
HAL Id: hal-00772522
https://inria.hal.science/hal-00772522

Submitted on 10 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Relating nominal and higher-order abstract syntax
specifications

Gacek Andrew

To cite this version:
Gacek Andrew. Relating nominal and higher-order abstract syntax specifications. Proceedings of
the 2010 Symposium on Principles and Practice of Declarative Programming, Jul 2010, Hagenberg,
Austria. �hal-00772522�

https://inria.hal.science/hal-00772522
https://hal.archives-ouvertes.fr

ar
X

iv
:1

00
3.

54
47

v2
 [

cs
.L

O
]

14
 M

ay
 2

01
0

Relating Nominal and Higher-order
Abstract Syntax Specifications

Andrew Gacek∗

INRIA Saclay –Île-de-France & LIX/́Ecole polytechnique
Palaiseau, France

gacek@lix.polytechnique.fr

Abstract
Nominal abstract syntax and higher-order abstract syntax provide
a means for describing binding structure which is higher-level
than traditional techniques. These approaches have spawned two
different communities which have developed along similar lines
but with subtle differences that make them difficult to relate. The
nominal abstract syntax community has devices like names, fresh-
ness, name-abstractions with variable capture, and theN-quantifier,
whereas the higher-order abstract syntax community has devices
like λ-binders,λ-conversion, raising, and the∇-quantifier. This
paper aims to unify these communities and provide a concretecor-
respondence between their different devices. In particular, we de-
velop a semantics-preserving translation fromαProlog, a nomi-
nal abstract syntax based logic programming language, toG−, a
higher-order abstract syntax based logic programming language.
We also discuss higher-order judgments, a common and powerful
tool for specifications with higher-order abstract syntax,and we
show how these can be incorporated intoG−. This establishesG−

as a language with the power of higher-order abstract syntax, the
fine-grained variable control of nominal specifications, and the de-
sirable properties of higher-order judgments.

Categories and Subject Descriptors F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams; F.4.1 [Logic and Constraint Programming]: Mathematical
Logic; I.2.3 [Deduction and Theorem Proving]: Logic Program-
ming

General Terms Languages, Theory

Keywords proof search, nominal logic, higher-order abstract syn-
tax

∗ This work has been supported by INRIA through the “Equipes Associées”
Slimmer and by the NSF Grant CCF-0917140. Opinions, findings, and
conclusions or recommendations expressed in this papers are those of the
author and do not necessarily reflect the views of the National Science
Foundation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPDP’10, July 26–28, 2010, Hagenberg, Austria.
Copyright c© 2010 ACM 978-1-4503-0132-9/10/07. . . $10.00

1. Introduction
Many approaches and languages have been proposed for encod-
ing logical specifications of systems with binding. One popular ap-
proach is based onnominal logicwhich formalizes a notion ofα-
equivalence classes along with related devices [18]. This has led
to theαProlog language which allows for executing specifications
based on nominal logic [5]. Another popular approach is based
on higher-order abstract syntaxwhich uses a weakλ-calculus to
represent binding in object systems [13, 17]. Formalizing speci-
fication based on higher-order abstract syntax requires a frame-
work with devices for manipulating and forming judgments over
λ-terms. The most notable examples of such frameworks are LF
[12] andλProlog [16] which use higher-order techniques for repre-
senting both syntax and judgments.

The success of both the nominal and higher-order approaches
has lead to questions regarding their relationship and relative merits
such as naturalness and expressiveness. Higher-order abstract syn-
tax provides a high-level treatment of binding and is often used with
higher-order judgments to produce elegant specifications.These
specifications benefit from a free notion of substitution inherited
from the specification language and from nice properties which can
be used when reasoning,e.g., that substitution for free variables
preserves the validity of judgments. On the other hand, nominal
approaches require substitution issues to be dealt with manually,
but allow object variables to be manipulated directly. Thisresults
in natural specifications when fine-grained control over object vari-
ables is required. The same naturalness is not found in similar situ-
ations when using higher-order judgments. This is not a limitation
of the high-level treatment of binding provided by higher-order ab-
stract syntax, but rather of the companion notion of higher-order
judgments. In fact, in this paper we show that higher-order abstract
syntax in a suitable framework is capable of at least the samenat-
uralness and expressiveness as nominal logic specifications. We do
this by developing and proving correct a direct translationfrom
αProlog programs to definitions inG−, a logic with higher-order
abstract syntax.

Higher-order judgments play an important role in higher-order
abstract syntax specifications because of their elegance and nice
properties. It is disappointing that they are abandoned in order to
make this connection between nominal and higher-order abstract
syntax specifications. We show, however, that higher-orderjudg-
ments can be encoded inG− so that their nice features are pre-
served. ThusG− is a language in which the benefits of both nomi-
nal logic and higher-order judgments can be realized.

Let us consider an example to demonstrate the already close cor-
respondence between specifications based on nominal and higher-
order abstract syntax. The followingαProlog program describes

ha
l-0

07
72

52
2,

 v
er

si
on

 1
 -

10
 J

an
 2

01
3

Author manuscript, published in "Proceedings of the 2010 Symposium on Principles and Practice of Declarative Programming (2010)"

http://arxiv.org/abs/1003.5447v2
http://hal.inria.fr/hal-00772522
http://hal.archives-ouvertes.fr

type checking forλ-terms.

∀G,X, T.[tc(G, var(X), T) :− lookup(X, T,G)]

∀G,E1, E2, T
′.[tc(G, app(E1, E2), T

′) :−

∃T.tc(G,E1, arr(T, T
′)) ∧ tc(G,E2, T)]

Nx.∀G,E, T, T ′.[tc(G, lam(〈x〉E), arr(T, T ′)) :−

x#G ∧ tc(bind(x, T,G), E, T ′)]

The last clause illustrates the specification of binding structure
and features the nominalN-quantifier for fresh variable names,
name-abstraction〈x〉E for denoting object binding structure, and
the fresh relationx#G for enforcing a freshness side-condition.
The same program can be specified inG− using the following
definitional clauses.

∀G,X, T.[tc G (var X) T , lookup X T G]

∀G,E1, E2, T
′.[tc G (app E1 E2) T

′
,

∃T.tc G E1 (arr T T ′) ∧ tc G E2 T]

∀G,E, T, T ′.[tc G (lam λx.E x) (arr T T ′) ,

∇x.tc (bind x T G) (E x) T ′]

The last clause here features the∇-quantifier for fresh variable
names, aλ-binder for denoting object binding structure, and a func-
tion application(E x) denoting a substitution. In addition, the vari-
able quantification order in the last clause enforces the freshness
side-condition: sincex is quantified inside the scope ofG, no in-
stantiation for the latter can contain the former. The translation we
present in this paper actually generates these definitionalclauses
given the originalαProlog program. By studying this translation
and proving it correct, we can pin down the exact relationship be-
tween the nominal and higher-order devices of these two specifica-
tions.

It is important to note that this paper is not an attempt to ar-
gue that one approach or another is irrelevant. Nominal techniques
embed nicely in existing theorem provers [20], and higher-order
techniques enable high-level specification and reasoning [9, 11]. In
addition, this paper does not attempt to relate implementation is-
sues associated with executing nominal and higher-order abstract
syntax specifications, such as higher-order, nominal, or equivari-
ant unification. Such relationships have been investigatedin other
works [3, 22].

