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While logic was once developed to serve philosophers and mathematicians, it is increasingly serving the

varied needs of computer scientists. In fact, recent decades have witnessed the creation of the new discipline

of Computational Logic. While Computation Logic can claim involvement in diverse areas of computing,

little has been done to systematize the foundations of this new discipline. Here, we envision a unity for

Computational Logic organized around the proof theory of the sequent calculus: recent results in the area of

focused proof systems will play a central role in developing this unity.

Computational logic, unity of logic, proof theory, sequent calculus, focused proof systems

1. SOFTWARE AND HARDWARE CORRECTNESS

IS CRITICALLY IMPORTANT

Computer systems are everywhere in our society

and their integration with all parts of our lives is

constantly increasing: accompany this wide scale use of

computing systems comes an increasing need to deal

with their correctness. There are a host of computer

systems—such as those in cars, airplanes, missiles,

hospital equipment—where correctness of software

is paramount. Big changes in the attitude towards

correctness is also taking place in the area of consumer

electronics. For example, years ago, establishing the

correctness of, say, desktop PCs, music players, and

telephones was not urgent since rebooting such systems

to recover from errors or living without a feature

due to bugs were mostly nuisances and not “life-

threatening.” But today, these same devices are now

tightly integrated into networks and, hence, they must

deal with information security and user anonymity while

trying to keep safe from malicious software.

Attempting to establish various kinds of correctness-

related properties of software systems is no longer an

academic curiosity. The old chestnut “You can’t build a

tall building on a sandy beach,” which is so often invoked

to argue for solid foundations for engineering projects,

needs a modern updating that requires moving off the

beach to the sea: “If you are in a canoe, a small leak

might be okay; if you are in a submarine, a small leak

is lethal.” As it is painfully clear today, plugging your

computer into the internet is similar to descending into

the depth of the sea: if there is a crack in your security, it

will be exploited quickly. One cannot be relaxed anymore

about leaks.

Our ability to provide at least some formal guarantees

about software systems will be directly related to our

ability to deploy new functionality and services. If we

cannot distinguish applets from viruses, we cannot

expect people to really use the rich set of flexible

services organized around mobile code. Our future could

resemble elements of the world in William Gibson’s

Virtual Light, where network security was so bad that

important data was transferred by bikers carrying hard-

disks! If we cannot produce software that has some

formal guarantees, then the development of all the new

features and services—and the concomitant increases in

efficiency and productivity—that we all hope to see soon

will be greatly delayed.

2. LOGIC IS A KEY

It is to logic that researchers, designers, and practition-

ers turn to help address the problems of establishing

formal properties. The importance of logic comes, in

part, because of its universal character and the rich set

of results surrounding it. Logic can also play a number of

roles viz-a-viz software systems. For example, logic can

be used to formally establish correctness (e.g., proving

a program correct). Given its universal character, it can

also be used as a language for communicating meaning

between different entities. For example, designers of pro-

gramming languages often use logic-based formalisms

to communicate the precise semantics of their designs to

users or language implementers. Also, when machines

exchange data and programs, increasing use is made of

logic-based expressions such as types, memory layout

specifications, assertions, interface requirements, proof

certificates (e.g., in the proof carrying code setting), etc.
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Indeed, it has been variously argued that logic plays a

role in computer science similar to that played by the

calculus of Newton and Leibniz in the physical sciences

and engineering disciplines (20). Twenty years ago,

Martin Davis (10) observed that mathematical logic had

already formed an intimate relationship with computer

science.

When I was a student, even the topologists

regarded mathematical logicians as living in

outer space. Today the connections between

logic and computers are a matter of engi-

neering practice at every level of computer

organization. . . . Issues and notions that first

arose in technical investigations by logicians

are deeply involved, today, in many aspects

of computer science.

Since these words were written, the deep involvement of

these two disciplines has grown so rich that it has given

rise to the new field of computational logic.

3. ... BUT LOGIC HAS BEEN BADLY FRACTURED

While there is some recognition that logic is a unifying

and universal discipline underlying computer science, it

is far more accurate to say that its universal character

has been badly fractured in the past few decades along

a number of axes.

• Logic has entered into a wide range of application

areas, including, for example, computer architec-

ture, databases, software engineering, program-

ming languages, computational linguistics, and ar-

tificial intelligence. These different application ar-

eas have been pushing their own agendas on how

logic should be exploited.

