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Abstract—In this paper we discuss energetic complexity as-
pects of k-Selection protocols for the single-hop radio network
(that is equivalent to Multiple Access Channel model). The aim
is to grant each of k activated stations exclusive access to the
communication channel. We consider both deterministic as well
as randomized model. Our main goal is to investigate relations
between minimal time of execution (time complexity) and
energy consumption (energetic complexity). We present lower
bound for energetic complexity for some classes of protocols
for k-Selection. We also present randomized protocol efficient
in terms of both time and energetic complexity.

I. INTRODUCTION

This paper is devoted to energetic efficiency of protocols

solving k-Selection problem. Let us recall that the aim of

this problem is to grant each of k (out of n) activated stations

exclusive access to the communication channel.

It was originally formulated for MAC (Multiple Access

Channel). However, this problem can also be stated in an

equivalent form for the single-hop radio network. In such a

system, for practical reasons, energy consumption is of crit-

ical importance. Indeed, while discussing radio networks we

often have in mind small battery-supplied sensing devices,

that cannot be easily re-charged.

The problem is discussed in various settings. In all of

cases we have, however, n stations and some k of them

are activated and want to broadcast their messages to all

other stations. The message is successfully transmitted only

if exactly one station transmits at a given time. In the case of

simultaneous transmission of two or more stations a collision

occurs and none of messages is delivered to any recipient.

If the collision is distinguishable from the background noise

we call the model with collision detection (CD). Otherwise,

the model is described as no-collision detection (noCD).

The core of the problem is that the subset of activated

stations is unknown in advance (except that its cardinality

is constrained) and stations have to communicate via very

restricted communication channel.

Remarks about the model of energy: In this paper we

concentrate on energy complexity of k-Selection protocols

understood as the maximal energetic effort over all stations.

The energy usage of a particular station is the number of

rounds when the station transmits, whether the message is

delivered or not. In many applications it is required that

all (or almost all) devices have to be working for proper

acting of network. Therefore, a lifespan of the system is

determined by the most loaded station, which motivated us

to consider maximal energy usage. Such approach is used in

literature, however one can also find papers wherein authors

consider the average energetic effort of stations instead. It

should be noted that in most of the cases in the analysis

of the algorithms, finding or even estimating the maximal

effort over all stations is technically more challenging.

Similarly, there are two common approaches to energetic

expense of station being in listening mode. The first one is

to take into account both transmitting and listening rounds.

In particular, it is the case when all stations are located close

to each other. The second approach assumes that energetic

cost of listening is dramatically smaller than transmitting

and can be treated as negligible. Note also that in the case

of some of considered classes of protocols, both approaches

are equivalent. Indeed, for example in oblivious algorithms

discussed in Section V receiving any transmission does not

influence the execution and stations can be switched-off

instead of being in listening mode.

Previous work: The k-Selection problem is a clas-

sic issue in distributed computing. In recent years it has

gained additional interests motivated by expansions of radio

(sensor) networks technologies. It is hard to enumerate all

important literature related to this topic, thus we mention

only the most fundamental papers we are aware of. Kom-

los and Greenberg considered the oblivious model with

collision detection. They showed in [1] that k-Selection

can be deterministically completed in time O(k log(nk )).
This result can be adapted to the model without collision

detection. Moreover the lower bound for the time complexity

Ω(k log(nk )) which was obtained in [2] holds also for model

without collision detection. In [2] the superimposed codes

method as well as selective families approach were used.

Hayes presented in [3] the adaptive solution which satisfies

the same time complexity as for the oblivious model. In

[4] the lower bound Ω(k logk n) for the family of adaptive

deterministic protocols was proved. In a similar model,

Martel [5] showed an interesting randomized approach for

finding a maximal value among n stations, which succeeds



in the expected time O(k + logn). Kowalski noted in

[6] that Martel expected time complexity can be improved

to O(k + log logn) by using the Willard algorithm as a

subprocedure. Martel algorithm can be easily adapted to

k-Selection problem. Then the time complexity is O(k),
because only active stations transmit a message. Another

important, recent paper is [7]. The randomized, adaptive

solution presented by Anta and Mosteiro guarantees, that

all of k stations successfully transmit a message in time

(e+1+ ξ)k+O(log2(1ǫ )) with the probability error ǫ from

a reasonable interval and a fixed negligible constant ξ. In [8]

authors analyzed a problem (connected with k-Selection) of

learning a subset of m stations out of k active ones. Work

of Nakano and Olariu [9] can be easily adapted to obtain

algorithm solving w.h.p. (with high probability) k-Selection

problem in O(k) expected time and O(log log k) expected

energy.

