DGM .

Remark. [Alignment measure] The upper error bound (5.1) contains the alignement
measure m1(v, Th) that cannot be evaluated explicitly. This is in contrast to estimators
for isotropic meshes: For anisotropic discretizations, all known estimators assume ex-
plicitly or implicitly that the meshes are suitably aligned with the solution. However,
this should not be considered too much as a disadvantage. Indeed, the alignment mea-
sure m1(u − uh, Th) for the velocity error is of size O(1) for sufficiently good meshes
[29, 30, 42] and therefore we may expect a similar behaviour for m1(v, Th). This confi-
dence is strengthened by the numerical experiments below.

In practical computations one may simply use the error estimator without considering
the alignment measure. For adaptive algorithms this is well justified since the lower error
bound holds unconditionally, i.e. the estimator is efficient.

D. Application to isotropic discretizations

Since our analysis gives new results for isotropic meshes, we here summarize them. In
that case our conclusions hold with hmin,T ∼ hE ∼ hT for E ⊂ ∂T (recalling that hT is
the diameter of T ) and the alignment measure m1(v, Th) ∼ 1. In other words, the above
results may be rephrased as follows: the residual error estimator is here given by

η2
T := h2

T ν−1‖RT ‖2
T + ν‖div uh‖2

T +
∑

E⊂∂T

(
hT ν−1‖JE,n‖2

E + νh−1
T ‖
[[
uh

]]
‖2

E

)
.
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With this definition, the local lower error bound (5.4) of Theorem 5.3 holds for any
isotropic elements T , while the upper bound (5.1) reduces to

‖(u − uh, p − ph)‖DG . η.

In particular we have the equivalence

‖(u − uh, p − ph)‖DG ∼ η,

which mean that the estimator is efficient and reliable.

VI. NUMERICAL EXPERIMENTS

The following experiments will underline and confirm our theoretical predictions. These
comparatively simple 2D problems also serve as first tests to justify the more elaborate
and voluminous 3D tests. With the limitations of the experiments in mind, we can nev-
ertheless draw valuable conclusions.

The present numerical tests consist in solving the two dimensional Stokes problem
(2.1) given in its mixed formulation (2.2) on the unit square Ω = (0, 1)2 with ν = 1.
The approximation of the problem is ensured by a discontinuous Galerkin discretization.
Each mesh is an anisotropic Shishkin type one composed of triangles, defined as the
tensor product of a 1D Shishkin type mesh and a uniform mesh both with n subintervals
(see Figure 4). The parameter τ ∈ (0, 1) is a transition point parameter, defining the
coordinates (xi, yj) of the nodes of the triangles by :

dx1 := 2τ/n, dx2 := 2(1 − τ)/n, dy = 1/n,





xi := i dx1 (0 ≤ i ≤ n/2),
xi := τ + (i − n/2) dx2 (n/2 + 1 ≤ i ≤ n),
yj := j dy (0 ≤ j ≤ n).

τ

FIG. 4. Shishkin type mesh on the unit square with n = 8 and τ = 0.25.

Defining the approximation spaces Vh and Qh as in subsection B. with d = 2 and
k = 1, we are looking for uh ∈ Vh and ph ∈ Qh satisfying the variationnal formulation
(3.1). The discrete problem (3.1) is solved with the classical Uzawa algorithm, with the
parameter γ equal to 100. The number of degrees of freedom is equal to 6n2 for each
component of the velocity, and to 2n2 for the pressure. The total number of degrees of
freedom (DoF ) is then equal to 14n2.
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A. Isotropic solution

This first test is performed with the following prescribed exact solution (u, p) :




Φ = x2(1 − x)2y2(1 − y)2,
u = curl Φ,
p = x − 1

2 .

This allows to have in particular div u = 0, u|Γ = 0, and the mean value of p on the
domain equal to zero. Note that for this test, the parameter τ is taken equal to 0.5,
making the mesh isotropic.

To begin with, let us check that the numerical solution (uh, ph) converges towards the
exact one. To this end we plot the curve ||u − uh, p − ph||DG as a function of DoF (see
Figure 5).
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FIG. 5. ||(u − uh, p − ph)||DG in dependence of DoF .

