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Abstract

Nominal abstract syntax and higher-order abstract syntexige
a means for describing binding structure which is higheelle
than traditional techniques. These approaches have spatwoe
different communities which have developed along simiiaes
but with subtle differences that make them difficult to relakhe
nominal abstract syntax community has devices like namesh{f
ness, name-abstractions with variable capture, and tgeantifier,
whereas the higher-order abstract syntax community hasetev
like A-binders, A-conversion, raising, and th&-quantifier. This
paper aims to unify these communities and provide a concrete
respondence between their different devices. In particula de-
velop a semantics-preserving translation fraffirolog, a nomi-
nal abstract syntax based logic programming languagég, toa
higher-order abstract syntax based logic programminguage.
We also discuss higher-order judgments, a common and palwerf
tool for specifications with higher-order abstract syntamd we
show how these can be incorporated igto. This establishe§ ™
as a language with the power of higher-order abstract sytiiax
fine-grained variable control of nominal specificationg] &me de-
sirable properties of higher-order judgments.

Categories and Subject Descriptors  F.3.1 Logics and Meanings
of Program$: Specifying and Verifying and Reasoning about Pro-
grams; F.4.1l[ogic and Constraint ProgrammifgMathematical
Logic; 1.2.3 [Deduction and Theorem Provihd.-ogic Program-
ming

General Terms Languages, Theory

Keywords proof search, nominal logic, higher-order abstract syn-
tax

* This work has been supported by INRIA through the “Equipeso&i&es”
Slimmer and by the NSF Grant CCF-0917140. Opinions, findirgsl
conclusions or recommendations expressed in this paperthase of the
author and do not necessarily reflect the views of the NatiGe#ence
Foundation.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

PPDP’10, July 26-28, 2010, Hagenberg, Austria.
Copyright© 2010 ACM 978-1-4503-0132-9/10/07. .. $10.00

1. Introduction

Many approaches and languages have been proposed for encod-
ing logical specifications of systems with binding. One gdapap-
proach is based onominal logicwhich formalizes a notion ofi-
equivalence classes along with related devices [18]. Tassléd

to theaProlog language which allows for executing specifications
based on nominal logic [5]. Another popular approach is thase
on higher-order abstract syntawhich uses a weak-calculus to
represent binding in object systems [13, 17]. Formalizipgcs
fication based on higher-order abstract syntax requiresmaef
work with devices for manipulating and forming judgmentsiov
A-terms. The most notable examples of such frameworks are LF
[12] and AProlog [16] which use higher-order techniques for repre-
senting both syntax and judgments.

The success of both the nominal and higher-order approaches
has lead to questions regarding their relationship antivelmerits
such as naturalness and expressiveness. Higher-ordescissin-
tax provides a high-level treatment of binding and is ofteedwith
higher-order judgments to produce elegant specificatidhese
specifications benefit from a free notion of substitutioneirited
from the specification language and from nice propertieskvban
be used when reasoning,g, that substitution for free variables
preserves the validity of judgments. On the other hand, nami
approaches require substitution issues to be dealt withuadlgn
but allow object variables to be manipulated directly. Tigisults
in natural specifications when fine-grained control oveecbyari-
ables is required. The same naturalness is not found inasisitL-
ations when using higher-order judgments. This is not atditiin
of the high-level treatment of binding provided by higheder ab-
stract syntax, but rather of the companion notion of higireler
judgments. In fact, in this paper we show that higher-ortstract
syntax in a suitable framework is capable of at least the szhe
uralness and expressiveness as nominal logic specifisaiidado
this by developing and proving correct a direct translafiam
aProlog programs to definitions i@ ~, a logic with higher-order
abstract syntax.

Higher-order judgments play an important role in highedesr
abstract syntax specifications because of their elegantaiae
properties. It is disappointing that they are abandonedderoto
make this connection between nominal and higher-orderaxist
syntax specifications. We show, however, that higher-ojuldy-
ments can be encoded ¢~ so that their nice features are pre-
served. Thug; ™~ is a language in which the benefits of both nomi-
nal logic and higher-order judgments can be realized.

Let us consider an example to demonstrate the already abose ¢
respondence between specifications based on nominal aner-hig
order abstract syntax. The followingProlog program describes
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type checking forz-terms.
VG, X, T.[te(G,var(X),T) :— lookup(X, T, G)]
VG, E1, Ea, T [tc(G, app(Er, E2), T') :(—
AT.te(G, Er,arr(T,T")) A te(G, B2, T)]
N VG, E, T, T .[tc(G, lam({(z)E), arr(T,T")) :—
2 #G Ate(bind(z, T, G), E, T"))

The last clause illustrates the specification of bindingicttire
and features the nomin#-quantifier for fresh variable names,
name-abstractiofz) £ for denoting object binding structure, and
the fresh relationt#G for enforcing a freshness side-condition.
The same program can be specifieddn using the following
definitional clauses.

VG, X, T.[tc G (var X) T = lookup X T G]
VG, E1, Ea, T .[tc G (app E1 E2) T' &

AT.tc G E1 (arr T T') A te G E2 T)
VG, E, T, T [tc G (lam \z.Exz) (arr TT') &

Vz.te (bindz T G) (Ex) T']

The last clause here features tRiequantifier for fresh variable
names, a-binder for denoting object binding structure, and a func-
tion application( E ) denoting a substitution. In addition, the vari-
able quantification order in the last clause enforces thghfress
side-condition: since: is quantified inside the scope 6f, no in-
stantiation for the latter can contain the former. The tiation we
present in this paper actually generates these definiticinakes
given the originalaProlog program. By studying this translation
and proving it correct, we can pin down the exact relatiomia-
tween the nominal and higher-order devices of these twadfigsec
tions.

