G. Dong and J. Li, Efficient mining of emerging patterns, Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '99, pp.43-52, 1999.
DOI : 10.1145/312129.312191

G. Poezevara, B. Cuissart, and B. Crémilleux, Extracting and summarizing the frequent emerging graph patterns from a dataset of graphs, Journal of Intelligent Information Systems, vol.17, issue.8, pp.333-353, 2011.
DOI : 10.1007/s10844-011-0168-1

URL : https://hal.archives-ouvertes.fr/hal-01018410

B. Ganter and S. Kuznetsov, Formalizing Hypotheses with Concepts, Conceptual Structures: Logical, Linguistic, and Computational Issues, pp.342-356, 2000.
DOI : 10.1007/10722280_24

V. G. Blinova, D. A. Dobrynin, V. K. Finn, S. O. Kuznetsov, and E. S. Pankratova, Toxicology analysis by means of the JSM-method, Bioinformatics, vol.19, issue.10, pp.1201-1207, 2003.
DOI : 10.1093/bioinformatics/btg096

S. O. Kuznetsov and M. V. Samokhin, Learning Closed Sets of Labeled Graphs for Chemical Applications, In: ILP, pp.190-208, 2005.
DOI : 10.1007/11536314_12

B. Ganter and S. O. Kuznetsov, Pattern Structures and Their Projections, In: ICCS, pp.129-142, 2001.
DOI : 10.1007/3-540-44583-8_10

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Kaytoue, S. Duplessis, S. Kuznetsov, and A. Napoli, Two FCA-Based Methods for Mining Gene Expression Data, Lecture Notes in Computer Science, vol.5548, pp.251-266, 2009.
DOI : 10.1007/978-3-642-01815-2_19

URL : https://hal.archives-ouvertes.fr/inria-00600200

B. Ganter and R. Wille, Formal Concept Analysis: Mathematical Foundations, 1997.

C. Helma, R. D. King, S. Kramer, and A. Srinivasan, The Predictive Toxicology Challenge 2000-2001, Bioinformatics, vol.17, issue.1, pp.107-108, 2000.
DOI : 10.1093/bioinformatics/17.1.107

T. H. Cormen, Introduction to algorithms, 2009.

X. Yan and J. Han, gSpan: graph-based substructure pattern mining, Proceedings of IEEE International Conference on Data Mining, pp.721-724, 2002.

S. Nijssen and J. Kok, The Gaston Tool for Frequent Subgraph Mining, Electronic Notes in Theoretical Computer Science, vol.127, issue.1, pp.77-87, 2005.
DOI : 10.1016/j.entcs.2004.12.039

C. Carpineto and G. Romano, Order-theoretical ranking, Journal of the American Society for Information Science, vol.12, issue.7, pp.587-601, 2000.
DOI : 10.1002/(SICI)1097-4571(2000)51:7<587::AID-ASI2>3.0.CO;2-L

C. Carpineto and G. Romano, Using Concept Lattices for Text Retrieval and Mining, Formal Concept Analysis, pp.161-179, 2005.
DOI : 10.1007/11528784_9

C. Carpineto and G. Romano, A Survey of Automatic Query Expansion in Information Retrieval, ACM Computing Surveys, vol.44, issue.1, 2012.
DOI : 10.1145/2071389.2071390

C. Carpineto, G. Romano, and F. U. Bordoni, Exploiting the potential of concept lattices for information retrieval with credo, Journal of Universal Computer Science, vol.10, pp.985-1013, 2004.

A. Formica, Concept similarity in formal concept analysis: An information content approach . Knowledge-Based Systems, pp.80-87, 2008.

B. Ganter and R. Wille, Formal Concept Analysis, 1999.

A. Marti, J. O. Hearst, and . Pedersen, Reexamining the cluster hypothesis: scatter/gather on retrieval results, Proceedings of SIGIR 1996, SIGIR '96, pp.76-84, 1996.

H. W. Kuhn and B. Yaw, The hungarian method for the assignment problem, Naval Research Logistic Quarterly, pp.83-97, 1955.