• The number of adjectives that are routinely

added to the word “logic” is extensive: first-order,

higher-order, classical, intuitionistic, linear, modal,

temporal, deontic, dynamic, quantum, etc. With

so many adjectives in common use today, one

wonders if there is any sense to insisting that there

is a core notion of “logic”.

• There are a large number of computational

logic tools in regular used and development:

model checkers, interactive and automatic theo-

rem provers, logic circuit simulators/testers, type

inference systems, SAT solvers, etc. Within each

of these categories, there are a plethora of specific

techniques and tools that often have little relation-

ship to one another.

The use of the word “fractured” here is deliberate.

Developing many different sub-disciplines is a typical

development within maturing disciplines: for example,

within mathematics, there are a great many adjectives

applied to the term algebra. In the algebraic case,

however, many of those sub-disciplines of algebras were

developed to provide for commonality by making more

abstract previously developed and disparate algebraic

structures. But one sees little effort within the literature

of computational logic to provide for commonality.

Specialization has made it possible for logic to contribute

significantly in these many application areas and to

attract the interest of many in industry. However, this

fracturing of logic comes with a high cost to the discipline

and it greatly diminishes its potential. In particular,

theoretical and implementation results achieved in one

slice of applied logic are seldom exported to other

slices. Similarly, great efforts are applied to develop

tools, libraries, and packages for one tool that are

closely related to large efforts based in other tools. More

serious still is that people working in one narrow domain

will sometimes think of their sub-domain as being the

universal formalism: since they are missing the bigger

picture, they invent ways to make their domain more

expressive even when much of what is needed is already

accounted for in (other slices of) logic.

In this paper, we argue that there needs to be forces that

are pushing against this fracturing and that attempts to

see computation logic as organized around a core set of

concepts. We shall offer such a set of concepts.

4. A BRIEF HISTORY

We provide a quick overview of the origins and state-of-

the-art of computational logic.

4.1. The early dreams for logic

One of the first lessons that one learns about logic is

that it is secure and universal. These attributes were

part of Leibniz’s hope for a universal, formal language

in which all disputes could be answered simply by “Let

us calculate . . . and see who is right” (22). The first

formal system that could claim both security of deduction

(soundness) and universality (completeness) was first-

order logic which can be formalized using both syntactic

means (proofs) and semantic means (truth). On such

a secure foundations, one can build set theory and

much of mathematics. An early and natural goal for

computational logic was the following:

Let us implement logic (and why not, since its syntactic

side is organized around a small set of proof principles):

we shall then have an implementation of mathematics.

Early dreams in automated reasoning focused on simple

and theoretically complete methods with the hope that

they would be complete in practice. The hope was to

have one framework, one implementation, and universal
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applicability. We describe two threads in deploying

universal methods for logic.

Automated and interactive provers In the 1960-

1970’s, there was a great deal of work done on

implementing automated systems for first-order logic

that were based on such complete paradigms as

resolution (37) or on conditional rewriting (7). Such

early work produced a great deal of information about

proof strategies and methods to implement formal logical

systems effectively (unification, backtracking search,

etc). Another lesson was, however, disappointing: those

systems came no where near to achieving the ambitions

of effective, universal deployment. Furthermore, it was

clear that the usual speed up in program execution that

resulted from improvements in hardware and compilers

would not make a dent in the “state-explosion” that

occurred within such provers. Starting around the same

time (and continuing today), a number of interactive

proof environments for mathematics were developed:

for example, Nqthm (7), Mizar (39), Coq (9), NuPRL

(8), HOL (19), PVS (33), and Matita (3). Most of these

systems chose either first-order logic with induction or

a higher-order constructive logic based on intuitionistic

logic as a suitable framework for encoding mathematics.

The architecture of several of these systems were

influenced directly or indirectly by Automath (11) and

LCF (34). While interaction was central to the functioning

of such systems, they all allowed automation to some

extent, often using tactics and tacticals.

Model checkers and logic programming By shifting

one’s attention to simpler theorems involving weaker

properties (for example, shifting from full correctness

to detecting deadlocks), one can employ logic and

deduction using the ideas and techniques found in

model checking (13; 36). While great successes can

be claimed for such systems, the hope of having a

universal approach to model checking quickly ran into

the state explosion problem. Logic programming can be

used to explore membership in still weaker relations.