It is important to note that this paper is not an attempt to ar-
gue that one approach or another is irrelevant. Nominahigcles
embed nicely in existing theorem provers [20], and highreleo
techniques enable high-level specification and reaso®intl]]. In
addition, this paper does not attempt to relate implemiemtas-
sues associated with executing nominal and higher-orderaait
syntax specifications, such as higher-order, nominal, aivag-
ant unification. Such relationships have been investigatedher
works [3, 22].

The paper is organized as follows. We descriiferolog in
Section 2,G~ in Section 3, and the translation in Section 4. We
discuss the relationship with higher-order judgments ictiSe 5,
and we conclude in Section 6.

2. aProlog

The syntax ofaProlog is made up of terms, goals, and program
clauses which are defined by the following grammars, resbgt

tus=a| X | £@ ] (ab)-t] {a)t
Gu=T|p@) | aftt |t ~u|

GAG |GV G | 3X.G | Na.G
D == WavX.[p@) :— G

For terms,a and b denotenameswhich are used to represent
object language variableX denotes a first-order variable, ayid
denotes a function symbol. Constants are encoded as farsstin-
bols which take no arguments. The constr(cth) - ¢ denotes a
swappingof the names: and b within the term¢. The construct
(a)t is called aname-abstractiorand is used to represent object
language bindings. We assume that all terms are well-typeatd-
ing to a monomorphic typing discipline. We will avoid the aliét

(ab)-a=0d

(ab)-b=a

(ab)-a’'=d (a#d #Db)
(ab)- £(3) = f({ab) 1
(ab){a")t={(ab)-a)(ab) t

= a#b = a# (D)
Ea#b E a#t
= ok o) = Oy
|:t1~U1 ':tn%Un
Fa~a = 7@ ~ /(@)
Et=u Ea#u Et=(abd) u
= (@)t ~ (@) = (@)t ~ by

Figure 1. Swapping, freshness, and equality for ground nominal
terms

of typing, except to note thatProlog requires names to belong
to distinguishechame typesvhich are not inhabited by any other
terms.

Goals are constructed from the usual logical connectives. T
goala#t is afreshnesgonstraint and holds when the namédoes
not occur free relative to name-abstractiong.iffhe equality goal

~ wu denotes a notion ofi-convertibility which treats name-
abstraction as a binder. The gdak.G represents a binding for
the names in the scope of>.

We assume a single form for program clauses. Whkgolog
admits richer forms, these are normalizable to the one ptede
here, possibly by inserting freshness constraints. Theesgn
p(%) is called the head of the clause. A predicate can appear in the
head of multiple clauses. A clause is well-formed if it cansano
free variables or free names. Note that the nana@pears free in
(a)a but not inka.G since the former is not a real binder while the
latter is. We shall consider only well-formed program cksifom
here onwards. AmProlog program is a set of program clauses.

We have presented tiame-restrictedubset ofxProlog where
a andb must be names ifa b) - ¢, (a)t, anda#t. We will focus
on this subset for most of the paper, but will eventually tifis
restriction and treat fullkProlog.

An aProlog expression is a term, list of terms, goal, or program
clause. An expression iground if it does not contain any free
variables, though it may contain free names. We define theimga
of swapping, freshness, and equality for ground nominahseas
shown in Figure 1. We extend the notion of swapping to goatisen
expected way witlia b) -Via'.G = WNa’.(a b)-G wherea # a’ # b
and with(a b) - 3X.G = 3X.(a b) - G. To make sense of this last
equation, we definé b) - X = X, though we leave this out of the
formal definition of swapping since we intend to focus on gbu
terms and goals. We define a permutatioas a composition of
zero or more swappings and we writee to denote the effect of
applying the swappings if to the expressioan.

We assume the standard notions of binding for quantifiers and
useelt/X] to denote capture-avoiding substitution of the term
for the variableX in the expressior. Similarly we writef for a
simultaneous substitution for zero or more variables ghtbr its
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':a#t ':t%u
S 7 - EQUAL
AT RVE Ao TRESH A e B
A= G A= G> AND A= G; OR
A= G1 ANG> A= G1V Gy
A= G[t/X] A= G
A —3Ix.q X578 A — VoG "W
A = 7.(GO)
———— ~ BACKCHAIN
A = p(#)

WhereWa. VX .[p(i@) :— G] € A andr is a permutation and is a
substitution forX such that = . ().

Figure 2. Proof rules foraProlog

application to the expressian Note that name-abstractions are not
really binders and thus substitution can cause name caplge
(@) X)a/X] = (a)a.

We view computation ireProlog as the search for a proof of
the sequenA = G whereA is a set of program clauses and
G is a goal. A sequent is well-formed @ is ground, and we
shall consider only well-formed sequents from here onwatis

—7T 'R —Si=¢ =R

— B1V By

— B — B>
— B1 A By

— Blt/z]
— Jx.B

Bla/x
::T[x./B] VR, a ¢ supp(B)

— B9 e

—pt

Wherevz.[(VZ.p @) £ B] € D andd is a substitution fo£ and#
such that each; 6 is a uniqgue nominal constant,
supp(Z0) N {20} = 0, andi = 6.

Figure 4. Proof rules forg~

Proof. The forwards direction uses the fact that a least Herbrand
model exists forA. The backwards direction is by induction on the
derivation of A — G. |

3. The LogicG~

The logicG™~ is a first-order logic over a higher-order term lan-
guage where specifications are encoded as fixed-point dafimit
for predicates. This is in contrast to languages likerolog and

view of aProlog purposefully ignores issues related to an actual AProlog which use Horn-like clauses to encode specificatibne

implementation such as searching for instantiations fmtemtially
quantified variables and related issues of unification [§, 22
The proof rules forxProlog are shown in Figure 2. In thex-

reason for this departure is th@t is actually a subset of a richer
logic G which is designed for reasoning [9, 10], and within this
larger setting, mechanisms like case-analysis and inolugfive a

ISTSrule,t may contain any names and similarly for the substitu- different meaning to Horn-like clauses than in pure speatifin

tion 6 in BACKCHAIN. In both rules, the substitutions cannot con-
tain free variables, thereby ensuring that goals remainrgtaur-
ing proof search. In th&ACKCHAIN rule we use the relatior:
between lists of terms to mean that respective terms in thdistv
satisfy thex relation.