Energetic efficiency of algorithms for radio networks

is considered in several papers, devoted to initialization

protocols [10], size approximation problem [11], alerts for

weak devices [12] or routing aspects [13]. However, to the

best of our knowledge, except [9] there are no results about

energetic complexity issues of the k-Selection protocols or

any other protocol that can be recycled for our problem in

a straightforward manner.

Our Results: In the paper we show lower bounds

on maximal energy usage for class of so-called uniform

algorithms. We prove that any uniform algorithm solv-

ing k-Selection problem with expected time of execution

O(k polylog(k)) has energetic complexity Ω( log k
log log k ). We

present protocol for solving w.h.p. k-Selection problem in

constant energy within O(k1+ǫ) rounds for any ǫ > 0. We

also give very general lower bound relating time and energy

in a case of deterministic oblivious algorithms.

The paper is organized as follows: in Section II we

describe the model in details and formulate the problem we

investigate. Section III is devoted to analysis of randomized

algorithms, where we provide lower bounds for uniform

algorithms and we show algorithm efficient in terms of

both energy and time complexity. We also discuss energetic

complexity of some known, optimal (in terms of time of

execution) protocols. In Section V we present a lower

bound for oblivious deterministic algorithms. We conclude

in Section VII.

II. MODEL

We consider a single-hop radio network with n stations.

The set of stations is denoted by V . In the case of deter-

ministic algorithms we assume that each station has a unique

label from the set {1, . . . , n}. Time is assumed to be slotted

into rounds. We assume that stations are fully synchronized

as if they had access to a global clock. At the beginning

of the protocol’s execution a subset of k activated stations

have a message that has to be transmitted. Using terminology

from [6] we consider static k-Selection — all algorithms are

started in the same round.

Stations communicate via a single channel. In our paper

we concentrate on the network with collision detection1, i.e.,

the background noise that is received if no station transmits

is distinguishable from the noise generated by two or more

stations transmitting in the same round. Thus, we can have

three states of the communication channel — SILENCE,

SINGLE transmission and COLLISION.

We consider both deterministic as well as randomized

algorithms. In the latter case we assume that stations are

indistinguishable and have access to the perfect source of

random bits. Moreover, sources of different stations are

stochastically independent.

Energetic measures: In radio networks one of the main

practical problems is the fact that all devices have limited

energy resources and moreover in some realistic cases it is

very hard to replace their batteries. Thus, the level of energy

usage may really matter. In this paper we use the measure

of energetic complexity defined as follows. We define Ev,

an energetic effort of a station v ∈ V , as the number of

rounds wherein v transmitted. Note that both successful

as well as unsuccessful (due to collisions) transmissions

counts. The energetic complexity of the algorithm is de-

fined as E [maxv∈V Ev] for the worst case over all subsets

of activated stations. Note that this value is well defined

also for deterministic algorithms. Let us stress that usually

maxv∈V E [Ev] 6= E [maxv∈V Ev]. That is, we look for the

expected energetic effort over all stations. Let us note that

such measure has been used among others in [12], [14]. On

the other hand in some remarkable papers some different

metrics have been used.

III. ENERGY EFFICIENT RANDOMIZED ALGORITHM

In this section we discuss randomized k-Selection proto-

cols from energetic complexity perspective. First we present

a lower bound for so-called uniform algorithms. We also

confront the obtained result with other classes of algorithms.

Then we present algorithms efficient both in terms of energy

and time complexity. The protocol requires O(k1+ǫ) rounds,

ǫ > 0, after which w.h.p. all stations successfully transmit

their messages. More importantly, the energy usage of each

station can be bounded by constant dependent only on ǫ.
Therefore, the maximal energetic complexity is O(1), what

was the main design goal.