The paper is organized as follows. We describeαProlog in
Section 2,G− in Section 3, and the translation in Section 4. We
discuss the relationship with higher-order judgments in Section 5,
and we conclude in Section 6.

2. αProlog
The syntax ofαProlog is made up of terms, goals, and program
clauses which are defined by the following grammars, respectively:

t, u ::= a | X | f(~t) | (a b) · t | 〈a〉t

G ::= ⊤ | p(~t) | a#t | t ≈ u |

G ∧G′ | G ∨G′ | ∃X.G | Na.G

D ::= N~a.∀ ~X.[p(~t) :− G]

For terms,a and b denotenameswhich are used to represent
object language variables,X denotes a first-order variable, andf
denotes a function symbol. Constants are encoded as function sym-
bols which take no arguments. The construct(a b) · t denotes a
swappingof the namesa and b within the termt. The construct
〈a〉t is called aname-abstractionand is used to represent object
language bindings. We assume that all terms are well-typed accord-
ing to a monomorphic typing discipline. We will avoid the details

(a b) · a = b

(a b) · b = a

(a b) · a′ = a′ (a 6= a′ 6= b)

(a b) · f(~t) = f(
−−−−→
(a b) · t)

(a b) · 〈a′〉t = 〈(a b) · a′〉(a b) · t

a 6= b

|= a#b

|= a#t1 . . . |= a#tn

|= a#f(~t)

|= a#〈a〉t

|= a#b |= a#t

|= a#〈b〉t

|= a ≈ a

|= t1 ≈ u1 . . . |= tn ≈ un

|= f(~t) ≈ f(~u)

|= t ≈ u

|= 〈a〉t ≈ 〈a〉u

|= a#u |= t ≈ (a b) · u

|= 〈a〉t ≈ 〈b〉u

Figure 1. Swapping, freshness, and equality for ground nominal
terms

of typing, except to note thatαProlog requires names to belong
to distinguishedname typeswhich are not inhabited by any other
terms.

Goals are constructed from the usual logical connectives. The
goala#t is afreshnessconstraint and holds when the namea does
not occur free relative to name-abstractions int. The equality goal
t ≈ u denotes a notion ofα-convertibility which treats name-
abstraction as a binder. The goalNa.G represents a binding for
the namea in the scope ofG.

We assume a single form for program clauses. WhileαProlog
admits richer forms, these are normalizable to the one presented
here, possibly by inserting freshness constraints. The expression
p(~t) is called the head of the clause. A predicate can appear in the
head of multiple clauses. A clause is well-formed if it contains no
free variables or free names. Note that the namea appears free in
〈a〉a but not in Na.G since the former is not a real binder while the
latter is. We shall consider only well-formed program clauses from
here onwards. AnαProlog program is a set of program clauses.

We have presented thename-restrictedsubset ofαProlog where
a andb must be names in(a b) · t, 〈a〉t, anda#t. We will focus
on this subset for most of the paper, but will eventually liftthis
restriction and treat fullαProlog.

An αProlog expression is a term, list of terms, goal, or program
clause. An expression isground if it does not contain any free
variables, though it may contain free names. We define the meaning
of swapping, freshness, and equality for ground nominal terms as
shown in Figure 1. We extend the notion of swapping to goals inthe
expected way with(a b) · Na′.G = Na′.(a b) ·G wherea 6= a′ 6= b
and with(a b) · ∃X.G = ∃X.(a b) ·G. To make sense of this last
equation, we define(a b) ·X = X, though we leave this out of the
formal definition of swapping since we intend to focus on ground
terms and goals. We define a permutationπ as a composition of
zero or more swappings and we writeπ.e to denote the effect of
applying the swappings inπ to the expressione.

We assume the standard notions of binding for quantifiers and
usee[t/X] to denote capture-avoiding substitution of the termt
for the variableX in the expressione. Similarly we writeθ for a
simultaneous substitution for zero or more variables andeθ for its

ha
l-0

07
72

52
2,

 v
er

si
on

 1
 -

10
 J

an
 2

01
3

∆ =⇒ ⊤
TRUE

|= a#t

∆ =⇒ a#t
FRESH

|= t ≈ u

∆ =⇒ t ≈ u
EQUAL

∆ =⇒ G1 ∆ =⇒ G2

∆ =⇒ G1 ∧G2

AND
∆ =⇒ Gi

∆ =⇒ G1 ∨G2

OR

∆ =⇒ G[t/X]

∆ =⇒ ∃X.G
EXISTS

∆ =⇒ G
∆ =⇒ Na.G

NEW

∆ =⇒ π.(Gθ)

∆ =⇒ p(~t)
BACKCHAIN

Where N~a.∀ ~X.[p(~u) :− G] ∈ ∆ andπ is a permutation andθ is a
substitution for~X such that~t ≈ π.(~uθ).

Figure 2. Proof rules forαProlog

application to the expressione. Note that name-abstractions are not
really binders and thus substitution can cause name capture, e.g.,
(〈a〉X)[a/X] = 〈a〉a.

We view computation inαProlog as the search for a proof of
the sequent∆ =⇒ G where∆ is a set of program clauses and
G is a goal. A sequent is well-formed ifG is ground, and we
shall consider only well-formed sequents from here onwards. Our
view of αProlog purposefully ignores issues related to an actual
implementation such as searching for instantiations for existentially
quantified variables and related issues of unification [6, 22].

The proof rules forαProlog are shown in Figure 2. In theEX-
ISTS rule, t may contain any names and similarly for the substitu-
tion θ in BACKCHAIN . In both rules, the substitutions cannot con-
tain free variables, thereby ensuring that goals remain ground dur-
ing proof search. In theBACKCHAIN rule we use the relation≈
between lists of terms to mean that respective terms in the two list
satisfy the≈ relation.

As an example, let∆ be the set of program clauses for type
checking given in the introduction and the assumed clauses for the
lookup predicate. The object termλz.λz.z can be assigned the
type α → β → β for any typesα and β. The corresponding
derivation for this is shown in Figure 3. On the other hand, the term
cannot be assigned the typeα → β → α whenα is not equal toβ.
To do so would require the derivation to use the same name for both
the first and second abstractions in the term. This is disallowed by
the use of the freshness predicate.

An important characteristic ofαProlog derivations is that they
are equivariant, i.e., unchanged by permutations of names. This
property ensures that the particular choice of names used ina
derivation is immaterial. More formally, one can inductively define
a notion of applying a permutation to a derivation so that itsstruc-
ture and correctness are preserved. Assuming this, we will treat as
equivalent those derivations which differ only by a permutation of
names.

Cheney and Urban [6] introduce a Herbrand model based se-
mantics for nominal logic which we can use to show the relative
consistency and completeness of our presentation ofαProlog. In
particular, given a set of nominal logic formulasΓ and a nominal
logic formulaφ, they writeΓ |= φ to indicate that any Herbrand
model for all the elements ofΓ is a model ofφ. Using this notion,
we can prove the following.