As an example, le\ be the set of program clauses for type
checking given in the introduction and the assumed clausahé
lookup predicate. The object terthz.\z.z can be assigned the
typea — B — f for any typesa and 8. The corresponding
derivation for this is shown in Figure 3. On the other hand,tédrm
cannot be assigned the type— 3 — o whena is not equal tQ3.

To do so would require the derivation to use the same namefhr b
the first and second abstractions in the term. This is disalioby
the use of the freshness predicate.

An important characteristic atProlog derivations is that they

logics. Our presentation @~ differs from that ofG in some re-
gards, but it is still a proper subset and can be shown to bedsou
relative togG.

The syntax of terms ig ~ is as follows:

ttus=x|clal (tu)| Azt

Herex denotes a variable, denotes a constant, amddenotes a
nominal constantThe termAx.t denotes a binding for the vari-
ablez in the scope of, and we assume the corresponding standard
notations of free and bound variables and capture-avoislitgti-
tution. The scope of a is as far to the right as possible. We will
assume that all terms are fim-long form and that all comparisons
between terms are relative to the standard rulei-obnversion.
Application associates to the left and we wrjtd to abbreviate
pt1 --- tn. We restrict our attention to terms which are well-typed

are equivariant i.e,, unchanged by permutations of names. This relative to a monomorphic typing system. We will avoid théaile

property ensures that the particular choice of names usa in
derivation is immaterial. More formally, one can inductivdefine

a notion of applying a permutation to a derivation so thastitac-
ture and correctness are preserved. Assuming this, wereéit &is
equivalent those derivations which differ only by a perntiotaof
names.

of typing, except to note thal~ allows nominal constants only at
pre-designatedominal typesvhich may or may not be inhabited
by other terms.

Formulas inG~ are terms of a distinguished tyjpe We intro-
duce the constant of type o and the infix constants andV of
typeo — o — o. For each type that does not contaimwe include

Cheney and Urban [6] introduce a Herbrand model based se-the equality constant, of typer — 7 — o and the constant3,

mantics for nominal logic which we can use to show the retativ
consistency and completeness of our presentatianRsblog. In
particular, given a set of nominal logic formul&sand a nominal
logic formula ¢, they writeI" |= ¢ to indicate that any Herbrand
model for all the elements df is a model ofp. Using this notion,
we can prove the following.

Theorem 1. Let A be a set of program clauses add a ground
goal. ThenA = G holds if and only ifA = G has a proof.

andV, of type (r — o) — o. We place the further restriction
on V. thatT must be a nominal type. We drop subscripts when
they can be inferred from the context. We abbreviate the ditam
I(Az.t) andV(Az.t) as3z.t andVz.t, respectively. In summary,
the formulas ofj ~ are described by the following grammar.

B,C:=T|pt|t=u|BAC|BVvVC|3z.B|VzB

Herep denotes any additional predicate symha,, constant of
typert = ... =2 17 — 0.
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E b#bind(a, a, nil)

A = lookup(b, 8, bind(b, B, bind(a, o, nil)))

FRESH BACKCHAIN
A = b#bind(a, o, nil) A = te(bind(b, B, bind(a, o, nil)), var(b), B) AND
= a#nil A = b#bind(a, o, nil) A te(bind(b, 8, bind(a, o, nil)), var(b), B)
—~ 5 FRESH " . BACKCHAIN
A = a#nil A = te(bind(a, o, nil), lam({a)var(a)),arr(B, B))

AND

A = a#nil A te(bind(a, a, nil), lam({a)var(a)),arr(B, B))

BACKCHAIN

A = te(nil, lam({a)lam({a)var(a))),arr(a, arr(B, 5)))

Figure 3. A derivation oftcin aProlog

We useV to quantify over fresh nominal constants. The treat-
ment of V in G~ is based on the so-calletbminal V-quantifier
[19] rather than the earlieminimal V-quantifier [14]. The es-
sential difference is that the nomin&r-quantifier admits ex-
changeVx.Vy.B = Vy.Vx.B, and weakening and strengthen-
ing, Vz.B = B if x does not appear il8. We prefer the nominal
treatment since nominal constants are often used to reyirese-
able names, and these equivalences match our intuitiorns fbsh
variable names. In addition, the nominal treatment oftsulte in
simplified meta-theory and reasoning.

We define the support of a term as the nominal constants which

appear in it:

supp(a) = {a}
supp(Az.t) = supp(t)

supp(z) = supp(c) = 0
supp(t u) = supp(t) U supp(u)

We define the support of a list of terms as the union of their
supports.

Specifications are realized¢h™ throughfixed-point definitions
Fixed-point definitions are given by a set @éfinitional clauses
each of the following form:

VZ.[(VZpt) £ B]

HereVZ.p  and B must be formulas with empty support and free
variables only among. The formulaVz.p i'is called the head of
the clause. A predicate symhomay appear in the head of multiple
clauses. The logi@;~ is parametrized by a set of definitional
clauses which we will calD.

We view computation iy~ as the search for a proof of the se-
guent— B whereB is a closed formula which may contain nom-
inal constants. The proof rules fGr are presented in Figure 4. In
the IR rule we assume is a closed term which may contain any
nominal constants and similar for the substitution indledR rule.

In thedefR rule we assume a notion of pairwise equality on lists of
terms. We require the support@f to be disjoint fromz? to reflect
the order of quantifiers in the definitional clause. In theamdary

of Miller et al.[15], the rules oG~ allow only uniform proofs and
thusG ™~ is an abstract logic programming language.