A. Uniform Algorithms

Definition 1: Algorithm A solving k-Selection is called

uniform if, and only if, in round i every station that has

not yet transmitted successfully, transmits with probability

pi (the same for all active stations). Every other station is

not transmitting in round i.

1Note however, that all of the results (including analysis of our protocol)
remain true in model without collision detection



Note that pi may depend on the state of the communication

channel in previous rounds. In general, pi can be even

chosen randomly from some distribution during the execu-

tion of the protocol (all stations have to use, however, the

same value pi). Due to simplicity and robustness, uniform

algorithms are commonly used. For example algorithms

proposed by Martel in [5] and by Anta and Mosteiro in

[7] are uniform ones.

B. Lower Bound for Uniform Algorithms

Before we introduce the key technical lemma let us recall

that selection resolution (see e.g., [15]) is the problem of

obtaining one SINGLE in possibly small number of rounds.

More precisely, there are k stations that want to transmit, and

the protocol is successfully completed if exactly one station

transmits in a round. This problem is in fact equivalent to

leader election in a Multiple Access Channel. Let us stress,

however, that 1-Selection is a trivial problem that is not an

instance of a leader election problem.

The lemma below shows some relation between time of

execution and expected number of collisions.

Lemma 1: Let k > 1. If uniform algorithm A solves

selection resolution in expected time t, then the expected

number of rounds with COLLISION during the execution

of A is at least 1
128t2 .

Proof:

Algorithm is uniform, thus in the i-th round each station

transmits independently with the same probability pi. Note

however, that in every execution the probabilities {pi}i may

differ and depend for example on the state of the channel

in previous rounds. Let Pi be the random variable denoting

the probability of transmission used by stations in round i.
Finally T denotes run time of the algorithm and E [T ] = t.
Algorithm works until first SINGLE appears, thus Pi = 0
for every i > T . Let B denote the random event that there is

i such that Pi ≥ 1
2kt and let B̄ be its complement. We want

to show, that P [B] ≥ 1
2 . Note, that if for some i, Pi <

1
2kt ,

then

P [SINGLE in round i] = kPi (1− Pi)
k−1 ≤ kPi <

1

2t
,

P [SILENCE or COLLISION in round i] > 1− 1

2t
.

We want to bound the conditional expectation E[T |B̄]. The

conditional expectation is well defined, if P [B̄] > 0. But, if

P [B̄] = 0, then the statement P [B] ≥ 1
2 holds trivially.

E[T |B̄] =
∑

t′≥1

P [T ≥ t′|B̄]

>
∑

t′≥1

(

1− 1

2t

)t′

= 2t,

E[T ] = E[T |B̄]P [B̄] + E[T |B]P [B] > 2tP [B̄].

But E[T ] = t, thus P [B̄] < 1
2 , and P [B] > 1

2 . Therefore,

with probability more than 1
2 , during the execution of the

algorithm there exists a slot i0 with probability of transmis-

sion Pi ≥ 1
2kt .

Now we want to bound probability Pc of COLLI-

SION in round i = i0. It is clear that Pc = 1 −
(1− Pi)

k−1
(Pik + (1− Pi)) . The following inequality

(1− x)
n ≤ 1 − nx + 1

2n(n − 1)x2 works for 0 ≤ x ≤ 1,

and n ∈ N+ and it can be proven using a straightforward

induction. Assume, that Pi =
1

2kt . Then,

Pc ≥ 1−
(

1− k − 1

2kt
+

(k − 1)(k − 2)

8k2t2

)(

k − 1

2kt
+ 1

)

=
(k − 1)2

4k2t2
− (k − 1)(k − 2)

8k2t2

(

k − 1

2kt
+ 1

)

≥ (k − 1)2

8k2t2

(

1− k − 1

2kt

)

≥ 1

64t2
.