Prolog exploits the Horn clause fragment of first-order

logic to provide a programming language that can,

after a fashion, turn some declarative specifications into

proper programs. Ultimately, the dream of deductively

describing a relation and then getting an effective

implementation of it turned out to be largely illusory.

4.2. Specialization and fracturing

Much of this early work yielded important results and

lessons. One of those lessons was, however, that

universal methods were usually of little practical use and

that the hope to deploy them in even rather weak settings

was naive. This early work then lead to a new phase in

the employment of logic for mathematics and computer

science.

Pick a domain and specialize One way to make

deductive systems more practical involves having

researchers focus on applications and sub-domains.

Once an application domain is narrowed significantly,

specific approaches to deduction in that setting could

be developed. There have been any number of

highly successful examples of this style of narrow-

and-specialize, including, for example, SAT solvers,

deductive databases, type systems, static analysis,

logic circuits, etc. Such systems are making routine

and important contributions in day-to-day practice.

Unfortunately, success in one narrow topic is seldom

translated to a success in another topic.

Working within frameworks In (35), Paulson

described his Isabelle theorem prover as a generic

framework in which the “next 700 theorem provers” could

be written. The argument (largely implicit in that paper)

is that writing theorem provers is a difficult task and

future designers of theorem provers should work within

an established framework. Such a framework can help

to ensure correct implementations of core deduction

features as well as provide for basic user-interfaces, and

integration with various specialized inference engines

(for example, Presburger arithmetic). Such frameworks

are now popular choices and allow proof system

developers to either explicitly design new logics (as is

the case in Isabelle) or extend the deductive powers

of a core prover using various library and package

mechanisms (as is the case in many other provers such

as Coq, HOL, and NuPRL). Working entirely within a

particular logical framework is certainly a conservative

perspective that is the appropriate choice in many

situations.

4.3. Verification is too big for a monolithic

treatment

The universal applicability of logic and its associate proof

methods for computer system verification has also been

attacked from another angle. De Millo, Lipton, and Perlis

(29) have stressed that formal proofs (in the sense

often attributed to mathematics) is unlikely to work for

the verification of computer systems give that the latter

involves social processes, evolving specifications, and

remarkably complex specifications and programs.

On many occasions in computer science, a negative

result can be productive: witness, for example, how the

undecidability of the halting problem lead the extensive

study of specialized domains where decidability can

be established. Similarly here: if one accepts the

negative premise that logic and formal proof cannot

solve the problems of verifying computer systems,

then one might expect to see an explosion of many

logics and proof systems used on many smaller

aspects of building correct software. For example, the

social processes involved in building computer systems

must communicate precisely among various people
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involved in that process. There are many things that

need to be communicated between the members of

the society (tools, types, static analyzes, operational

semantics, examples, counter-examples, etc). Logic,

with its precision and formal properties can and has

been applied to aid such communications. Not all

things, of course, are logic but logic offers an extremely

valuable aid in defining, formalizing, automating, and

communicating many aspects of software systems.

Thus, the impossibility of using one logic and one formal

method leads to the need to have many specialized

logics and methods.

5. METHODOLOGY

Our approach to unity for computational logic is based

on the follow main methodological points.

5.1. Dropping mathematics as an intermediate

This proposal deals with the role of logic in not

only specifying computation but also reasoning about

computation: reasoning about mathematics is not, a

priori, our concern. This choice of emphasis actually

has significant consequences. In particular, consider the

following.

The traditional approach to reasoning about computation

in almost all ambitious frameworks today follows the

following two step approach.

Step 1: Implement mathematics. This step is achieved

by picking a general, well understood formal

system. Common choices are first-order logic,

set theory, or some foundation for constructive

mathematics, such as a higher-order intuitionistic

logic.

Step 2: Reduce computation to mathematics. Computa-

tion is generally encoded via some model theoretic

semantics (such as denotational semantics) or as

an inductive definition over an operational seman-

tics.

A key methodological element of this proposal is that we

shall drop mathematics as an intermediate and attempt

to find more direct and intimate connections between

computation, reasoning, and logic. The main problem

with having mathematics in the middle seems to be that

many aspects of computation are rather “intensional”

but a mathematical treatment requires an extensional

encoding. The notion of algorithm is an example of this

kind of distinction: there are many algorithms that can

compute the same function (say, the function that sorts

lists). In a purely extensional treatment, it is functions

that are represented directly and algorithm descriptions

that are secondary. If an intensional default can be

managed instead, then function values are secondary

(usually captured via the specification of evaluators or

interpreters).