C. D. Manning, P. Raghavan, and H. Schtze, Introduction to Information Retrieval, 2008.
DOI : 10.1017/CBO9780511809071

N. Messai, M. Devignes, A. Napoli, and M. Sma¨?lsma¨?l-tabbone, Using domain knowledge to guide lattice-based complex data exploration, Proceedings of the 2010 conference on ECAI 2010, pp.847-852, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00545545

N. Messai, M. Devignes, A. Napoli, and M. Smal-tabbone, Querying a Bioinformatic Data Sources Registry with Concept Lattices, Proceedings of ICCS 2005, pp.323-336, 2005.
DOI : 10.1007/11524564_22

URL : https://hal.archives-ouvertes.fr/inria-00000102

G. A. Miller, WordNet: a lexical database for English, Communications of the ACM, vol.38, issue.11, pp.39-41, 1995.
DOI : 10.1145/219717.219748

I. Nafkha, S. Elloumi, and A. Jaoua, Using concept formal analysis for cooperative information retrieval, Concept Lattices and their Applications of CEUR Workshop Proceedings. CEUR-WS.org, 2004.

U. Priss, Lattice-based information retrieval Knowledge Organization, pp.132-142, 2000.

U. Priss, Formal concept analysis in information science, Annual Review of Information Science and Technology, vol.4, issue.3, pp.521-543, 2006.
DOI : 10.1002/aris.1440400120

M. Barbut and B. Monjardet, Ordres et classifications : Algèbre et combinatoire, 1970.

G. Birkhoff, Lattice theory, 1967.
DOI : 10.1090/coll/025

N. Caspard and B. Monjardet, The lattices of closure systems, closure operators, and implicational systems on a finite set: a survey, Discrete Applied Mathematics, vol.127, issue.2, pp.241-269, 2003.
DOI : 10.1016/S0166-218X(02)00209-3

URL : https://hal.archives-ouvertes.fr/hal-00095569

B. A. Davey and H. A. Priestley, Introduction to lattices and orders, 1991.
DOI : 10.1017/CBO9780511809088

C. Demko and K. Bertet, Generation algorithm of a concept lattice with limited object access, Proc. of Concept lattices and Applications (CLA'11), pp.113-116, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00716585

G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, L. Lakhal et al., Computing iceberg concept lattices with TITANIC. Data and Knowledge Engineering Querying relational concept lattices, Proc. of the 8th Intl. Conf. on Concept Lattices and their Applications (CLA'11, pp.189-222, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00578830

X. Dolques, M. Huchard, and C. Nebut, From transformation traces to transformation rules: Assisting model driven engineering approach with formal concept analysis, Supplementary Proceedings of ICCS'09, pp.15-29, 2009.
URL : https://hal.archives-ouvertes.fr/lirmm-00412440

X. Dolques, M. Huchard, C. Nebut, and P. Reitz, Fixing generalization defects in UML use case diagrams, CLA'10: 7th International Conference on Concept Lattices and Their Applications, pp.247-258, 2010.
URL : https://hal.archives-ouvertes.fr/lirmm-00726993

M. Huchard, M. R. Hacène, C. Roume, and P. Valtchev, Relational concept discovery in structured datasets, Annals of Mathematics and Artificial Intelligence, vol.256, issue.3, pp.1-4, 2007.
DOI : 10.1007/s10472-007-9056-3

URL : https://hal.archives-ouvertes.fr/lirmm-00183376

S. Rudolph, Relational exploration: combining description logics and formal concept analysis for knowledge specification, 2006.

M. Buro, The Othello Match of the Year: Takeshi Murakami vs. Logistello, ICCA Journal, vol.20, issue.3, pp.189-193, 1997.

M. Buro, The Evolution of Strong Othello Programs, Kluwer, pp.81-88, 2003.
DOI : 10.1007/978-0-387-35660-0_10

S. Y. Chong, M. K. Tan, and J. White, Observing the Evolution of Neural Networks Learning to Play the Game of Othello, IEEE Transactions on Evolutionary Computation, vol.9, issue.3, pp.240-251, 2005.
DOI : 10.1109/TEVC.2005.843750

K. Lee and S. Mahajan, The development of a world class Othello program, Artificial Intelligence, vol.43, issue.1, pp.21-36, 1990.
DOI : 10.1016/0004-3702(90)90068-B

D. M. Endres, . Foldiak, and U. Peter-;-priss, An application of formal concept analysis to semantic neural decoding, Annals of Mathematics and Artificial Intelligence, vol.60, issue.19, pp.233-248, 2010.
DOI : 10.1007/s10472-010-9196-8

B. ;. Ganter and G. Stumme, Formal Concept Analysis: Foundations and Applications, Lecture Notes in Artificial Intelligence, issue.3626, 2005.