We use the fact, that k > 1, thus k−1
k ≥ 1

2 . We also use, that

t ≥ 1, because any algorithm requires at least one step to

solve the selection resolution. We proved, that if Pi =
1

2kt ,

then P [COLLISION in round i] ≥ 1
64t2 . Obviously, if Pi ≥

1
2kt , then also P [COLLISION in round i] ≥ 1

64t2 , because

the probability of transmission for each station increases. It

follows that with probability at least 1
2 during any execution

of the algorithm there exists a round i0, where probability of

COLLISION is at least 1
64t2 . This implies that the expected

number of COLLISIONs in the algorithmA is at least 1
128t2 .

Theorem 1: Any uniform k-Selection algorithm with ex-

pected time of execution O(k polylog(k)) has energetic

complexity Ω
(

log k
log log k

)

.

Proof:

Let us consider any k-Selection algorithm with expected

time of execution O(k polylog(k)). We show that the ex-

pected number of COLLISIONs during the execution is

Ω
(

k
polylog(k)

)

.

By the i-th era we understand the number of rounds

between i−1 and i-th successful transmissions for 1 < i ≤ k
(including the round with the i-th transmission). The 1st era

is just the number of rounds before the first transmission. Let

ti be the expected time of i-th era and T be the expected run

time of the algorithm. Moreover, let the station that transmit-

ted successfully in i-th era be called i-th transmitter. Clearly,
∑k

i=1 ti = T . Since T ∈ O(k polylog(k)), there has to be

Ω(k) eras, such that ti ∈ O(polylog(k)). From Lemma 1,

we know that if era has expected run time t, the ex-

pected number of COLLISIONs is Ω
(

1
t2

)

. Finally we have

Ω(k) eras with expected number of COLLISIONs equal

Ω
(

1
polylog(k)

)

. Thus the expected number of COLLISIONs

during the execution of the algorithm is Ω
(

k
polylog(k)

)

.

Similarly, during the first k−
√
k eras the expected number



of COLLISIONs is Ω
(

k−
√
k

polylog(k)

)

= Ω
(

k
polylog(k)

)

.

Since the protocol is uniform, each active station is

equally likely to transmit in a round with COLLISION. This

can be represented in terms of balls and bins model. More

precisely, stations are represented by bins. If COLLISION

occurs we throw one ball to the bin randomly chosen

from bins representing active stations. Clearly the number

of balls in the most loaded bin is a lower bound for the

number of transmissions of station with maximal number of

transmissions2.

Let us consider a group of the last
√
k transmitters.

All those transmitters are exposed to Ω
(

k
polylog(k)

)

COL-

LISONs (in expectation). If there is Ω
(

k
polylog(k)

)

balls than

with high probability, Ω
( √

k
polylog(k)

)

balls are placed in bins

representing the last
√
k transmitters.

From [16] we have, that in case with m =
√
k

polylog(k) balls

and n =
√
k bins, the maximum load is Ω

(

log k
log log k

)

with

high probability. Thus the expected maximum number of

transmissions over last
√
k transmitters is Ω

(

log k
log log k

)

.

C. Non-uniform Algorithms

The result presented in the previous subsection implies

that there is no uniform k-Selection algorithm working in

linear time with maximum energy usage being o( log k
log log k ).

However, there are non-uniform algorithms that are more

efficient in terms of energy consumption. For example, the

initialization algorithm by Nakano and Olariu [9] can be

modified in a straightforward manner to obtain k-Selection

algorithm with linear time of execution and no station being

awake for more than O(log log k) rounds w.h.p. Thus the

number of transmissions of each station is O(log log k) as

well.

D. Energy Efficient Algorithm Description

In this section we present k-Selection algorithm with

extremely small energy consumption and moderate time of

execution. Our construction is also based on the protocol

described by Nakano and Olariu in [9]. The algorithm

consists of 3+⌊log2(1+ 1
ǫ )⌋ iterations. In each of iterations,

stations that have not transmitted successfully yet, try to

transmit its message in one out of ⌈2k1+ǫ⌉ rounds. The

choice is independent on other stations and uniform over

all rounds of a particular iteration. The pseudo code of the

protocol is shown in Algorithm 1.

E. Complexity Analysis

It should be clear that the energy usage of any station is

at most maxiter . Similarly, one can see that the total time of

the protocol is maxiter · rounds ∈ O(k1+ǫ). The presented

2Note, that each collision affects always more than one station. For
simplicity we use however only one ball.

