J. Abernethy, A. Agarwal, P. L. Bartlett, and A. Rakhlin, A stochastic view of optimal regret through minimax duality, Proceedings of the 22nd Annual Conference on Learning Theory (COLT-09, 2009.

P. Auer, N. Cesa-bianchi, Y. Freund, and R. E. Schapire, The Nonstochastic Multiarmed Bandit Problem, SIAM Journal on Computing, vol.32, issue.1, pp.48-77, 2003.
DOI : 10.1137/S0097539701398375

S. Ben-david, N. Cesa-bianchi, D. Haussler, and P. M. Long, }-valued functions, Proceedings of the fifth annual workshop on Computational learning theory , COLT '92, pp.74-86, 1995.
DOI : 10.1145/130385.130423

S. Ben-david, D. Pal, and S. Shalev-shwartz, Agnostic online learning, Proceedings of the 22nd Annual Conference on Learning Theory (COLT-09, 2009.

O. Bousquet, S. Boucheron, and G. Lugosi, Introduction to Statistical Learning Theory, Advanced Lectures on Machine Learning Lecture Notes in Artificial Intelligence, vol.3, issue.3, pp.169-207, 2004.
DOI : 10.1007/3-540-45435-7_5

N. Cesa-bianchi, Y. Freund, D. Haussler, D. P. Helmbold, R. Shapire et al., How to use expert advice, Journal of the ACM, vol.44, issue.3, pp.427-485, 1997.
DOI : 10.1145/258128.258179

N. Cesa-bianchi, C. Gentile, and F. Orabona, Robust bounds for classification via selective sampling, Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, pp.121-128, 2009.
DOI : 10.1145/1553374.1553390

K. Crammer and Y. Singer, Ultraconservative Online Algorithms for Multiclass Problems, Journal of Machine Learning Research, vol.3, pp.951-991, 2003.
DOI : 10.1007/3-540-44581-1_7

D. Haussler, Decision theoretic generalizations of the PAC model for neural net and other learning applications, Information and Computation, vol.100, issue.1, pp.78-150, 1992.
DOI : 10.1016/0890-5401(92)90010-D

M. Kaariainen, Generalization error bounds using unlabeled data, Proceedings of the 18th Annual Conference on Learning Theory (COLT-05), pp.127-142, 2005.

S. M. Kakade and A. Kalai, From batch to transductive online learning, Advances in Neural Information Processing Systems (NIPS-05), 2005.

S. M. Kakade, S. Shalev-shwartz, and A. Tewari, Efficient bandit algorithms for online multiclass prediction, Proceedings of the 25th international conference on Machine learning, ICML '08, pp.440-447, 2008.
DOI : 10.1145/1390156.1390212

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Langford and T. Zhang, The epoch greedy algorithm for contextual multi-armed bandits, Advances in Neural Information Processing Systems (NIPS-07, 2007.

N. Littlestone, Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm, Machine Learning, pp.285-318, 1988.

N. Littlestone and M. Warmuth, The weighted majority algorithm. Information and Computation, pp.212-261, 1994.

B. K. Natarajan, On larning sets and functions, Machine Learning, pp.67-97, 1989.

D. Pollard, Convergence of Stochastic Processes, 1984.
DOI : 10.1007/978-1-4612-5254-2

F. Rosenblatt, The perceptron: A probabilistic model for information storage and organization in the brain., Psychological Review, vol.65, issue.6, pp.386-408, 1958.
DOI : 10.1037/h0042519

D. Ryabko, Pattern recognition for conditionally independent data, Journal of Machine Learning Research, vol.7, pp.645-664, 2006.

N. Sauer, On the density of families of sets, Journal of Combinatorial Theory, Series A, vol.13, issue.1, pp.145-147, 1972.
DOI : 10.1016/0097-3165(72)90019-2

D. A. Spielman and S. Teng, Smoothed analysis of algorithms, Journal of the ACM, vol.51, issue.3, pp.385-463, 2004.
DOI : 10.1145/990308.990310

G. Stoltz and G. Lugosi, Learning correlated equilibria in games with compact sets of strategies, Games and Economic Behavior, vol.59, issue.1, pp.187-208, 2007.
DOI : 10.1016/j.geb.2006.04.007

URL : https://hal.archives-ouvertes.fr/hal-00007536

V. Vovk, A Game of Prediction with Expert Advice, Journal of Computer and System Sciences, vol.56, issue.2, pp.153-173, 1998.
DOI : 10.1006/jcss.1997.1556

J. Weston and C. Watkins, Support vector machines for multi-class pattern recognition, Proceedings of the Seventh European Symposium on Artificial Neural Networks, 1999.