For a more explicit example, consider whether or not

the formula ∀wi. λx.x 6= λx.w is a theorem. In a

setting where λ-abstractions denote functions (the usual

extensional treatment), we have not provided enough

information to answer this question: in particular, this

formula is true if and only if the domain type i is not

a singleton. If, however, we are in a setting where

λ-abstractions denote syntactic expressions, then it is

sensible for this formula to be provable since no (capture

avoiding) substitution of an expression of type i for the w
in λx.w can yield λx.x.

Computation is full of intensional features besides

bindings within syntax, including, for example, the usage

of resources such as time and space. Mathematical

techniques can treat intensionality, but experience with

such treatments demonstrate that they do not reach

the level of “canonicity” that is reached by similar

encoding techniques that have been successful for

functions and sets. We shall, instead, look for logical and

proof theoretic treatments of many of these intensional

aspects of computation.

5.2. Proof theory provides a framework

We shall propose using proof theory, particularly the

proof theory of the sequent calculus, as the unifying

framework behind computational logic. Proof theory

seems to be far more intimately related to computation

given its reliance on (mostly) finitary methods: this is

in contrast, say, to the mathematics of model theory

where there are generally infinitely many models to

consider and these models generally have infinite

extension. Proof theory provides elegant treatments of

various intensional aspects of computation (for example,

resources in linear logic) and provides some rich and

flexible avenues of reasoning that go along way in

providing a rich and flexible framework.

Gentzen (15) invented the sequent calculus to solve a

problem in the unity of logic. Gentzen wished to prove

that both classical and intuitionistic logic satisfied the

Hauptsatz, namely, that inference did not need to have

detours or lemmas. His goal was to prove this one result

for both logics simultaneously. After failing to prove such

a meta-theorem using natural deduction, he invented

the sequent calculus along with the important notions

of structural rules and cut-elimination (we provide a

primer for the sequent calculus in Section 6). He was

then able to describe one procedure for the elimination

of the cut rule (corresponding to the in-lining of the

proof of lemmas) that proved the Hauptsatz (now stated

as the admissibility of the cut-rule) for both logics

simultaneously.
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With the introduction of linear logic (16), Girard has

expanded on these themes of using the sequent

calculus, the structural rules, and cut-elimination. As

a result the expressiveness and utility of the sequent

calculus for computational purposes has been greatly

extended. It is this setting that we propose to use for an

explicit attempt at unifying much of computational logic.

5.3. Logic considered broadly but with a standard

What exactly is logic? Since we are exploring the

frontiers of what logic can be for computer science, we

do not try to completely define it here. On the other hand,

we have the most ambitious plans for logic. In particular,

we shall always use it as a term that can be ascribed

“beauty” in the sense of the following quotation.

We ascribe beauty to that which is simple; which has no

superfluous parts; which exactly answers its end; which

stands related to all things; which is the mean of many

extremes. — Ralph Waldo Emerson, “Beauty” in (14)

In particular: logic is simple, given by its natural and

universal syntax and small sets of inference rules; logic

has no superfluous parts, which is the promised of

such formal results as the cut-elimination theorem; logic

exactly answers its ends for describing static truth or

computational dynamics, as witnessed by soundness

and (relative) completeness results; logic is related to

all things computational and its role in the foundations

of computer science is often compared to the role of

calculus in the foundations of physics (20); and, finally,

logic is the mean of many extremes given its intimate

use in a range of “extremes” including databases,

programming languages, type systems, certificates,

verification, model checking, etc.

We shall also not try to find a single setting to discuss all

things that have been referred to as logic. In particular,

we shall mostly limit ourselves to classical, intuitionistic,

and linear logic since they have a long and well

established relations to computing. Many other logics,

such as modal, spatial, tense, etc, will be explicitly

left out of this discussion, even though many of them

can be understood as embeddings into or modular

extensions to one of these core logics. Even with

a focus on three core logics, there are many ways

that these can be elaborated (eg., propositional versus

quantificational, first-order versus higher-order, with or

without equality) and there are many proof systems

for these logics (sequent, natural deduction, tableaux,

Hilbert-style, matrix methods, etc.).

5.4. A big logic with many sublogics

We shall look to logic to be a universal language

and proof theory as a universal framework to organize

and infer structure about both logic and computation.