Protocol 1 Energy Efficient k-Selection

1: maxiter ← 3 + ⌊log2(1 + 1
ǫ )⌋ ⊲ maximum number of

iterations

2: rounds← ⌈2k1+ǫ⌉ ⊲ number of rounds per iteration

3: iter← 1
4: status← COLLISION

5: while iter ≤ maxiter and status 6= SINGLE do

6: iter← iter + 1
7: i← uniform({1, 2, . . . , rounds}) ⊲ round number

to transmit in

8: for round← 1 to rounds do

9: if round = i then

10: status← transmit(packet) ⊲ try to

transmit

algorithm is of Monte Carlo type, which means that with a

certain probability, after its execution some stations may fail

to transmit. We show that the probability of failure is O( 1k ).
Theorem 2: For any given ǫ > 0, after execution of

Algorithm 1 by k stations, all of them transmit successfully

with probability at least 1−O( 1k ).
Proof: Before we prove the theorem let us prove

following lemma.

Lemma 2: Assume that n stations transmits uniformly

and independently in one out of m rounds. For t ≥ 1:

• if
n(n−1)

6m ≥ t log(n), then with probability exceeding

1 − 1
nt , fewer than

2n(n−1)
m stations fail to transmit

successfully,

• if
n(n−1)

6m < t log(n), then with probability exceeding

1 − 1
nt , fewer than 20 log(n) stations fail to transmit

successfully.

Proof: Note that this lemma is a modification of a result

of Nakano and Olariu from [9]. Using Corollary 4.2 in [9],

we have that if
n(n−1)

6m ≥ log(nf(n)) for some positive

real-valued function f(n), then with probability at least 1−
1

nf(n) , fewer than
2n(n−1)

m stations fail to transmit. Thus, it

is sufficient to take f(n) = nt−1 to prove the first case. The

second case is proved by a simple application of the Lemma

4.3 from [9].

Now we are ready to prove Theorem 2. Let us consider,

what happens after first iteration of Algorithm 1: there are

n = k participating stations and m = 2k1+ǫ rounds. If

ǫ ≥ 1, then for sufficiently large k we have
n(n−1)

6m < log(n).
Therefore, with probability at least 1− 1

k , after first iteration

there are at most 20 log(k) remaining stations, for which

with probability exceeding 1 − 1
k , two additional rounds

are sufficient for successful transmission of all remaining

station.

On the other hand, if 0 < ǫ < 1, then for sufficiently large

k we have
n(n−1)

6m < log(n), thus with probability exceeding

1− 1
k , first iteration ends with fewer than

2n(n−1)
m < 2k2

2k1+ǫ =
k1−ǫ remaining stations. Inductively, if i-th iteration starts



with at most k1−(2i−1−1)ǫ stations and (2i − 1)ǫ < 1, then

by Lemma with probability at least 1− 1
k , after i-th iteration

fewer than k1−(2i−1)ǫ pass to (i + 1)-st iteration. Thus, until

i ≥ log2(1+
1
ǫ ), with probability 1−O( 1k ) after i-th iteration

there are fewer than k1−(2i−1)ǫ stations that still need to

transmit. After iteration ⌊log2(1 + 1
ǫ )⌋ we use the second

case of the Lemma, thus w.h.p. the next iteration ends with

O(log k) stations. Therefore, again, two additional rounds

are sufficient to successful transmission of each station.

IV. ENERGETIC COMPLEXITY OF MARTEL ALGORITHM

We present analysis of energy complexity of the Martel

algorithm that has optimal expected run time in the assumed

model. We also give some general remarks about uniform

k-Selection algorithms. The main result of this section

expressed in Theorem 3 is also a motivation for constructing

more efficient algorithms in terms of energy usage.