Assuming the definition ofc from the introduction and a suit-
able definition oflookup, Figure 5 shows thatz.\z.z can be as-
signed the typex — 5 — (. Note that it is not possible to assign
the typec — 8 — awhena is not equal t@8 due to side-condition
on theVR rule.

Derivations inG~ are equivariant with respect to nominal con-
stants,i.e., the particular nominal constants used iga deriva-
tion are irrelevant. Given a permutation of nominal contstaone
can inductively define a notion of applying that permutatiora
derivation so that the structure and correctness are pekefhus
we will treat as equivalent those derivations which diffalyoby a
permutation of nominal constants.

— lookup b B (bind b B (bind a o nil))
— te (bind b B (bind a anil)) (var b) 8
— Va.te (bind z B (bind a a nil)) (var x) B
— te (bind a a nil) (lam Az.var z) (arr 8 B)
— Va.te (bind z anil) (lam Az.var z) (arr 8 )

defR

VR
defR
VR
defR

— tenil (lam Azlam Az.wvar z) (arr o (arr 8 3))

Figure 5. A derivation oftcin G~

4. The Translation

Looking at the rules foProlog andG~ we can already see a
strong similarity. In large part, this is because we haveliped a
view of aProlog free from implementation details and have carved
out G~ from the richer logic ofG. We have, however, remained
faithful to both languages.

One might expect a very simple translation frerProlog to
G~ which mapd/ to V, = to =, names to nominal constants, and
name-abstraction ta-abstraction. This is not far from the truth,
but there is an important nuance concerning the treatmeab-of
stractions in the two systems. In essence, the name-atisirad
aProlog allows names to be captured during substitution evhil
the X-abstraction requires capture-avoiding substitutiorr. &c
ample, consider theProlog goallla.3X.({a)X =~ (b)b). This
goal is provable usingew andexisTswith X asa thus yielding
(a)a = (b)bwhich is true. Now, a naive and incorrect translation of
the original goal intaG~ might produceVa.3X.(Aa.X = Ab.b).
Notice that the two occurrences @fin this goal represent distinct
binders and thus the goal is equivalenMg.3X.(Az.X = A\b.b).
This formula is not provable ig ~ since capture-avoiding substitu-
tion does not allow any value fox to be captured by the binder for
z. Instead, we need a translation which makes the possihihlar
captures ireProlog explicit. For instance, the original goal may be
translated to essentialX.(Aa.X a = Ab.b) which has the so-
lution X = Az.z. In this formula, the variabl&X has beemaised
over a to indicate its possible dependence on it. This is a standard
technique which is used in relating nominal and higher-otelen
languages [22]. In the actual translation we will use rajsimen-
code all such dependencies.

The translation fronaProlog toG ~ is presented in Figure 6 and
makes use of some new notation which we define now.

In the translation for terms, we map names to nominal cotstan
and for simplicity we overload notation to use the same naiaes
both. We use the same overloading for bound variables ardifum
symbols. We abuse notation in our translation to allow bowari
ables inaProlog to be raised over nominal constants. This is just
an intermediate form which is translated t@a bound variable
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o(ab) ) =

6z (p1) = Vi.p 6(0)
¢a(T)=T
¢a (aftt)
da (t = u)

Va.freshg(a) ¢(t)
Va.(¢(t) = ¢(u))

6 (MavX [p(@) - 6]) = VE.[(Vap o(to)) £ ¢

(a b) - o(t)

#(Go))] whereo = {Xa@/X | X € X}

Figure 6. Translation fronProlog toG ~

with the same name raised over the same nominal constargs. Th
translation for swappings produces a similar operatiotiegpo a

G~ term which we represent with the same notation. The meaning
of a swapping applied to @~ term is to replace all occurrences
of one nominal constant with another and vice-versa. Inreshto
aProlog, this operation can be carried out completely evenda-
ground terms since all variables of the translation areechver

the existing nominal constants they may depend on. Thugpp-swa
ping can be carried out on the nominal constants over whigh va
ables are raised without having to know the eventual valisiof
variables. Lastly, the translation for name-abstractimaps them

to A-binders. Although nominal constants and bound variahles a
from separate syntactic classegjn, we abuse notation here and
in the future to write a binder for a nominal constant. The nireg

of \a.t wherea is a nominal constant idx.t” wherez is a fresh
bound variable name arttlis the result of replacing all occurrences
of a in ¢ with z.

As indicated in the initial discussion, our translation de¢o
pushV-binders underneath-binders so that the dependencies can
be made explicit. This is embodied in our translation forlgoa
which is parametrized by a list of hames which correspond to
V-bound variables being pushed down to the atomic formulas.
The following equivalences describe how tirequantifier can be
pushed down in a formula.

Ve T=T
Vz.(BAC) = (Vz.B) A (Vz.C)
Vz.(BV ()= (Vz.B)V (Vz.C)

V2.3X.B = 3X.V2.B[X z/X]

In the translation for a freshness goal we make use of a distin
guished predicatéreshwhich we assume is defined by the single
definitional clausevz.(Vz.freshz ) £ T. Thus— fresha t

is provable if and only ifa is a nominal constant which does not
appear int. Lastly, note that we translate ti-quantifier tov-
quantifier by adding the quantified name to the list of evdhtua
V-bound variables.

The translation for program clauses embodies essentiadly t
same ideas as for translating goal formulas. The ddtquantifiers
are translated t&/-quantifiers that need to be pushed underneath
the universal quantifiers. This exchange induces the saisiega
substitution as when pushirig-quantifiers underneath existential
quantifiers. Wher\ is a set of program clauses we defifig\) =
{¢(D) | D € A}.

Note that aside from changing the scopeNofjuantifiers, the
translation essentially preserves term and logic strectifore-
over, the translation makes the expected connections batwe

N and V, ~ and =, names and nominal constants, and name-
abstraction and-abstraction.