P. Rosenbloom, A world-championship-level Othello program, Artificial Intelligence, vol.19, issue.3, pp.279-320, 1982.
DOI : 10.1016/0004-3702(82)90003-0

URL : http://repository.cmu.edu/cgi/viewcontent.cgi?article=3452&context=compsci

J. Sweller, Instructional Design Consequences of an Analogy between Evolution by Natural Selection and Human Cognitive Architecture, Instructional Science, vol.32, issue.1/2, pp.9-31, 2004.
DOI : 10.1023/B:TRUC.0000021808.72598.4d

G. Tisserant, . Maurin, . Guillaume, . Ndongo, and A. Villemot, Rapport sur une conscience artificielle, LIRMM-CNRS research Report, 2010.

J. Von-neumann, Zur Theorie der Gesellschaftsspiele, Mathematische Annalen, vol.100, issue.1, pp.295-320, 1928.
DOI : 10.1007/BF01448847

K. Warwick, March of the machines: the breakthrough in artificial intelligence, Univ. of Illinois, 2004.

Y. Serhiy and A. , System of data analysis Concept Explorer, Proceedings of the 7th national conference on Artificial Intelligence KII-2000, pp.127-134, 2000.

R. 1. Veltkamp, A Survey of Content-Based Image Retrieval Systems, 2002.
DOI : 10.1007/978-1-4615-0987-5_5

M. E. Wood, N. W. Campbell, and B. T. Thomas, Iterative refinement by relevance feedback in content-based digital image retrieval, Proceedings of the sixth ACM international conference on Multimedia , MULTIMEDIA '98, pp.13-20, 1998.
DOI : 10.1145/290747.290750

B. Ganter and R. Wille, Formal concept analysis, Mathematical foundations, p.284, 1999.

S. Ferré and A. Hermann, Semantic Search: Reconciling Expressive Querying and Exploratory Search, Proceedings of the ISWC'11, 2011.
DOI : 10.1016/j.websem.2009.07.001

N. Tsopze, C. Guérin, K. Bertet, and A. , Ontologies et relations spatiales dans la lecture d'une bande dessinée, IC, pp.175-182

P. Stanchev, D. Green-jr, and B. Dimitrov, High level color similarity retrieval, 2003.

Y. Liu, D. Zhang, G. Lu, and W. Y. Ma, Region-Based Image Retrieval with Perceptual Colors, Advances in Multimedia Information Processing-PCM 2004, pp.931-938, 2005.
DOI : 10.1007/978-3-540-30542-2_115

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

V. Mezaris, I. Kompatsiaris, and M. G. Strintzis, An ontology approach to objectbased image retrieval, Image Processing, 2003. ICIP 2003. Proceedings. 2003 International Conference on, p.511, 2003.

G. Birkhoff, Lattice theory, 1967.
DOI : 10.1090/coll/025

S. Ferré and O. Ridoux, Introduction to logical information systems, Information Processing & Management, vol.40, issue.3, pp.383-419, 2004.
DOI : 10.1016/S0306-4573(03)00018-9

C. Carpineto, G. Romanobk10-]-m, S. O. Babin, and . Kuznetsov, Concept data analysis Wiley Online Library Recognizing pseudo-intent is conp-complete, Proc. 7th International Conference on Concept Lattices and Their Applications, pp.294-301, 2004.

F. Distel and B. Sertkaya, On the complexity of enumerating pseudo-intents, Discrete Applied Mathematics, vol.159, issue.6, pp.450-466, 2011.
DOI : 10.1016/j.dam.2010.12.004

B. Ganter, Two Basic Algorithms in Concept Analysis, 1984.
DOI : 10.1007/978-3-642-11928-6_22

J. Guigues and V. Duquenne, Familles minimales d'implications informatives résultant d'un tableau de données binaires, Math. Sci. Hum, vol.24, issue.95, pp.5-18, 1986.

