Intensive use of factorial correspondence analysis for large scale content-based image retrieval

Khang-Nguyen Pham 1 Annie Morin 2 Patrick Gros 2 Quyet-Thang Le 1
2 TEXMEX - Multimedia content-based indexing
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, Inria Rennes – Bretagne Atlantique
Abstract : In this paper, we investigate the intensive use of Correspondence Analysis (CA) for large scale content-based image retrieval. Correspondence Analysis is a useful method for analyzing textual data and we adapt it to images using the SIFT local descriptors. CA is used to reduce dimensions and to limit the number of images to be considered during the search step. An incremental algorithm for CA is proposed to deal with large databases giving exactly the same result as the standard algorithm. We also integrate the Contextual Dissimilarity Measure in our search scheme in order to improve response time and accuracy. We explore this integration in two ways: (i) off-line (the structure of image neighborhoods is corrected off-line) and (ii) on-the-fly (the structure of image neighborhoods is adapted during the search). The evaluation tests have been performed on a large image database (up to 1 million images.)
Type de document :
Chapitre d'ouvrage
Guillet, Fabrice and Ritschard, Gilbert and Zighed, Djamel Abdelkader and Briand, Henri. Advances in Knowledge Discovery and Management, AKDM'09, 292, Springer, pp.57-76, 2010, Studies in Computational Intelligence, 978-3-642-00579-4. 〈10.1007/978-3-642-00580-0_4〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00770832
Contributeur : Patrick Gros <>
Soumis le : lundi 7 janvier 2013 - 15:34:55
Dernière modification le : mercredi 16 mai 2018 - 11:23:06

Lien texte intégral

Identifiants

Citation

Khang-Nguyen Pham, Annie Morin, Patrick Gros, Quyet-Thang Le. Intensive use of factorial correspondence analysis for large scale content-based image retrieval. Guillet, Fabrice and Ritschard, Gilbert and Zighed, Djamel Abdelkader and Briand, Henri. Advances in Knowledge Discovery and Management, AKDM'09, 292, Springer, pp.57-76, 2010, Studies in Computational Intelligence, 978-3-642-00579-4. 〈10.1007/978-3-642-00580-0_4〉. 〈hal-00770832〉

Partager

Métriques

Consultations de la notice

226