Theorem 3: Algorithm solving k-Selection proposed by

Martel in [5] has expected energetic complexity Ω (log k).
Proof: Let us denote the time between (i − 1)-th and

i-th SINGLE in Martel algorithm, as i-th era. First era is

the time until first SINGLE appears. Let Xi be a random

variable denoting time of the i-th era. We need to show that

in Martel algorithm, for all i > 1, E[Xi] ∈ O(1). But this

fact is proved by Martel in [5], in Lemmas 2.1, 2.2 and 2.3. If

for some i, E [Xi] ∈ O(1), then from Lemma 1, the expected

number of COLLISIONs in i-th era is Ω(1). Consider energy

consumption of the last (i.e., the k-th) station denoted as

Evlast
. Station vlast has chance to participate in COLLISION

in each era. If i-th era’s expected number of COLLISIONs

is δ then, since the algorithm is uniform, each active station

in this era has equal chance to participate in COLLISION.

Expected energy consumption of each active station in this

round is at least 2δ
k−i+1 . Thus

E [Evlast
] ∈ Ω

(

k
∑

i=2

1

k − i+ 1

)

.

We note that
∑k

i=2
1

k−i+1 = Hk−1, where Hk−1 is (k−1)-
th harmonic number. Let us recall that harmonic number

Hn = logn+ γ +O( 1
n ) and γ = 0.57721 . . . is the Euler-

Mascheroni constant. Finally, E [Evlast
] ∈ Ω (log k). It is

clear that E [Evlast
] ≤ E [Emax].

V. LOWER BOUNDS FOR DETERMINISTIC OBLIVIOUS

ALGORITHMS

In this section we investigate oblivious, deterministic k-

Selection protocols. This means that schedule of transmis-

sions for each station is defined before execution of the

algorithm. That is, each station knows if it shall transmit

in each round before the algorithm is started. In particular,

decision of transmission does not depend on the state of

the communication channel in previous rounds. Thus the

algorithm can be viewed as an assignment of binary vectors

to stations. More formally, for every station v ∈ V we

denote by w(v) the binary vector, where w(v)i denotes i-th
position in the vector w(v), defined as follows. If station

v is transmitting in round i, then w(v)i = 1, otherwise

w(v)i = 0.

Below we recall the definition of superimposed codes

introduced by Kautz and Singleton in [17]. Let C =
{c1, c2, . . . , cn} be a set of binary words of length t. The

number of vectors n is the size of code. Given k words

ci1 , ci2 , . . . , cik , we define the sum of vectors ci1 ∨ ci2 ∨
· · · ∨ cik as bitwise Boolean sum. We say that binary vector

v covers vector v′ if for each coordinate with value 1 in v′,
the corresponding coordinate in v is also 1.

Definition 2: Let r be a positive integer. We say that set of

binary words C = {c1, c2, . . . , cn} is r-superimposed code

if for any distinct words ci0 , ci1 , ci2 , . . . , cir , the word ci0 is

not covered by ci1 ∨ ci2 ∨ · · · ∨ cir .

Algorithm solves the k-Selection problem if and only if the

corresponding set of vectors is a (k−1)-superimposed code.

Indeed, there is 1−1 correspondence between superimposed

codes and oblivious k-Selection algorithms pointed in [18].

In [19] Erdős, Frankl and Füredi proved theorem about

families of sets which has direct application in superimposed

codes.

Fact 1 (see [19, Proposition 2.1]): Let fk(t, ε) be the

maximum size of the k-superimposed code of length t,
where each codeword has exactly ε ones, then fk(t, ε) ≤
(

t
⌈ ε

k⌉
)

/
( ε−1

⌈ ε

k⌉−1

)

.

Lower bound on length of k-superimposed codes implies

lower bound on time complexity of any oblivious, deter-

ministic k-Selection algorithms. Using techniques similar as

in [19] we can bound the size of any k-superimposed code

with restricted number of ones in codewords. In effect we

can bound the time complexity of any oblivious k-Selection

algorithm with energy complexity Emax.

Fact 2: The binomial coefficient
(

n
k

)

, satisfies nk

kk ≤
(

n
k

)

≤ nk

k! .

Theorem 4: Run time t of any deterministic, oblivious

algorithm solving k-Selection with energetic complexity

Emax satisfies

t ∈ Ω

(

Emax

(

n

(k − 1)2

)
1

⌈ Emax
k−1 ⌉

)

.