4.1 Examples

We now present a few examples to illustrate the translatiah a
also to suggest some simple ways in which the results may be
improved. In presentingrProlog program clauses we will elide
outermost/l andV-quantifiers and instead use the convention that
all free lowercase symbols denote names and all free upgeerca
symbols denote variables, all of which are captured by puogr
clause quantifiers. Fag~ definitions we elide the outermost
quantifiers and assume that all capitalized symbols denath s
universally quantified variables. These examples are tdil@an
Cheney and Urban [6].

4.1.1 Type checking

Consider again the example from the introduction, wherefahe
lowing program clauses specify type checking Xeterms.

te(G,var(X),T) :— lookup(X, T, Q)
te(G, app(En, E2),T') :—

AT .te(G, Ev,arr(T,T")) A te(G, B2, T)
te(G,lam((z)E), arr(T,T")) :—

z#G A te(bind(z, T, G), B, T")

Here we assuméookup is defined in the expected way. These
program clauses translate to the following definitionalisks.

tc G (var X) T £ lookup X T G
tc G (app Er E2) T A
IT.tc G Ey (arr T T') ANteG Ex T
(Va.tc (Gz) (lam Mx.Ex) (arr (Tx) (T z))) 2
(Va.freshz (G z)) A
(Va.tc (bind z (T x) (Gx)) (Ex) (T z))

In general, a few simplifications can improve the resultsha t
translation. We illustrate these here as applied to theclasse for

te. First, by examining types we can recognize that the obypest

T andT” cannot actually depend on the object term variabéand
thus they do not need to be raised over it. More formally, welrsse

a notion like subordinationto detect such vacuous dependencies
[23]. Second, the freshness constraint®nan be solved statically:
we know thatG must not depend on its first argument. Finally,
after performing the previous two simplifications we carogrize
that theV-quantifier in the head of the definition is vacuous and
can thus be dropped. In the end we are left with the following
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definitional clause:
tcG (lam A\x.Ex) (arr TT') &
Va.tc (bindz T G) (Ex) T’

The definitional clauses fak: now match what one would expect
to write in G~ . Indeed, they are exactly specification presented in
the introduction.

4.1.2 Polymorphic type generalization

The following program clauses describe a relationship am@n
polymorphic type, a list of distinct names for the binderghat
type, and the resulting monomorphic type which comes frol su
stituting the names for the binders.

spec(monoTy(T),nil, T) :— T
spec(polyTy({a)P),cons(a, L), T) :—
a#L A spec(P,L,T)
This is translated to the following definitional clauses:
spec (monoTy T)nil T 2 T
(Va.spec (polyTy Aa.P a) (cons a (La)) (T a)) =
(Va.fresha (L a)) A (Va.spec (Pa) (La) (T a))

In this last clause we can again simplify the freshness ¢iomdio
produce the following.

(Va.spec (polyTy Aa.P a) (cons a L) (T a)) £
Va.spec (Pa) L (T a)
4.1.3 Capture-avoiding substitution

The following program clauses realize capture avoidingsstib
tion for A-terms via a predicateubst(E, T, X, E') which holds
exactly whenE [T/ X] = E'.

subst(var(X),E, X,E) :— T
subst(var(z), E,y,var(x)) :(— T
subst(app(M,N), E, X, app(M',N')) :—
subst(M,E, X, M') A subst(N, E, X, N")
subst(lam({y)R), E, X, lam({y)R')) :—
y#X ANy#E A subst(R,E, X, R)

These program clauses translate to the following defiration
clauses:

subst (var X\) EXE42T

(Va,y.subst (vary) (BExy) z (vary)) £ T

subst (app M N) E X (app M’ N') &
subst M EX M' Asubst NE X N’

(Vy.subst (lam \y.Ry) (Ey) (X y) (lam M\y.R'y)) £
(Vy.freshy (X y)) A (Vy.freshy (Ey)) A
(Vy.subst (Ry) (Ey) (Xy) (R'y))

Simplifying the freshness constraints and removing vasuGt
binders in the last clause produces the following.

subst (lam M\y.Ry) E X (lam \y.R'y) =
Vy.subst (Ry) E X (R'y)
4.2 Correctness

The soundness and completeness of our translation are dhown
the following results. We elide most details, but show thpamtant
lemmas and interesting cases.

Lemma 2. Leta be a name and a ground«Prolog term. Then
= a#t holds if and only if— fresh¢(a) ¢(t) has a proof inG~.

Proof. Induction ont. O

Lemma 3. Lett andu be groundaProlog terms. Thel= ¢t ~ u
holds if and only ifp(t) = ¢(u).

Proof. Induction ont. O

We define the support of amProlog term as the set of all names
which appear free relative to name-abstractiares, supp(t) =
{a | a+#tt does nothold. This is consistent with the definition
of support forG~ terms sincep(supp(t)) = supp(o(t)). For a
substitutiond we define¢(0) = {¢(t)/¢(z) | t/x € 0} and
supp(0) = U, e SUPP(?).

Lemma 4. Lett be anaProlog term andf a substitution, then

B(t0) = ¢(t)p(0).
Proof. Induction ont. O

Lemma 5. Let G be anaProlog goal, § a substitution, andi
a list of names such thatupp(0) N {@} = 0, then¢z(GH) =

$a(G)p(0).

Proof. Induction onG. Consider whei&@ = b#t¢. Thengz(G0) =
Va.fresh ¢(b0) ¢(t0) = Va.(fresh ¢(b) ¢(t))p(9). Since
supp(f)N{a} = 0, we can move the substitution outside of ¥ie
binder to obtainVa.(fresh¢(b) ¢(t)))#(0) = ¢a(G)e(6). O

Theorem 6. Let A be a set of program clause&, a ground goal,
anda a list of distinct names. There is a proof Af —- G if and
only if there is a proof of— ¢z(G) assuming the definitional
clausesp(A) and the clause fofresh

Proof. In the forwards direction, the proof is by induction on the
height of theaProlog proof. First consider when the proof ends
with FRESHsO thatG = b#t¢. Then it must be that b#t which
means— fresh ¢(b) ¢(t) has a proof. Thus— ¢z(G) which

is — Va.fresh¢(b) ¢(t) also has a proof. The cases ftRUE,
EQUAL, AND, andoOR are similarly easy.