Theorem 1. Let ∆ be a set of program clauses andG a ground
goal. Then∆ |= G holds if and only if∆ =⇒ G has a proof.

−→ ⊤
⊤R

−→ t = t = R

−→ B1 −→ B2

−→ B1 ∧B2

∧R
−→ Bi

−→ B1 ∨B2

∨R

−→ B[t/x]

−→ ∃x.B
∃R

−→ B[a/x]

−→ ∇x.B
∇R, a /∈ supp(B)

−→ Bθ

−→ p ~t
defR

Where∀~x.[(∇~z.p ~u) , B] ∈ D andθ is a substitution for~z and~x
such that eachziθ is a unique nominal constant,

supp(~xθ) ∩ {~zθ} = ∅, and~t = ~uθ.

Figure 4. Proof rules forG−

Proof. The forwards direction uses the fact that a least Herbrand
model exists for∆. The backwards direction is by induction on the
derivation of∆ =⇒ G.

3. The LogicG−

The logicG− is a first-order logic over a higher-order term lan-
guage where specifications are encoded as fixed-point definitions
for predicates. This is in contrast to languages likeαProlog and
λProlog which use Horn-like clauses to encode specifications. The
reason for this departure is thatG− is actually a subset of a richer
logic G which is designed for reasoning [9, 10], and within this
larger setting, mechanisms like case-analysis and induction give a
different meaning to Horn-like clauses than in pure specification
logics. Our presentation ofG− differs from that ofG in some re-
gards, but it is still a proper subset and can be shown to be sound
relative toG.

The syntax of terms inG− is as follows:

t, u ::= x | c | a | (t u) | λx.t

Herex denotes a variable,c denotes a constant, anda denotes a
nominal constant. The termλx.t denotes a binding for the vari-
ablex in the scope oft, and we assume the corresponding standard
notations of free and bound variables and capture-avoidingsubsti-
tution. The scope of aλ is as far to the right as possible. We will
assume that all terms are inβη-long form and that all comparisons
between terms are relative to the standard rules ofλ-conversion.
Application associates to the left and we writep ~t to abbreviate
p t1 · · · tn. We restrict our attention to terms which are well-typed
relative to a monomorphic typing system. We will avoid the details
of typing, except to note thatG− allows nominal constants only at
pre-designatednominal typeswhich may or may not be inhabited
by other terms.

Formulas inG− are terms of a distinguished typeo. We intro-
duce the constant⊤ of type o and the infix constants∧ and∨ of
typeo → o → o. For each typeτ that does not containo we include
the equality constant=τ of typeτ → τ → o and the constants∃τ

and∇τ of type (τ → o) → o. We place the further restriction
on ∇τ that τ must be a nominal type. We drop subscripts when
they can be inferred from the context. We abbreviate the formulas
∃(λx.t) and∇(λx.t) as∃x.t and∇x.t, respectively. In summary,
the formulas ofG− are described by the following grammar.

B,C ::= ⊤ | p ~t | t = u | B ∧ C | B ∨ C | ∃x.B | ∇z.B

Herep denotes any additional predicate symbol,i.e., constant of
typeτ1 → . . . → τn → o.

ha
l-0

07
72

52
2,

 v
er

si
on

 1
 -

10
 J

an
 2

01
3

|= a#nil

∆ =⇒ a#nil
FRESH

|= b#bind(a,α, nil)

∆ =⇒ b#bind(a, α, nil)
FRESH

...
∆ =⇒ lookup(b, β, bind(b, β, bind(a, α, nil)))

∆ =⇒ tc(bind(b, β, bind(a, α, nil)), var(b), β)
BACKCHAIN

∆ =⇒ b#bind(a, α, nil) ∧ tc(bind(b, β, bind(a, α, nil)), var(b), β)
AND

∆ =⇒ tc(bind(a, α, nil), lam(〈a〉var(a)), arr(β, β))
BACKCHAIN

∆ =⇒ a#nil ∧ tc(bind(a,α, nil), lam(〈a〉var(a)), arr(β, β))
AND

∆ =⇒ tc(nil, lam(〈a〉lam(〈a〉var(a))), arr(α, arr(β, β)))
BACKCHAIN

Figure 3. A derivation oftc in αProlog

We use∇ to quantify over fresh nominal constants. The treat-
ment of∇ in G− is based on the so-callednominal∇-quantifier
[19] rather than the earlierminimal ∇-quantifier [14]. The es-
sential difference is that the nominal∇-quantifier admits ex-
change,∇x.∇y.B ≡ ∇y.∇x.B, and weakening and strengthen-
ing, ∇x.B ≡ B if x does not appear inB. We prefer the nominal
treatment since nominal constants are often used to represent vari-
able names, and these equivalences match our intuitions about fresh
variable names. In addition, the nominal treatment often results in
simplified meta-theory and reasoning.

We define the support of a term as the nominal constants which
appear in it:

supp(x) = supp(c) = ∅ supp(a) = {a}

supp(t u) = supp(t) ∪ supp(u) supp(λx.t) = supp(t)

We define the support of a list of terms as the union of their
supports.

Specifications are realized inG− throughfixed-point definitions.
Fixed-point definitions are given by a set ofdefinitional clauses,
each of the following form:

∀~x.[(∇~z.p ~t) , B]

Here∇~z.p ~t andB must be formulas with empty support and free
variables only among~x. The formula∇~z.p ~t is called the head of
the clause. A predicate symbolp may appear in the head of multiple
clauses. The logicG− is parametrized by a set of definitional
clauses which we will callD.

We view computation inG− as the search for a proof of the se-
quent−→ B whereB is a closed formula which may contain nom-
inal constants. The proof rules forG− are presented in Figure 4. In
the∃R rule we assumet is a closed term which may contain any
nominal constants and similar for the substitution in thedefR rule.
In thedefR rule we assume a notion of pairwise equality on lists of
terms. We require the support of~xθ to be disjoint from~zθ to reflect
the order of quantifiers in the definitional clause. In the vocabulary
of Miller et al. [15], the rules ofG− allow only uniform proofs and
thusG− is an abstract logic programming language.

Assuming the definition oftc from the introduction and a suit-
able definition oflookup, Figure 5 shows thatλz.λz.z can be as-
signed the typeα → β → β. Note that it is not possible to assign
the typeα → β → αwhenα is not equal toβ due to side-condition
on the∇R rule.

Derivations inG− are equivariant with respect to nominal con-
stants,i.e., the particular nominal constants used in aG− deriva-
tion are irrelevant. Given a permutation of nominal constants, one
can inductively define a notion of applying that permutationto a
derivation so that the structure and correctness are preserved. Thus
we will treat as equivalent those derivations which differ only by a
permutation of nominal constants.

...
−→ lookup b β (bind b β (bind a α nil))

−→ tc (bind b β (bind a α nil)) (var b) β
defR

−→ ∇x.tc (bind x β (bind a α nil)) (var x) β
∇R

−→ tc (bind a α nil) (lam λz.var z) (arr β β)
defR

−→ ∇x.tc (bind x α nil) (lam λz.var z) (arr β β)
∇R

−→ tc nil (lam λz.lam λz.var z) (arr α (arr β β))
defR

Figure 5. A derivation oftc in G−

4. The Translation
Looking at the rules forαProlog andG− we can already see a
strong similarity. In large part, this is because we have developed a
view of αProlog free from implementation details and have carved
out G− from the richer logic ofG. We have, however, remained
faithful to both languages.