Proof: In the proof we assume, that k, t, Emax depend

on n, and n goes to infinity. Firstly we want to prove,

that the relation n ≤ ∑Emax

E=1 fk−1(t, E), must hold for

every deterministic, oblivious algorithm solving k-Selection

in time t, and maximum energy consumption Emax. We can

partition vectors into groups of the same Hamming weight,

i.e., w(v) ∈ Wi if h(w(v)) = i, where h(w) is Hamming

weight of the vector w. Set W = {w(v) : v ∈ V } is (k−1)-
superimposed code, because algorithm solves k-Selection.

Thus each set Wi is also (k − 1)-superimposed. From the



definition of the function fk, |Wi| ≤ fk−1(t, i). On the other

hand n =
∑Emax

i=1 |Wi|. Thus n ≤∑Emax

E=1 fk−1(t, E). From

Fact 1 we obtain fk−1(t, E) ≤
(

t
⌈ E

k−1⌉
)

/
( E−1

⌈ E

k−1⌉−1

)

. Using

an identity for the binomial coefficient and applying Fact 2

we have:

( E − 1
⌈

E
k−1

⌉

− 1

)

=
E −

⌈

E
k−1

⌉

+ 1

E

( E
⌈

E
k−1

⌉

− 1

)

≥
(

1− 1

k − 1

)





E
⌈

E
k−1

⌉

− 1





⌈ E

k−1⌉−1

≥
(

1− 1

k − 1

)

(k − 1)⌈
E

k−1⌉−1
.

Again we use Fact 2 directly to the sum
∑Emax

E=1 fk−1(t, E)
and we apply inequality obtained above. It is easy to see

that following observations are satisfied:

n ≤
Emax
∑

E=1

(

t
⌈ E

k−1⌉
)

(

1− 1
k−1

)

(k − 1)⌈
E

k−1⌉−1

≤
(

1 +
1

k − 2

) Emax
∑

E=1

t⌈ E

k−1⌉
⌈

E
k−1

⌉

! (k − 1)⌈
E

k−1⌉−1

=

(

1 +
1

k − 2

)

(k − 1)

Emax
∑

E=1

(

t
k−1

)⌈ E

k−1⌉
⌈

E
k−1

⌉

!
.

Since E occurs in the above sum only in term
⌈

E
k−1

⌉

, we

have the same (k − 1) summands. Thus,

n ≤
(

1 +
1

k − 2

)

(k − 1)2
⌈ Emax

k−1 ⌉
∑

s=1

(

t
k−1

)s

s!

≤
(

1 +
1

k − 2

)

(k − 1)2
Γ
(⌈

Emax

k−1

⌉

+ 1, t
k−1

)

⌈

Emax

k−1

⌉

!e−
t

k−1

,

where Γ(s, x) is the incomplete

gamma function defined as follows

Γ(s, x) =
∫∞
x

ts−1 e−t dt. If s is a positive

integer, function Γ(s, x) has following expansion

Γ(s, x) = (s − 1)! e−x
∑s−1

k=0
xk

k! . From [20] we know,

that
Γ(s,x)

xs−1e−x → 1, as x → ∞. But it is proved in [19],

that t ∈ Ω (k logn), even without energy restriction. Thus
t
k = Ω(log n). From asymptotic behavior of Γ(s, x), we

know, that:

Γ

(⌈ Emax

k − 1

⌉

+ 1,
t

k − 1

)

∈O
(

(

t

k − 1

)⌈ Emax

k−1 ⌉
e−

t

k−1

)

.

From the fact that n! ≥ (ne )
n after some simplifications we

get:

(

t
k−1

)⌈Emax

k−1 ⌉
e−

t

k−1

⌈

Emax

k−1

⌉

!e−
t

k−1

≤

(

t
k−1

)⌈ Emax

k−1 ⌉

(

⌈ Emax

k−1 ⌉
e

)⌈ Emax

k−1 ⌉

≤ e⌈
Emax

k−1 ⌉
(

t

Emax

)⌈ Emax

k−1 ⌉
.

From calculations above we obtain following facts

n ∈ O

(

(k − 1)
2

(

et

Emax

)⌈ Emax

k−1 ⌉)
,

(k − 1)
2

(

et

Emax

)⌈ Emax

k−1 ⌉
∈ Ω(n).

and finally t ∈ Ω

(

Emax

(

n
(k−1)2

)

1

⌈ Emax
k−1 ⌉

)

.