Suppose the proof ends withxisTs so thatG = 3X.G’
and A = G'[t/X] has a proof for some. By induction we
know — ¢z(G'[t/X]) has a proof. We would like to move the
substitution outside of, but we cannot do so unless the support
of the substitution is disjoint fromd. Abusing notation, we do
this by splitting the substitution into two parts. That isg Wnow
— ¢z(G'[X @/X][ a.t/X]) has a proof. Now thel are not
free in the second substitution and thus we can apply Lemma 5
to conclude that— ¢z(G'[X d/X])[Ad.¢(t)/¢(X)] has a proof.
Thus— 3X.¢z(G'[X @/X]) has a proof and this is the same as
— ¢z(3X.G"). The case foOBACKCHAIN is similar in spirit, but
more complex in the details.

Lastly, suppose the proof ends witlEw so thatG = Wb.G’
andA = G’ has a proof. By induction— ¢z,(G’) also has a
proof which is the same as— ¢ (1b.G").

In the backwards direction, the proof is by induction on the
height of theG~ proof with a nested induction on the size Gf
Consider first wher? is t ~ u. We assume— ¢z(t ~ u) has
a proof which means that— Va.¢(t) = ¢(u) has a proof and
thus— ¢(t) = ¢(u) also does. Therefore- ¢ ~ w is true and
A = t ~ u has a proof. The cases for whéhis T, a freshness
relation, a conjunction, or a disjunction are similarlyeas

Suppose = 3X.G’ so that— ¢z(G'[X @/X])[t/X] has a
proof for some. It must be that = Ad.¢(u) for someu. Since the
support of the outer substitution is disjoint frafrwe can move it
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inside to know— ¢z(G'[X @/X][Ad.u/X]) has the same proof
and this is just— ¢z (G’ [u/X]). By inductionA = G'[u/X]
has a proof and thuA = 3X.G" has a proof. Again, the case for
whend is a predicate is similar in spirit, but more complex in the
details.

Finally supposes = V.G’ so that— ¢4,(G’) has a proof.
By the inner induction hypothesidy = G’ has a proof and thus
so doesA = Ub.G'. O

4.3 Extending the translation

We now drop the name-restriction afProlog and allow: andb to
be arbitrary terms in expressions of the fatg#t, (a b)-t, and{a)t.
The translation is easily extended to this richer langu&gmals of
the form u#t translate tofresh u ¢ as before. Terms which do
not satisfy the name-restriction are first simplified so tdhhon-
name-restricted swappings and name-abstractions apgeartap
level of an equality goal. Then these translate to distisiyed
predicates which implement swapping and name-abstractiuis
simplification is only needed statically since instantia§ during
proof search can only contain ground terms, thus ensuratgitn-
name-restricted terms do not appear dynamically.

To simplify a non-name-restricted term of the fomy us2) - ¢
or (u)t we replace it with a fresh variable, sa$, conjoin the
distinguished goat’ & (u1 u2) - t ort’ & (u)t respectively, and
quantifyt’ appropriately (existentially when replacing terms in the
body, universally when replacing terms in the head of a @nogr
clause). This forces all terms to be name-restricted exteptop
level of terms occurring on the right side of the relation. We
extend the translation to deal with this relation as follows

da(t’ & (u1 u2) - t) = Va.swapuy us t t
da(t’ & (u)t) = Va.abstu t t'
Whereswapandabstare defined by the following:
VE.[(Vz,y.swapz y (Exzy) (Eyz)) = T]
VE.[(Vz.swapz z (Ex) (Exz)) = T]
VE.[(Vz.abstr (Ez) (Az.Ex) £ T]

In practice it seems that non-name-restricted swappings an
name-abstractions are exceedingly rare. Still, it is ne@sg that
such detailed manipulations of variables and binding areums
cinctly described i .

The following lemmas show that our manipulations of fornsula
are sound and thawapand abstcorrectly capture swapping and
name-abstraction, and therefore the extended translatianbe
shown to be sound and complete.

Lemma 7. If t = v andA[t/x] = G[t/z] has a proof then so
doesAfu/z] = Glu/z].

Proof. Induction on the height of the proof. a

Lemma 8. Lett and (a b) - t be ground nominal terms. Then
= t' =~ (ab) - t holds if and only if— swapa b t t' is provable
ing™.

Proof. Induction ont. O

Lemma 9. Lett’ and(a)t be ground nominal terms. Théa ¢’ ~
(a)t holds if and only if— absta t t' is provable inG .

Proof. Induction ont. O

5. Higher-order Judgments

Higher-order judgments are a common and powerful tool fecsp
fications using higher-order abstract syntax. Among othigs,
they have nice properties which are often used when reagonin
about such specifications. These properties do not dirkottyfor

G~ specifications, so one may question if we have to give them up
in any system which admits translations from nominal logiecs
ifications. This is not the case: higher-order judgmentshEen-
coded inG~ while keeping their nice properties. Although this does
not provide a direct connection between nominal logic djmeci
tions and higher-order judgments, it does show how the esjre-
ness and benefits of both approaches can coexist.