One might expect a very simple translation fromαProlog to
G− which maps Nto ∇, ≈ to =, names to nominal constants, and
name-abstraction toλ-abstraction. This is not far from the truth,
but there is an important nuance concerning the treatment ofab-
stractions in the two systems. In essence, the name-abstraction of
αProlog allows names to be captured during substitution while
the λ-abstraction requires capture-avoiding substitution. For ex-
ample, consider theαProlog goal Na.∃X.(〈a〉X ≈ 〈b〉b). This
goal is provable usingNEW andEXISTS with X asa thus yielding
〈a〉a ≈ 〈b〉b which is true. Now, a naive and incorrect translation of
the original goal intoG− might produce∇a.∃X.(λa.X = λb.b).
Notice that the two occurrences ofa in this goal represent distinct
binders and thus the goal is equivalent to∇y.∃X.(λz.X = λb.b).
This formula is not provable inG− since capture-avoiding substitu-
tion does not allow any value forX to be captured by the binder for
z. Instead, we need a translation which makes the possible variable
captures inαProlog explicit. For instance, the original goal may be
translated to essentially∃X.(λa.X a = λb.b) which has the so-
lution X = λz.z. In this formula, the variableX has beenraised
overa to indicate its possible dependence on it. This is a standard
technique which is used in relating nominal and higher-order term
languages [22]. In the actual translation we will use raising to en-
code all such dependencies.

The translation fromαProlog toG− is presented in Figure 6 and
makes use of some new notation which we define now.

In the translation for terms, we map names to nominal constants,
and for simplicity we overload notation to use the same namesfor
both. We use the same overloading for bound variables and function
symbols. We abuse notation in our translation to allow boundvari-
ables inαProlog to be raised over nominal constants. This is just
an intermediate form which is translated to aG− bound variable

ha
l-0

07
72

52
2,

 v
er

si
on

 1
 -

10
 J

an
 2

01
3

φ(a) = a φ(X~a) = X~a φ((a b) · t) = (a b) · φ(t) φ(f(~t)) = f
−−→
φ(t) φ(〈a〉t) = λa.φ(t)

φ~a

(

p ~t
)

= ∇~a.p
−−→
φ(t) φ~a (G1 ∧G2) = φ~a(G1) ∧ φ~a(G2)

φ~a (⊤) = ⊤ φ~a (G1 ∨G2) = φ~a(G1) ∨ φ~a(G2)

φ~a (a#t) = ∇~a.freshφ(a) φ(t) φ~a (∃X.G) = ∃X.φ~a(G[X~a/X])

φ~a (t ≈ u) = ∇~a.(φ(t) = φ(u)) φ~a (Nb.G) = φ~ab(G)

φ
(

N~a.∀ ~X.[p(~t) :− G]
)

= ∀ ~X.[(∇~a.p
−−−→
φ(tσ)) , φ~a(Gσ))] whereσ = {X~a/X | X ∈ ~X}

Figure 6. Translation fromαProlog toG−

with the same name raised over the same nominal constants. The
translation for swappings produces a similar operation applied to a
G− term which we represent with the same notation. The meaning
of a swapping applied to aG− term is to replace all occurrences
of one nominal constant with another and vice-versa. In contrast to
αProlog, this operation can be carried out completely even for non-
ground terms since all variables of the translation are raised over
the existing nominal constants they may depend on. Thus, swap-
ping can be carried out on the nominal constants over which vari-
ables are raised without having to know the eventual value ofsuch
variables. Lastly, the translation for name-abstractionsmaps them
to λ-binders. Although nominal constants and bound variables are
from separate syntactic classes inG−, we abuse notation here and
in the future to write a binder for a nominal constant. The meaning
of λa.t wherea is a nominal constant isλx.t′ wherex is a fresh
bound variable name andt′ is the result of replacing all occurrences
of a in t with x.

As indicated in the initial discussion, our translation needs to
push∇-binders underneath∃-binders so that the dependencies can
be made explicit. This is embodied in our translation for goals
which is parametrized by a list of names which correspond to
∇-bound variables being pushed down to the atomic formulas.
The following equivalences describe how the∇-quantifier can be
pushed down in a formula.

∇x.⊤ ≡ ⊤

∇x.(B ∧ C) ≡ (∇x.B) ∧ (∇x.C)

∇x.(B ∨ C) ≡ (∇x.B) ∨ (∇x.C)

∇x.∃X.B ≡ ∃X.∇x.B[X x/X]

In the translation for a freshness goal we make use of a distin-
guished predicatefreshwhich we assume is defined by the single
definitional clause∀x.(∇z.fresh z x) , ⊤. Thus−→ fresh a t
is provable if and only ifa is a nominal constant which does not
appear int. Lastly, note that we translate theN-quantifier to∇-
quantifier by adding the quantified name to the list of eventually
∇-bound variables.

The translation for program clauses embodies essentially the
same ideas as for translating goal formulas. The outerN-quantifiers
are translated to∇-quantifiers that need to be pushed underneath
the universal quantifiers. This exchange induces the same raising
substitution as when pushing∇-quantifiers underneath existential
quantifiers. When∆ is a set of program clauses we defineφ(∆) =
{φ(D) | D ∈ ∆}.

Note that aside from changing the scope of∇-quantifiers, the
translation essentially preserves term and logic structure. More-
over, the translation makes the expected connections between

Nand ∇, ≈ and =, names and nominal constants, and name-
abstraction andλ-abstraction.

4.1 Examples

We now present a few examples to illustrate the translation and
also to suggest some simple ways in which the results may be
improved. In presentingαProlog program clauses we will elide
outermost Nand∀-quantifiers and instead use the convention that
all free lowercase symbols denote names and all free uppercase
symbols denote variables, all of which are captured by program
clause quantifiers. ForG− definitions we elide the outermost∀-
quantifiers and assume that all capitalized symbols denote such
universally quantified variables. These examples are takenfrom
Cheney and Urban [6].

4.1.1 Type checking

Consider again the example from the introduction, where thefol-
lowing program clauses specify type checking forλ-terms.

tc(G, var(X), T) :− lookup(X,T,G)

tc(G, app(E1, E2), T
′) :−

∃T.tc(G,E1, arr(T, T
′)) ∧ tc(G,E2, T)

tc(G, lam(〈x〉E), arr(T, T ′)) :−

x#G ∧ tc(bind(x, T,G), E, T ′)

Here we assumelookup is defined in the expected way. These
program clauses translate to the following definitional clauses.

tc G (var X) T , lookup X T G

tc G (app E1 E2) T
′
,

∃T.tc G E1 (arr T T ′) ∧ tc G E2 T

(∇x.tc (Gx) (lam λx.E x) (arr (T x) (T ′ x))) ,

(∇x.freshx (Gx)) ∧

(∇x.tc (bind x (T x) (Gx)) (E x) (T ′ x))

In general, a few simplifications can improve the results of the
translation. We illustrate these here as applied to the lastclause for
tc. First, by examining types we can recognize that the object types
T andT ′ cannot actually depend on the object term variablex and
thus they do not need to be raised over it. More formally, we can use
a notion likesubordinationto detect such vacuous dependencies
[23]. Second, the freshness constraint onG can be solved statically:
we know thatG must not depend on its first argument. Finally,
after performing the previous two simplifications we can recognize
that the∇-quantifier in the head of the definition is vacuous and
can thus be dropped. In the end we are left with the following

ha
l-0

07
72

52
2,

 v
er

si
on

 1
 -

10
 J

an
 2

01
3

definitional clause:

tc G (lam λx.E x) (arr T T ′) ,

∇x.tc (bind x T G) (E x) T ′

The definitional clauses fortc now match what one would expect
to write inG−. Indeed, they are exactly specification presented in
the introduction.