As we can see, the convergence rates is of order 0.5 in DoF , as theoretically expected.
This shows the good convergence of (uh, ph) towards (u, p).

Now we investigate the main theoretical results which are the upper and the lower
error bounds. In order to present the underlying inequalities in Theorems 5.2 and 5.3
appropriately, we reformulate them by defining the ratios of left-hand side and right-hand
side, respectively:

qup =
||(u − uh, p − ph)||DG

η
,

qlow = max
T∈Th

ηT√
ν||∇h(u − uh)||2ωT

+ ν−1||p − ph||2ωT
+ ν

∑
E⊂T hEh−2

min,E ||
[[
u − uh

]]
||2E

.

The first ratio qup is frequently referred to as effectivity index. It measures the reliabil-
ity of the estimator and is related to the global upper error bound. As isotropic meshes
are used here, the alignment measures m1(v, Th) from Theorem 5.2 is of size 1. There-
fore, according to Theorem 5.2, the corresponding ratio qup should be bounded from
above. This is confirmed by the experiment (left part of Figure 6). Thus the estimator
is reliable.
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The second ratio is related to the local lower error bound and measures the efficiency
of the estimator. According to Theorem 5.3, qlow has to be bounded from above. This
can be observed indeed in the right part of figure 6. Hence the estimator is efficient.
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FIG. 6. qup (left) and qlow (right) in dependence of DoF , isotropic solution.

B. Anisotropic solution

This second test is performed with the following prescribed exact solution (u, p) :





Φ = x2(1 − x)2y2(1 − y)2e−x/
√

ε,
u = curl Φ,

p = e−x/
√

ε −√
ε(1 − e

− 1√
ε ).

As previously, we have in particular div u = 0, u|Γ = 0, and the mean value of p on the
domain equal to zero. Note that u and p present an exponential boundary layer of width
O(

√
ǫ) along the line x = 0. The transition parameter τ involved in the construction of

the Shishkin-type mesh is defined by τ := min{1/2, 2
√

ǫ| ln√
ǫ|}, i.e. it is roughly twice

the boundary layer width.

As before, we first check the convergence of the numerical solution (uh, ph) towards
the exact one, by plotting the curve ||(u − uh, p − ph)||DG as a function of DoF (see
Figure 7).

As we can see, for each value of ε, the convergence rate is of order 0.5 in DoF ,
as theoretically expected. This shows the good convergence of (uh, ph) towards (u, p),
independently of the value of ε.

Now let us investigate the upper and lower error bounds. The definitions of qup

and qlow are the same as in the previous test. As we employ well adapted meshes,
we may expect that the alignment measures m1(v, Th) is of moderate size. As soon as
a reasonable resolution of the layer is achieved, the results on figure 8 show that the
estimator is efficient and reliable. Moreover, the values of qup and qlow are independant
of ε, and take values similar to the ones for other problem classes [29, 30, 43, 44, 31, 32].
We further emphasize that we do not attempt to reach effectivity indices of around one
but rather to show that the effectivity index does not vary too much with respect to a
family of convenient meshes, which is clearly confirmed here by our test.
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FIG. 7. ||(u − uh, p − ph)||DG in dependence of DoF .
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FIG. 8. qup (left) and qlow (right) in dependence of DoF , anisotropic solution.
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40. P. Houston, I. Perugia, and D. Schötzau. Mixed discontinuous Galerkin approximation of
the Maxwell operator. SIAM J. Numer. Anal., 42:434–459, 2004.

41. G. Kunert. A local problem error estimator for anisotropic tetrahedral finite element meshes.
SIAM J. Numer. Anal., 39(2):668–689, 2001.

42. G. Kunert. Towards anisotropic mesh construction and error estimation in the finite element
method. Numer. Meth. PDE, 18(6):625–648, 2002.

43. M. Picasso. Numerical study of the effectivity index for an anisotropic error indicator based
on Zienkiewicz-Zhu error estimator. Commun. Numer. Meth. Engrg, 19(1):13–23, 2003.

44. R. Becker, P. Hansbo, and M. L. Larson. Energy norm a posteriori error estimation for
discontinuous Galerkin methods. Calcolo, 2003. submitted.