B. Ganter and R. Wille, Formal Concept Analysis : Mathematical Foundations, 1999.

U. Ryssel, F. Distel, and D. Borchmann, Fast computation of proper premises INRIA Nancy ? Grand Est and LORIA, 2011. [Rom] Nikita Romashkin. Python package for formal concept analysis. https://github.com/jupp/fca. Finding minimal rare itemsets in a depth-first manner, International Conference on Concept Lattices and Their Applications, pp.101-113

. Dépt, U. Informatique, C. P. Agrawal, R. Mannila, H. Srikant et al., {valtchev.petko, godin.robert}@uqam.ca References 1 Fast discovery of association rules Advances in knowledge discovery and data mining, American Association for Artificial Intelligence, vol.8888, pp.307-328, 1996.

G. Weiss, Mining with rarity, ACM SIGKDD Explorations Newsletter, vol.6, issue.1, pp.7-19, 2004.
DOI : 10.1145/1007730.1007734

L. Szathmary, A. Napoli, and P. Valtchev, Towards Rare Itemset Mining, 19th IEEE International Conference on Tools with Artificial Intelligence(ICTAI 2007), pp.305-312, 2007.
DOI : 10.1109/ICTAI.2007.30

URL : https://hal.archives-ouvertes.fr/inria-00189424

M. J. Zaki and C. J. Hsiao, CHARM: An Efficient Algorithm for Closed Itemset Mining, SIAM International Conference on Data Mining (SDM' 02), pp.33-43, 2002.
DOI : 10.1137/1.9781611972726.27

M. Kryszkiewicz, Concise Representations of Association Rules, Proceedings of the ESF Exploratory Workshop on Pattern Detection and Discovery, pp.92-109, 2002.
DOI : 10.1007/3-540-45728-3_8

Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and L. Lakhal, Mining frequent patterns with counting inference, ACM SIGKDD Explorations Newsletter, vol.2, issue.2, pp.66-75, 2000.
DOI : 10.1145/380995.381017

URL : https://hal.archives-ouvertes.fr/hal-00467750

H. Mannila and H. Toivonen, Levelwise Search and Borders of Theories in Knowledge Discovery, Data Mining and Knowledge Discovery, vol.1, issue.3, pp.241-258, 1997.
DOI : 10.1023/A:1009796218281

M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, New Algorithms for Fast Discovery of Association Rules, Proceedings of the 3rd International Conference on Knowledge Discovery in Databases, pp.283-286, 1997.

L. Szathmary, P. Valtchev, A. Napoli, and R. Godin, Efficient Vertical Mining of Frequent Closures and Generators, Proc. of the 8th Intl. Symposium on Intelligent Data Analysis (IDA '09, pp.393-404, 2009.
DOI : 10.1007/978-3-540-88411-8_15

URL : https://hal.archives-ouvertes.fr/inria-00618805

T. Calders and B. Goethals, Depth-First Non-Derivable Itemset Mining, Proceedings of the SIAM International Conference on Data Mining (SDM '05), 2005.
DOI : 10.1137/1.9781611972757.23

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

B. Ganter and R. Wille, Formal Concept Analysis: Mathematical Foundations, 1999.

S. O. Kuznetsov, On stability of a formal concept, Annals of Mathematics and Artificial Intelligence, vol.8, issue.3, pp.101-115, 2007.
DOI : 10.1007/s10472-007-9053-6

M. A. Klimushkin, S. Obiedkov, and C. Roth, Approaches to the Selection of Relevant Concepts in the Case of Noisy Data, 8th International Conference on Formal Concept Analysis, pp.255-266, 2010.
DOI : 10.1007/978-3-642-11928-6_18

D. I. Ignatov, S. O. Kuznetsov, R. A. Magizov, and L. E. Zhukov, From Triconcepts to Triclusters rough sets, fuzzy sets, data mining and granular computing, Proceedings of 13th International Conference on, pp.257-264, 2011.