4.1.2 Polymorphic type generalization

The following program clauses describe a relationship among a
polymorphic type, a list of distinct names for the binders inthat
type, and the resulting monomorphic type which comes from sub-
stituting the names for the binders.

spec(monoTy(T), nil, T) :− ⊤

spec(polyTy(〈a〉P), cons(a, L), T) :−

a#L ∧ spec(P,L, T)

This is translated to the following definitional clauses:

spec (monoTy T) nil T , ⊤

(∇a.spec (polyTy λa.P a) (cons a (La)) (T a)) ,

(∇a.fresha (La)) ∧ (∇a.spec (P a) (La) (T a))

In this last clause we can again simplify the freshness condition to
produce the following.

(∇a.spec (polyTy λa.P a) (cons a L) (T a)) ,

∇a.spec (P a) L (T a)

4.1.3 Capture-avoiding substitution

The following program clauses realize capture avoiding substitu-
tion for λ-terms via a predicatesubst(E, T,X,E′) which holds
exactly whenE[T/X] = E′.

subst(var(X), E,X,E) :− ⊤

subst(var(x),E, y, var(x)) :− ⊤

subst(app(M,N), E,X, app(M ′, N ′)) :−

subst(M,E,X,M ′) ∧ subst(N,E,X,N ′)

subst(lam(〈y〉R),E,X, lam(〈y〉R′)) :−

y#X ∧ y#E ∧ subst(R,E,X,R′)

These program clauses translate to the following definitional
clauses:

subst (var X) E X E , ⊤

(∇x, y.subst (var y) (E x y) x (var y)) , ⊤

subst (app M N) E X (app M ′ N ′) ,

subst M E X M ′ ∧ subst N E X N ′

(∇y.subst (lam λy.R y) (E y) (X y) (lam λy.R′ y)) ,

(∇y.freshy (X y)) ∧ (∇y.freshy (E y)) ∧

(∇y.subst (Ry) (E y) (X y) (R′ y))

Simplifying the freshness constraints and removing vacuous ∇-
binders in the last clause produces the following.

subst (lam λy.R y) E X (lam λy.R′ y) ,

∇y.subst (Ry) E X (R′ y)

4.2 Correctness

The soundness and completeness of our translation are shownby
the following results. We elide most details, but show the important
lemmas and interesting cases.

Lemma 2. Let a be a name andt a groundαProlog term. Then
|= a#t holds if and only if−→ freshφ(a) φ(t) has a proof inG−.

Proof. Induction ont.

Lemma 3. Let t andu be groundαProlog terms. Then|= t ≈ u
holds if and only ifφ(t) = φ(u).

Proof. Induction ont.

We define the support of anαProlog term as the set of all names
which appear free relative to name-abstractions,i.e., supp(t) =
{a | a#t does not hold}. This is consistent with the definition
of support forG− terms sinceφ(supp(t)) = supp(φ(t)). For a
substitutionθ we defineφ(θ) = {φ(t)/φ(x) | t/x ∈ θ} and
supp(θ) =

⋃

t/x∈θ supp(t).

Lemma 4. Let t be anαProlog term andθ a substitution, then
φ(tθ) = φ(t)φ(θ).

Proof. Induction ont.

Lemma 5. Let G be anαProlog goal, θ a substitution, and~a
a list of names such thatsupp(θ) ∩ {~a} = ∅, thenφ~a(Gθ) =
φ~a(G)φ(θ).

Proof. Induction onG. Consider whenG = b#t. Thenφ~a(Gθ) =
∇~a.fresh φ(bθ) φ(tθ) = ∇~a.(fresh φ(b) φ(t))φ(θ). Since
supp(θ)∩{~a} = ∅, we can move the substitution outside of the∇-
binder to obtain(∇~a.(freshφ(b) φ(t)))φ(θ) = φ~a(G)φ(θ).

Theorem 6. Let∆ be a set of program clauses,G a ground goal,
and~a a list of distinct names. There is a proof of∆ =⇒ G if and
only if there is a proof of−→ φ~a(G) assuming the definitional
clausesφ(∆) and the clause forfresh.

Proof. In the forwards direction, the proof is by induction on the
height of theαProlog proof. First consider when the proof ends
with FRESHso thatG = b#t. Then it must be that|= b#t which
means−→ fresh φ(b) φ(t) has a proof. Thus−→ φ~a(G) which
is −→ ∇~a.freshφ(b) φ(t) also has a proof. The cases forTRUE,
EQUAL, AND, andOR are similarly easy.

Suppose the proof ends withEXISTS so thatG = ∃X.G′

and∆ =⇒ G′[t/X] has a proof for somet. By induction we
know −→ φ~a(G

′[t/X]) has a proof. We would like to move the
substitution outside ofφ, but we cannot do so unless the support
of the substitution is disjoint from~a. Abusing notation, we do
this by splitting the substitution into two parts. That is, we know
−→ φ~a(G

′[X~a/X][λ~a.t/X]) has a proof. Now the~a are not
free in the second substitution and thus we can apply Lemma 5
to conclude that−→ φ~a(G

′[X~a/X])[λ~a.φ(t)/φ(X)] has a proof.
Thus−→ ∃X.φ~a(G

′[X~a/X]) has a proof and this is the same as
−→ φ~a(∃X.G′). The case forBACKCHAIN is similar in spirit, but
more complex in the details.

Lastly, suppose the proof ends withNEW so thatG = Nb.G′

and∆ =⇒ G′ has a proof. By induction−→ φ~ab(G
′) also has a

proof which is the same as−→ φ~a(Nb.G′).
In the backwards direction, the proof is by induction on the

height of theG− proof with a nested induction on the size ofG.
Consider first whenG is t ≈ u. We assume−→ φ~a(t ≈ u) has
a proof which means that−→ ∇~a.φ(t) = φ(u) has a proof and
thus−→ φ(t) = φ(u) also does. Therefore|= t ≈ u is true and
∆ =⇒ t ≈ u has a proof. The cases for whenG is ⊤, a freshness
relation, a conjunction, or a disjunction are similarly easy.

SupposeG = ∃X.G′ so that−→ φ~a(G
′[X~a/X])[t/X] has a

proof for somet. It must be thatt = λ~a.φ(u) for someu. Since the
support of the outer substitution is disjoint from~a we can move it

ha
l-0

07
72

52
2,

 v
er

si
on

 1
 -

10
 J

an
 2

01
3

inside to know−→ φ~a(G
′[X~a/X][λ~a.u/X]) has the same proof

and this is just−→ φ~a(G
′[u/X]). By induction∆ =⇒ G′[u/X]

has a proof and thus∆ =⇒ ∃X.G′ has a proof. Again, the case for
whenG is a predicate is similar in spirit, but more complex in the
details.