Our translation produces specifications usirggak higher-order
abstract syntaxi.e., using abstractions only at distinguished vari-
able types. With higher-order judgments it is much more comm
to usefull higher-order abstract syntax.e., where abstraction is
used at the same type as the terms being constructed. Foplexam
A-terms would be represented using only the following two-con
stants.

app : tm — tm — tm lam : (tm — tm) — tm

This representation provides a free notion of captureeingisub-
stitution based on meta-levglreduction whereas a weak higher-
order abstract syntax encoding would provide only varigblke
variable substitution. The following example defines eatibn for
A-terms using the free notion of capture-avoiding substitut

eval (lam Az.Rz) (lam dx.Rx) £ T
eval (app M N)V =
3R.eval M (lam Ax.Rx) Aeval (RN)V

With full higher-order abstract syntax, we can still digfirish vari-
ables from other terms by using a definition sucki¥as.namez) =

T which holds only on nominal constants. For example, theispec
fication of type checking foh-terms represented using full higher-
order abstract syntax can be written as follows:

tc G X T £ nameX A lookup X T G
tc G (app E1 E2) T £

IT.tc G Ey (arr T T') ANtceG Ex T
tcG (lam M. Ex) (arr TT') 2

Vz.tc (bindx T G) (Exz) T’

Thus inG~ we have the same naturalness and expressiveness with
full higher-order abstract syntax as with the weaker versio

Moving to higher-order judgments, the specification foretyp
checking)\-terms can be written as follows kProlog [16]:

tc (app M N) B :— (tc M (arr AB) Atc N A)
tc (lam Az.Rx) (arr A B) :— (Vz.tcx A = tc (Rz) B)

Heretc does not carry around an explicit typing context. Instead,
the context in\Prolog is used to remember typing assignments
for bound variables: thg-quantifier encodes fresh variable names
and the=- connective encodes hypothetical assumptions. Besides
elegance, the real benefit of this encoding is that the uyiderl
logic enjoys meta-theoretic properties such as cut-adbilissand

the preservation of provability under instantiations faiversal
variables. As a result, if one wants to reason about thisfgetoon
they obtain a free object-level substitution resultfowhich says,
roughly, if tc (lam Ax.Rz) (arr A B) andtc N A are both
derivable, thertc (RN) B is also derivable. Such substitution
lemmas are quite common and useful, for example, in shovialg t
evaluation preserves typing.
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Higher-order judgments do not allow one to directly distin-
guish between free variables, and this can result in awksped-
ifications in some instances. For example, the followitferolog
clauses specify a notion of inequality oveterms:

aneq (var a) (var b) :— T
aneq (app M1 N1) (app M2 N2) :— aneq My Ma

(
aneq (app M1 N1) (app M2 N3) :— aneq N1 N2
(
(

aneq (lam (a)R1) (lam (a )Rz) :— aneq R1 R
aneq (var X) (app M N) :—

There is no equally natural way to express this with highreleo
judgments due to the need to distinguish between variabléei
first clause (see [6] for an example encoding\Prolog). In fact,
the ability to distinguish between variables is fundamintd odds
with the idea of a free substitution property for variabliegs such
substitutions may cause two different variables to be mitted
to the same term. Thus, higher-order judgments necessachya
degree of naturalness for some specifications.

It is important to note that in a dependently-typed systdm li
LF higher-order abstract syntax and higher-order judgment-
lapse into a single notion [12]. While this provides for aywei-
egant system, we should not let it confuse us between these tw
notions. As our translation has shown, higher-order abistyatax
allows for specifications that are at least as natural andessjve
as what is possible inProlog, while higher-order judgments may
occasionally fall short.

We now propose a specification methodology which allows one
to use the full natural expressiveness of definitionsjin while
still being able to take advantage of higher-order judgmest
that we can benefit from their elegance and associated pieper
when reasoning. The idea is to encode an interpreter forehigh
order judgments as a definition i~ and use this to encode
particular higher-order judgment specifications. In thélagic G
which is used for reasoning, one can prove general instamtia
and cut-admissibility properties for the encoding of higheder
judgments. These properties are then inherited for freeryy a
specification written using higher-order judgments.

For simplicity of presentation we consider only the second-
order fragment oAProlog. It is possible to encode full higher-order
AProlog, but second-order is sufficient for the majority ofex
ples. The encoding of second-ordeProlog intoG ™ is presented
in Figure 7. In this encoding is an infix constructor for lists, and
(+) is used to distinguish atomic formulas. Since we are corisige
only second-ordekProlog, we assumd is atomic inA = B. The
formulaseqL G will hold when the\Prolog formulaG is provable
from the atomic assumptions ih and the clauses of our particu-
lar specification. These latter clauses are encoded viaréucate

prog which holds on the head and body of each encoded clause.

For example, the clauses for thepredicate are encoded into the
following progclauses:

prog(tc (app M N) B)

({tc M (arr AB)) A {tc N A)) 2T

prog(tc (lam Az.Rz) (arr A B))
(Vxtcz A= {tc(Rz) B)) £ T

The segencoding of second-ordeiProlog retains the desirable
properties of the logic which we formally state below. Moren
these properties can be proven completely within the fgjiidg;.

Lemma 10 (Instantiation) Let ¢ be a nominal constant antda
term of the same type. H— seqL G then— seqL[t/c] G[t/c].

memberB (B:: L) 2 T
memberB (C :: L) & memberB L
seqgLT2T

seqL (B AC) £ seqL B A seqL C
seqL (BV C) £ seqL BV seqL C
seqL (A= B)£seq(A: L) B
seqL (Vz.Bz) = Vz.seqL (B z)
seqL (A) £ memberA L

seqL (A) £ 3B.progA B A seqL B

Figure 7. Second-ordeAProlog inG~

Lemma 11 (Cut admissibility) If — seq (A
— seqL (A) then— seqL G.

@ L) G and

Lemma 12 (Monotonicity). If — seqL G and every element of
L appears inK then then— seqK G.

When working with full higher-order abstract syntax, Lem-
mas 10 and 11 are quite powerful and provide the object-mue!
stitution lemmas described earlier. Although a definitide Iseq
could be encoded iaProlog or a similar language, the correspond-
ing lemmas would not be as useful because of the weaker naition
substitution.

