F. Baccelli and C. Bordenave, The radial spanning tree of a Poisson point process, The Annals of Applied Probability, vol.17, issue.1, pp.305-359, 2007.
DOI : 10.1214/105051606000000826

URL : https://hal.archives-ouvertes.fr/inria-00070309

N. Bonichon and J. Marckert, Asymptotics of geometrical navigation on a random set of points in the plane, Advances in Applied Probability, vol.13, issue.04, pp.899-942, 2011.
DOI : 10.1016/j.anihpb.2004.06.003

N. Bonichon, C. Gavoille, N. Hanusse, and D. Ilcinkas, Connections between Theta-Graphs, Delaunay Triangulations, and Orthogonal Surfaces, Graph Theoretic Concepts in Computer Science, pp.266-278, 2010.
DOI : 10.1137/0211059

URL : https://hal.archives-ouvertes.fr/hal-00536710

C. Bordenave, Navigation on a Poisson point process. The Annals of Applied Probability, pp.708-746, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00070231

P. Bose and L. Devroye, On the stabbing number of a random Delaunay triangulation, Computational Geometry, vol.36, issue.2, pp.89-105, 2006.
DOI : 10.1016/j.comgeo.2006.05.005

P. Bose and P. Morin, Online Routing in Triangulations, SIAM Journal on Computing, vol.33, issue.4, pp.937-951, 2004.
DOI : 10.1137/S0097539700369387

P. Bose, R. Fagerberg, A. Van-renssen, and S. Verdonschot, -Graph, Proceedings of the 23rd ACM-SIAM Symposium on Discrete Algorithms, pp.1319-1328, 2012.
DOI : 10.1137/1.9781611973099.104

URL : https://hal.archives-ouvertes.fr/jpa-00209871

S. Boucheron, G. Lugosi, and P. Massart, Concentration Inequalities -A nonasymptotic theory of independence, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00794821

P. M. De-castro and O. Devillers, Simple and Efficient Distribution-Sensitive Point Location in Triangulations, Workshop on Algorithm Engineering and Experiments, pp.127-138, 2011.
DOI : 10.1137/1.9781611972917.13

URL : https://hal.archives-ouvertes.fr/hal-00850559

O. Devillers, THE DELAUNAY HIERARCHY, International Journal of Foundations of Computer Science, vol.13, issue.02, pp.163-180, 2002.
DOI : 10.1142/S0129054102001035

URL : https://hal.archives-ouvertes.fr/inria-00166711

O. Devillers, S. Pion, and M. Teillaud, WALKING IN A TRIANGULATION, International Journal of Foundations of Computer Science, vol.13, issue.02, pp.181-199, 2002.
DOI : 10.1142/S0129054102001047

URL : https://hal.archives-ouvertes.fr/inria-00344519

L. Devroye, E. P. Mücke, and B. Zhu, A Note on Point Location in Delaunay Triangulations of Random Points, Algorithmica, vol.22, issue.4, pp.477-482, 1998.
DOI : 10.1007/PL00009234

L. Devroye, C. Lemaire, and J. Moreau, Expected time analysis for Delaunay point location, Computational Geometry, vol.29, issue.2, pp.61-89, 2004.
DOI : 10.1016/j.comgeo.2004.02.002

D. Dubhashi and A. Panconesi, Concentration of Measure for the Analysis of Randomized Algorithms, 2009.
DOI : 10.1017/CBO9780511581274

S. Janson, Large deviation for sums of partially dependent random variables. Random Structures and Algorithms, pp.234-248, 2004.

D. G. Kirkpatrick, Optimal Search in Planar Subdivisions, SIAM Journal on Computing, vol.12, issue.1, pp.28-35, 1983.
DOI : 10.1137/0212002

C. L. Lawson, Software for C 1 surface interpolation, Math. Software III, pp.161-194, 1977.

J. Matou?ek, Lectures on discrete geometry, 2002.
DOI : 10.1007/978-1-4613-0039-7

S. Misra, I. Woungang, and S. Misra, Guide to wireless sensor networks, 2009.
DOI : 10.1007/978-1-84882-218-4

L. P. Pimentel and R. Rossignol, Greedy polyominoes and first-passage times on random Voronoi tilings, Electronic Journal of Probability, vol.17, issue.12, p.2012

F. P. Preparata, PLANAR POINT LOCATION REVISITED, International Journal of Foundations of Computer Science, vol.01, issue.01, pp.71-86, 1990.
DOI : 10.1142/S0129054190000072

F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, 1990.
DOI : 10.1007/978-1-4612-1098-6

F. Zhao and L. Guibas, Wireless Sensor Networks. An Information Processing Approach, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01263160

B. Zhu, On Lawson???s Oriented Walk in Random Delaunay Triangulations, Fundamentals of Computation Theory, pp.222-233, 2003.
DOI : 10.1007/978-3-540-45077-1_21