Finally supposeG = Nb.G′ so that−→ φ~ab(G
′) has a proof.

By the inner induction hypothesis,∆ =⇒ G′ has a proof and thus
so does∆ =⇒ Nb.G′.

4.3 Extending the translation

We now drop the name-restriction onαProlog and allowa andb to
be arbitrary terms in expressions of the forma#t, (a b)·t, and〈a〉t.
The translation is easily extended to this richer language.Goals of
the formu#t translate tofresh u t as before. Terms which do
not satisfy the name-restriction are first simplified so thatall non-
name-restricted swappings and name-abstractions appear at the top
level of an equality goal. Then these translate to distinguished
predicates which implement swapping and name-abstraction. This
simplification is only needed statically since instantiations during
proof search can only contain ground terms, thus ensuring that non-
name-restricted terms do not appear dynamically.

To simplify a non-name-restricted term of the form(u1 u2) · t
or 〈u〉t we replace it with a fresh variable, sayt′, conjoin the
distinguished goalt′ ≈̇ (u1 u2) · t or t′ ≈̇ 〈u〉t respectively, and
quantifyt′ appropriately (existentially when replacing terms in the
body, universally when replacing terms in the head of a program
clause). This forces all terms to be name-restricted exceptthe top
level of terms occurring on the right side of thė≈ relation. We
extend the translation to deal with this relation as follows:

φ~a(t
′ ≈̇ (u1 u2) · t) = ∇~a.swapu1 u2 t t′

φ~a(t
′ ≈̇ 〈u〉t) = ∇~a.abstu t t′

Whereswapandabstare defined by the following:

∀E.[(∇x, y.swapx y (E x y) (E y x)) , ⊤]

∀E.[(∇x.swapx x (E x) (E x)) , ⊤]

∀E.[(∇x.abstx (E x) (λx.E x) , ⊤]

In practice it seems that non-name-restricted swappings and
name-abstractions are exceedingly rare. Still, it is reassuring that
such detailed manipulations of variables and binding are sosuc-
cinctly described inG−.

The following lemmas show that our manipulations of formulas
are sound and thatswapandabstcorrectly capture swapping and
name-abstraction, and therefore the extended translationcan be
shown to be sound and complete.

Lemma 7. If t ≈ u and∆[t/x] =⇒ G[t/x] has a proof then so
does∆[u/x] =⇒ G[u/x].

Proof. Induction on the height of the proof.

Lemma 8. Let t′ and (a b) · t be ground nominal terms. Then
|= t′ ≈ (a b) · t holds if and only if−→ swapa b t t′ is provable
in G−.

Proof. Induction ont.

Lemma 9. Let t′ and〈a〉t be ground nominal terms. Then|= t′ ≈
〈a〉t holds if and only if−→ absta t t′ is provable inG−.

Proof. Induction ont.

5. Higher-order Judgments
Higher-order judgments are a common and powerful tool for speci-
fications using higher-order abstract syntax. Among other things,
they have nice properties which are often used when reasoning
about such specifications. These properties do not directlyhold for
G− specifications, so one may question if we have to give them up
in any system which admits translations from nominal logic spec-
ifications. This is not the case: higher-order judgments canbe en-
coded inG− while keeping their nice properties. Although this does
not provide a direct connection between nominal logic specifica-
tions and higher-order judgments, it does show how the expressive-
ness and benefits of both approaches can coexist.

Our translation produces specifications usingweak higher-order
abstract syntax, i.e., using abstractions only at distinguished vari-
able types. With higher-order judgments it is much more common
to usefull higher-order abstract syntax, i.e., where abstraction is
used at the same type as the terms being constructed. For example,
λ-terms would be represented using only the following two con-
stants.

app : tm → tm → tm lam : (tm → tm) → tm

This representation provides a free notion of capture-avoiding sub-
stitution based on meta-levelβ-reduction whereas a weak higher-
order abstract syntax encoding would provide only variablefor
variable substitution. The following example defines evaluation for
λ-terms using the free notion of capture-avoiding substitution.

eval (lam λx.Rx) (lam λx.Rx) , ⊤

eval (app M N) V ,

∃R.eval M (lam λx.Rx) ∧ eval (RN) V

With full higher-order abstract syntax, we can still distinguish vari-
ables from other terms by using a definition such as(∇x.namex) ,
⊤ which holds only on nominal constants. For example, the speci-
fication of type checking forλ-terms represented using full higher-
order abstract syntax can be written as follows:

tc G X T , nameX ∧ lookup X T G

tc G (app E1 E2) T
′
,

∃T.tc G E1 (arr T T ′) ∧ tc G E2 T

tc G (lam λx.E x) (arr T T ′) ,

∇x.tc (bind x T G) (E x) T ′

Thus inG− we have the same naturalness and expressiveness with
full higher-order abstract syntax as with the weaker version.

Moving to higher-order judgments, the specification for type
checkingλ-terms can be written as follows inλProlog [16]:

tc (app M N) B :− (tc M (arr A B) ∧ tc N A)

tc (lam λx.Rx) (arr A B) :− (∀x.tc x A ⇒ tc (Rx) B)

Heretc does not carry around an explicit typing context. Instead,
the context inλProlog is used to remember typing assignments
for bound variables: the∀-quantifier encodes fresh variable names
and the⇒ connective encodes hypothetical assumptions. Besides
elegance, the real benefit of this encoding is that the underlying
logic enjoys meta-theoretic properties such as cut-admissibility and
the preservation of provability under instantiations for universal
variables. As a result, if one wants to reason about this specification
they obtain a free object-level substitution result fortc which says,
roughly, if tc (lam λx.Rx) (arr A B) and tc N A are both
derivable, thentc (RN) B is also derivable. Such substitution
lemmas are quite common and useful, for example, in showing that
evaluation preserves typing.

ha
l-0

07
72

52
2,

 v
er

si
on

 1
 -

10
 J

an
 2

01
3

Higher-order judgments do not allow one to directly distin-
guish between free variables, and this can result in awkwardspec-
ifications in some instances. For example, the followingαProlog
clauses specify a notion of inequality overλ-terms:

aneq (var a) (var b) :− ⊤

aneq (app M1 N1) (app M2 N2) :− aneq M1 M2

aneq (app M1 N1) (app M2 N2) :− aneq N1 N2

aneq (lam 〈a〉R1) (lam 〈a〉R2) :− aneq R1 R2

aneq (var X) (app M N) :− ⊤

...

There is no equally natural way to express this with higher-order
judgments due to the need to distinguish between variables in the
first clause (see [6] for an example encoding inλProlog). In fact,
the ability to distinguish between variables is fundamentally at odds
with the idea of a free substitution property for variables since such
substitutions may cause two different variables to be instantiated
to the same term. Thus, higher-order judgments necessarilylack a
degree of naturalness for some specifications.