A fundamental restriction of the proposed method for spesifi
tion is that whileG ™ definitions can make use of higher-order judg-
ments, it is not possible for higher-order judgments to@selef-
initions. This restriction is inherent in our encoding weagand is
necessary to preserve the desirable meta-propertiestofhayder
judgments. Note, however, that this is a restriction on toin
flow” and not “data-flow” since we may still use higher-ordedg-
ments to specify a value which is then fed intGa specification.

6. Conclusions and Future Work

Our translation provides a direct and concrete connectatwéden
aProlog andG ™ including a tight mapping from the devices of
the former to the corresponding devices of the latter. Irti@ar

lar, our translation provides an understanding of the iaiahip
between thé1 andV-quantifiers. When used at distinguished vari-
able types, thév-quantifier exactly captures the meaning of the
M-quantifier, at least from the perspective of specificatidow-
ever, theV-quantifier can also be used at types which contain other
constructors which is essential for full higher-order et syntax
and which is not possible with current understandings oflthe
quantifier. In addition, using raising and tfreshpredicate, thé/-
quantifier can be freely moved up and down in a formula whereas
the -quantifier is always given a large scope since nominal logic
does not have raising and therefore cannot push/tugiantifier
underneath other quantifiers.

Through our translation we have also shown that higherrorde
abstract syntax specifications can have at least the saomaimaiss
and expressiveness as nominal logic specifications. Thatires
specifications are based on weak higher-order abstracsyimit
we have argued that the same qualities can be found with full
higher-order abstract syntax. Therefore, despite beirgrahigh-
level approach to binding, higher-order abstract syntax il
be used naturally in specifications which demand a fine-gcain
control over variables.
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We have acknowledged the occasional failings of higheeiord
judgments to naturally capture some aspects of specificaiio
volving binding. We have proposed a method which allows one t
use higher-order judgments when relevant and a strongeifispe
cation language when preferred. This method allows onertefiie
from the elegance of higher-order judgment during spetifina
and from their associated meta-properties during reagonin

Thus we have presented the logic programming lang@age
which has the power of higher-order abstract syntax, the fine
grained variable control of nominal specifications, anddh#ity
to capture the desirable properties of higher-order judgme

It seems possible to develop a fairly direct reverse tréioslia
from G~ to aProlog in the cases where only weak higher-order ab-
stract syntax is used. We have not pursued this line of waorgesi
full higher-order abstract syntax is more common and isirequ
to reap the complete benefits of using higher-order judgsndiot
wards this, Gabbay and Cheney have developed a translation f
FOMY, afirst-order logic with\-terms, full higher-order abstract
syntax, and th&/-quantifier, to a variant of nominal logic witk-
terms and thél-quantifier [2, 7]. Their translation makes a simi-
lar connection between tHé- and V-quantifiers as in this paper
though in the opposite direction. However, the presencetefms
in their nominal logic is unorthodox and it would be intefegtto
see a similar result for a more traditional nominal logic.

We have ignored issues of executing specifications in our dis
cussions, but we consider them briefly now. Maftrolog specifi-
cations can be efficiently executed [6, 22], while some negan
expensive operation known aguivariant unificatiorto backchain
on clauses with/-quantifiers in the head [4]. It should also be
possible to efficiently execut§™ definitions in a similar way,
with similar issues when unfolding definitional clauseshait-
quantifiers in the head. The difficulty of this correspondsgtdy
with that of solving equivariant unification problems darProlog.
However, specifications i~ tend to usév-quantifiers in the head
of definitions less often thamProlog use#1-quantifiers in the head
of clauses sincg ™ has real\-binders whereaaProlog must use
M-quantification and name-abstraction to represent a hifidesf-
ficiently execute such benign uses of teguantifier in the head
of clauses, researchers have studied the notidfrgbal formulas
[6, 21] which are essentially those which translatejto defini-
tions without V-quantifiers in the head of clauses except for the
distinguishedresh swap andabstpredicates.

In the worst case, our translation may produce a quadratic in
crease in the size of formulas due to raising. In practids,dbes
not appear be an issue for several reasons. First, mosfispgons
mention few object variables per formula and thus the amotint
raising required is fairly limited. Second, by making degencies
explicit via raising we are able to statically solve freskmeon-
straints as shown in the examples. This removes some raisithg
decreases the number of atomic formulas in a definition.d ke
are not proposing that specificationsgn be written as if trans-
lated fromaProlog. Specifications that instead use full higher-order
abstract syntax and the corresponding notion of substituiti-
herit free implementation benefits. For example, an implgaten
can lazily apply substitutions which may result in significaer-
formance improvements. Further research is needed toatetur
assess the relative efficiency of nominal and higher-ortstract
syntax specifications.

The Abella system [8] is a theorem prover for the logi@and
supports the proposed method of specification where higikr
judgments are mixed wit§ definitions. In practice, we have found
that this hybrid style provides a nice compromise betweegagice
and practicality. The reasoning over such specificationsefits
from the meta-properties of higher-order judgments as erpe
and from the naturalness of specifications which directly e

features ofj. Abella can also execute these specifications, though it
is not optimized for this. Through the translation givertistpaper,

it is possible to use Abella to execute and reason abéublog
specifications. An interesting direction for future work wic be

to assess such capabilities and to possibly develop thelitidyp
within Abella.

Finally, we note that higher-order judgments are incorsatra
in G via a definition and not by using the universal quantifier and
implication of G. Indeed, the latter devices have a much different
behavior inG than in higher-order judgments. In higher-order judg-
ments, universal quantification denotes a generic quaatiidic and
implication denotes a fixed assumption.dnuniversal quantifica-
tion denotes a quantification over each and every possihle ead
implication restricts attention to worlds in which the hyipeses
are provable. The Bedwyr system is based oncalike logic and
uses these devices to encode and execute specificationsdef-mo
checking behavior such as bisimulation for the finitealculus [1].
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