The above theorem yields a spectrum of time-energy com-

plexity trade-offs for oblivious, deterministic k-Selection

algorithms. For example, it implies following corollary.

Corollary 5.1: Let k ∈ O
(

n1/4
)

and Emax ∈
O
(

k logn
α log logn

)

, then for any α > 0

t ∈ Ω

(

k
log1+

α

2 n

α log logn

)

.

VI. COMPUTER SIMULATIONS

In addition to the analysis of the protocols presented for

random model, we show empirical results obtained by means

of computer simulations. We have evaluated the performance

of Protocol 1 for networks consisting of k = 10 and k =
104 activated stations. The results allow us to speculate on

tightness of the analysis, as well as to see how the protocol

behaves in a case of a small number of activated stations. We

have also run simulations of Martel algorithm to compare the

difference between maximum energy usage and the energetic

effort of the last station.

A. Energy efficient protocol

Table I shows results of simulations of Protocol 1 solving

10−Selection problem for different values of the ǫ param-

eter. The time = maxiter · ⌈2k1+ǫ⌉ is a total number of

rounds needed by the protocol to complete. The number

of stations left activated after consecutive iterations, iteri,
were obtained by averaging outcomes of 106 simulation

runs. The last row shows how many (out of 106) runs ended

with failure, which is a case when after maxiter iterations

there are some stations, that were unable to broadcast their

messages.

Table II were obtained in a similar manner as Table I, but

for k = 104 stations and 105 simulation runs. It can be seen

that the Protocol 1 behaves much better for larger number



Table I
SIMULATION RESULTS OF PROTOCOL 1 FOR k = 10 STATIONS.

ǫ 1 1

2

1

4

1

128

maxiter 4 4 5 10

time 800 256 180 210

iter1 0.44242 1.32249 2.24018 3.55332

iter2 0.00258 0.038901 0.153025 0.548462

iter3 0 0.000628 0.005062 0.038523

iter4 0 0.00002 0.000134 0.002036

iter5 0.000002 0.000096

iter6 0.000008

iter7 0

iter8 0

iter9 0

iter10 0

failed 0 10 1 0

Table II
SIMULATION RESULTS OF PROTOCOL 1 FOR k = 10

4 STATIONS.

ǫ 1 1

2

1

4

1

128

maxiter 4 4 5 10

time 800000000 8000000 1000000 214930

iter1 0.4965 49.8927 487.765 3720.12

iter2 0 0.0013 1.1899 591.196

iter3 0 0 0 16.0588

iter4 0 0 0 0.01214

iter5 0 0

iter6 0

iter7 0

iter8 0

iter9 0

iter10 0

failed 0 0 0 0

of stations, as one could expect based on the results of the

analysis.

B. Martel algorithm

In Section IV we proved Ω(log k) lower bound on energy

usage of the last station in the Martel algorithm. While

this result obviously translates to the lower bound of the

energetic complexity of the algorithm, one could ask how

big is the difference between maximum energy usage and the

energetic effort of the last station. Figure 1 shows results of

105 simulations for different number of stations (logarithmic

scale).

VII. CONCLUSIONS AND FURTHER RESEARCH

In our paper we presented several results about energetic

aspects of k-Selection protocols in a single–hop radio net-

work. We believe that presented approach can be applied to

more realistic scenarios. In particular, it is clear that some

results can be easily applied for dynamic counterparts of k-

Selection problem (described e.g., in [6]) at least for some

models.

We believe that most interesting and most challenging task

is to find general relation between energy consumption and
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Figure 1. Energy usage in Martel algorithm. • is an average maximum
energy usage and × is an average energy usage of the last station.

time necessary for completion of k-Selection in randomized

model. We tried to obtain such result, without effects, using

information theory approach techniques. We strongly believe

that the presented Protocol 1 is efficient in sense of time

complexity. That is, we think that in randomized model,

there is no k-Selection algorithm with constant energy usage

working in O(k polylog(k)) time.
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