It is important to note that in a dependently-typed system like
LF higher-order abstract syntax and higher-order judgments col-
lapse into a single notion [12]. While this provides for a very el-
egant system, we should not let it confuse us between these two
notions. As our translation has shown, higher-order abstract syntax
allows for specifications that are at least as natural and expressive
as what is possible inαProlog, while higher-order judgments may
occasionally fall short.

We now propose a specification methodology which allows one
to use the full natural expressiveness of definitions inG− while
still being able to take advantage of higher-order judgments so
that we can benefit from their elegance and associated properties
when reasoning. The idea is to encode an interpreter for higher-
order judgments as a definition inG− and use this to encode
particular higher-order judgment specifications. In the full logic G
which is used for reasoning, one can prove general instantiation
and cut-admissibility properties for the encoding of higher-order
judgments. These properties are then inherited for free by any
specification written using higher-order judgments.

For simplicity of presentation we consider only the second-
order fragment ofλProlog. It is possible to encode full higher-order
λProlog, but second-order is sufficient for the majority of exam-
ples. The encoding of second-orderλProlog intoG− is presented
in Figure 7. In this encoding:: is an infix constructor for lists, and
〈·〉 is used to distinguish atomic formulas. Since we are considering
only second-orderλProlog, we assumeA is atomic inA ⇒ B. The
formulaseqL G will hold when theλProlog formulaG is provable
from the atomic assumptions inL and the clauses of our particu-
lar specification. These latter clauses are encoded via the predicate
prog which holds on the head and body of each encoded clause.
For example, the clauses for thetc predicate are encoded into the
following progclauses:

prog(tc (app M N) B)

(〈tc M (arr A B)〉 ∧ 〈tc N A〉) , ⊤

prog(tc (lam λx.Rx) (arr A B))

(∀x.tc x A ⇒ 〈tc (Rx) B〉) , ⊤

Theseqencoding of second-orderλProlog retains the desirable
properties of the logic which we formally state below. Moreover,
these properties can be proven completely within the full logic G.

Lemma 10 (Instantiation). Let c be a nominal constant andt a
term of the same type. If−→ seqL G then−→ seqL[t/c] G[t/c].

memberB (B :: L) , ⊤

memberB (C :: L) , memberB L

seqL ⊤ , ⊤

seqL (B ∧ C) , seqL B ∧ seqL C

seqL (B ∨ C) , seqL B ∨ seqL C

seqL (A ⇒ B) , seq(A :: L) B

seqL (∀x.Bx) , ∇x.seqL (B x)

seqL 〈A〉 , memberA L

seqL 〈A〉 , ∃B.progA B ∧ seqL B

Figure 7. Second-orderλProlog inG−

Lemma 11 (Cut admissibility). If −→ seq (A :: L) G and
−→ seqL 〈A〉 then−→ seqL G.

Lemma 12(Monotonicity). If −→ seqL G and every element of
L appears inK then then−→ seqK G.

When working with full higher-order abstract syntax, Lem-
mas 10 and 11 are quite powerful and provide the object-levelsub-
stitution lemmas described earlier. Although a definition like seq
could be encoded inαProlog or a similar language, the correspond-
ing lemmas would not be as useful because of the weaker notionof
substitution.

A fundamental restriction of the proposed method for specifica-
tion is that whileG− definitions can make use of higher-order judg-
ments, it is not possible for higher-order judgments to useG− def-
initions. This restriction is inherent in our encoding viaseqand is
necessary to preserve the desirable meta-properties of higher-order
judgments. Note, however, that this is a restriction on “control-
flow” and not “data-flow” since we may still use higher-order judg-
ments to specify a value which is then fed into aG− specification.

6. Conclusions and Future Work
Our translation provides a direct and concrete connection between
αProlog andG− including a tight mapping from the devices of
the former to the corresponding devices of the latter. In particu-
lar, our translation provides an understanding of the relationship
between the Nand∇-quantifiers. When used at distinguished vari-
able types, the∇-quantifier exactly captures the meaning of the
N-quantifier, at least from the perspective of specification.How-

ever, the∇-quantifier can also be used at types which contain other
constructors which is essential for full higher-order abstract syntax
and which is not possible with current understandings of theN-
quantifier. In addition, using raising and thefreshpredicate, the∇-
quantifier can be freely moved up and down in a formula whereas
the N-quantifier is always given a large scope since nominal logic
does not have raising and therefore cannot push theN-quantifier
underneath other quantifiers.

Through our translation we have also shown that higher-order
abstract syntax specifications can have at least the same naturalness
and expressiveness as nominal logic specifications. The resulting
specifications are based on weak higher-order abstract syntax, but
we have argued that the same qualities can be found with full
higher-order abstract syntax. Therefore, despite being a very high-
level approach to binding, higher-order abstract syntax can still
be used naturally in specifications which demand a fine-grained
control over variables.

ha
l-0

07
72

52
2,

 v
er

si
on

 1
 -

10
 J

an
 2

01
3

We have acknowledged the occasional failings of higher-order
judgments to naturally capture some aspects of specifications in-
volving binding. We have proposed a method which allows one to
use higher-order judgments when relevant and a stronger specifi-
cation language when preferred. This method allows one to benefit
from the elegance of higher-order judgment during specifications
and from their associated meta-properties during reasoning.

Thus we have presented the logic programming languageG−

which has the power of higher-order abstract syntax, the fine-
grained variable control of nominal specifications, and theability
to capture the desirable properties of higher-order judgments.

It seems possible to develop a fairly direct reverse translation
from G− toαProlog in the cases where only weak higher-order ab-
stract syntax is used. We have not pursued this line of work since
full higher-order abstract syntax is more common and is required
to reap the complete benefits of using higher-order judgments. To-
wards this, Gabbay and Cheney have developed a translation from
FOλ∇, a first-order logic withλ-terms, full higher-order abstract
syntax, and the∇-quantifier, to a variant of nominal logic withλ-
terms and the N-quantifier [2, 7]. Their translation makes a simi-
lar connection between theN- and∇-quantifiers as in this paper
though in the opposite direction. However, the presence ofλ-terms
in their nominal logic is unorthodox and it would be interesting to
see a similar result for a more traditional nominal logic.

We have ignored issues of executing specifications in our dis-
cussions, but we consider them briefly now. MostαProlog specifi-
cations can be efficiently executed [6, 22], while some require an
expensive operation known asequivariant unificationto backchain
on clauses with N-quantifiers in the head [4]. It should also be
possible to efficiently executeG− definitions in a similar way,
with similar issues when unfolding definitional clauses with ∇-
quantifiers in the head. The difficulty of this corresponds roughly
with that of solving equivariant unification problems inαProlog.
However, specifications inG− tend to use∇-quantifiers in the head
of definitions less often thanαProlog uses N-quantifiers in the head
of clauses sinceG− has realλ-binders whereasαProlog must use
N-quantification and name-abstraction to represent a binder. To ef-

ficiently execute such benign uses of theN-quantifier in the head
of clauses, researchers have studied the notion ofN-goal formulas
[6, 21] which are essentially those which translate toG− defini-
tions without∇-quantifiers in the head of clauses except for the
distinguishedfresh, swap, andabstpredicates.

In the worst case, our translation may produce a quadratic in-
crease in the size of formulas due to raising. In practice, this does
not appear be an issue for several reasons. First, most specifications
mention few object variables per formula and thus the amountof
raising required is fairly limited. Second, by making dependencies
explicit via raising we are able to statically solve freshness con-
straints as shown in the examples. This removes some raisingand
decreases the number of atomic formulas in a definition. Third, we
are not proposing that specifications inG− be written as if trans-
lated fromαProlog. Specifications that instead use full higher-order
abstract syntax and the corresponding notion of substitution in-
herit free implementation benefits. For example, an implementation
can lazily apply substitutions which may result in significant per-
formance improvements. Further research is needed to accurately
assess the relative efficiency of nominal and higher-order abstract
syntax specifications.

The Abella system [8] is a theorem prover for the logicG and
supports the proposed method of specification where higher-order
judgments are mixed withG definitions. In practice, we have found
that this hybrid style provides a nice compromise between elegance
and practicality. The reasoning over such specifications benefits
from the meta-properties of higher-order judgments as expected
and from the naturalness of specifications which directly use the

features ofG. Abella can also execute these specifications, though it
is not optimized for this. Through the translation given in this paper,
it is possible to use Abella to execute and reason aboutαProlog
specifications. An interesting direction for future work would be
to assess such capabilities and to possibly develop them explicitly
within Abella.

Finally, we note that higher-order judgments are incorporated
in G via a definition and not by using the universal quantifier and
implication ofG. Indeed, the latter devices have a much different
behavior inG than in higher-order judgments. In higher-order judg-
ments, universal quantification denotes a generic quantification and
implication denotes a fixed assumption. InG, universal quantifica-
tion denotes a quantification over each and every possible value and
implication restricts attention to worlds in which the hypotheses
are provable. The Bedwyr system is based on a aG-like logic and
uses these devices to encode and execute specifications of model-
checking behavior such as bisimulation for the finiteπ-calculus [1].

References
[1] D. Baelde, A. Gacek, D. Miller, G. Nadathur, and A. Tiu. The Bedwyr

system for model checking over syntactic expressions. In F.Pfenning,
editor, 21th Conference on Automated Deduction (CADE), number
4603 in LNAI, pages 391–397. Springer, 2007.

[2] J. Cheney. A simpler proof theory for nominal logic. In8th Interna-
tional Conference on the Foundations of Software Science and Com-
putational Structures (FOSSACS), volume 3441 ofLNCS, pages 379–
394. Springer, 2005.

[3] J. Cheney. Relating higher-order pattern unification and nominal uni-
fication. In L. Vigneron, editor,Proceedings of the 19th International
Workshop on Unification, UNIF’05, pages 104–119, 2005.

[4] J. Cheney. Equivariant unification.Journal of Automated Reasoning,
December 2009. (published online).

[5] J. Cheney and C. Urban. Alpha-prolog: A logic programming lan-
guage with names, binding, and alpha-equivalence. In B. Demoen and
V. Lifschitz, editors,Logic Programming, 20th International Confer-
ence, volume 3132 ofLNCS, pages 269–283. Springer, 2004.

[6] J. Cheney and C. Urban. Nominal logic programming.ACM Trans.
Program. Lang. Syst., 30(5):1–47, 2008. ISSN 0164-0925. doi:
http://doi.acm.org/10.1145/1387673.1387675.

[7] M. J. Gabbay and J. Cheney. A sequent calculus for nominallogic.
In Proc. 19th IEEE Symposium on Logic in Computer Science (LICS
2004), pages 139–148, 2004.

[8] A. Gacek. The Abella interactive theorem prover (systemdescription).
In A. Armando, P. Baumgartner, and G. Dowek, editors,Fourth Inter-
national Joint Conference on Automated Reasoning, volume 5195 of
LNCS, pages 154–161. Springer, 2008.

[9] A. Gacek, D. Miller, and G. Nadathur. Reasoning in Abellaabout
structural operational semantics specifications. In A. Abel and C. Ur-
ban, editors,International Workshop on Logical Frameworks and
Meta-Languages: Theory and Practice (LFMTP 2008), number 228
in Electronic Notes in Theoretical Computer Science, pages85–100,
2008.

[10] A. Gacek, D. Miller, and G. Nadathur. Combining genericjudgments
with recursive definitions. In F. Pfenning, editor,23th Symp. on Logic
in Computer Science, pages 33–44. IEEE Computer Society Press,
2008.

[11] R. Harper and D. R. Licata. Mechanizing metatheory in a logical
framework. Journal of Functional Programming, 17(4–5):613–673,
July 2007.

[12] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
Journal of the ACM, 40(1):143–184, 1993.

[13] D. Miller and G. Nadathur. A logic programming approachto manip-
ulating formulas and programs. In S. Haridi, editor,IEEE Symposium
on Logic Programming, pages 379–388, San Francisco, Sept. 1987.

[14] D. Miller and A. Tiu. A proof theory for generic judgments. ACM
Trans. on Computational Logic, 6(4):749–783, Oct. 2005.

ha
l-0

07
72

52
2,

 v
er

si
on

 1
 -

10
 J

an
 2

01
3

[15] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs
as a foundation for logic programming.Annals of Pure and Applied
Logic, 51:125–157, 1991.

[16] G. Nadathur and D. Miller. An Overview ofλProlog. InFifth Interna-
tional Logic Programming Conference, pages 810–827, Seattle, Aug.
1988. MIT Press.

[17] F. Pfenning and C. Elliott. Higher-order abstract syntax. In Proceed-
ings of the ACM-SIGPLAN Conference on Programming Language
Design and Implementation, pages 199–208. ACM Press, June 1988.

[18] A. M. Pitts. Nominal logic, A first order theory of names and binding.
Information and Computation, 186(2):165–193, 2003.

[19] A. Tiu. A logic for reasoning about generic judgments. In
A. Momigliano and B. Pientka, editors,Int. Workshop on Logical
Frameworks and Meta-Languages: Theory and Practice (LFMTP’06),
2006.

[20] C. Urban. Nominal reasoning techniques in Isabelle/HOL. Journal of
Automated Reasoning, 40(4):327–356, 2008.

[21] C. Urban and J. Cheney. Avoiding equivariance in alpha-prolog. In
P. Urzyczyn, editor,Typed Lambda Calculi and Applications, Pro-
ceedings, volume 3461 ofLecture Notes in Computer Science, pages
401–416. Springer, 2005. ISBN 3-540-25593-1.

[22] C. Urban, A. M. Pitts, and M. Gabbay. Nominal unification. Theoret-
ical Computer Science, 323(1-3):473–497, 2004.

[23] R. Virga. Higher-order Rewriting with Dependent Types. PhD thesis,
Carnegie Mellon University, 1999.

ha
l-0

07
72

52
2,

 v
er

si
on

 1
 -

10
 J

an
 2

01
3

	1 Introduction
	2 Prolog
	3 The Logic G-
	4 The Translation
	4.1 Examples
	4.1.1 Type checking
	4.1.2 Polymorphic type generalization
	4.1.3 Capture-avoiding substitution

	4.2 Correctness
	4.3 Extending the translation

	5 Higher-order Judgments
	6 Conclusions and Future Work