Logic can be composed of a great many connectives,

quantifiers, etc. Proof theory teaches us that if we can

achieve cut-elimination for logics, then we can expect

that most features of logic fit together orthogonally.

That is, they do not interact or, if they interact, that

interaction is made evident and controlled. As a result

of this orthogonality, we have the opportunity to see

logic as a rather large collection of possible connectives,

quantifiers, and other operators (e.g., exponentials,

modals, fixed points (6), and subexponentials (31)) and

that we can choose from these as we wish. In this

sense, the propositional classical logic system used

within SAT solvers is, in fact, just one of many subset of,

say, higher-order linear logic. Modern proof theory also

teaches us that contexts and their associated structural

rules (in contrast to introduction and elimination rules)

play an important role in describing logics. But again,

the choice of what structural rules to use is largely

orthogonal to other choices. For example, Gentzen’s

original version of the sequent calculus was developed

to unify the treatment of classical and intuitionistic logic:

the difference between these two logics was governed

by structural rules. Girard later showed that linear logic

could fit into this same scheme by further varying

the structural rules. Richer integration is also possible,

where, say, linear and classical connectives can exist

together (17; 24).

5.5. Two-levels of logic

It is also clear that there are limits to some integrations of

logic. In particular, if logic is use to specify computations

(i.e., by having proofs be computation traces) then

reasoning about such computations might well need to

be based on a different logic. The standard division of

object-level and meta-level reasoning works here. Even

in this setting, some important integration is still possible:

in particular, terms structures and their associated

binding operators can be shared between the meta-logic

and the object-logic.

6. A PRIMER FOR PROOF THEORY AND SEQUENT

CALCULUS

We shall assume that the reader has some familiarity

with the sequent calculus. Below we recall some

definitions and results.

Sequents are generally presented as a pair Γ ⊢ ∆
of two (possibly empty) collections of formulas. For

Gentzen, these collections were lists but multisets and

sets are also used. Such sequents are also called two-

sided sequents. Intuitively, the formulas on the left-hand-

side (in Γ) are viewed as assumptions and formulas

on the right-hand-side (in ∆) are viewed as possible

conclusions: thus, an informal reading of the judgment

described by the sequent Γ ⊢ ∆ is “if all the formulas in

Γ are true then some formula in ∆ is true.” This reading,

however, is only suggestive since sequents will be used

in settings where the notion of truth is either not present
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or is meant to be developed independently. In calculi

with an involutive negation (such as classical logic), two-

sided sequents are often replaced by simpler one-side

sequents: in particular, the sequent Γ ⊢ ∆ is written,

instead, as ⊢ ¬Γ,∆ (placing ¬ in front of a collection of

formulas is taken as the collection of negated formulas).

In the remainder of this paper, we shall assume that the

collections of formulas used in sequents are multisets.

A formula is atomic if its top-level constant is a non-

logical symbol, namely, a predicate symbol. A literal is

an atom or a negated atom.

6.1. Three classes of inference rules

Sequent calculus proof systems come with inference

rules in which a sequent is the conclusion and zero or

more sequents are premises. These rules are usually

broken down into three classes of rules. The structural

rules are the following two, applied to either the left or

right side.

Contraction:
Γ, B, B ⊢ ∆

Γ, B ⊢ ∆

Γ ⊢ ∆, B, B

Γ ⊢ ∆, B

Weakening:
Γ ⊢ ∆

Γ, B ⊢ ∆
Γ ⊢ ∆

Γ ⊢ ∆, B

The identity rules are also just two, called Initial and Cut.

B ⊢ B
Initial

Γ1 ⊢ ∆1, B Γ2, B ⊢ ∆2

Γ1,Γ2 ⊢ ∆1,∆2

Cut

The meta-theory of most sequent calculus presentations

of logic includes results that say that most instances

of these identity rules are, in fact, not necessary. The

cut-elimination theorem states that removing the cut-

rule does not change the set of provable sequents.

Furthermore, the initial rule can usually be eliminated for

all cases except when B is an atomic formula.

The third and final collection of inference rules are the

introduction rules which describe the role of the logical

connectives in proof. In two-sided sequent calculus

proofs, these are usually organized as right and left

introduction rules for the same connective. In one-

sided sequent calculus proofs, these rules are organized

as right-introduction rules for a connective and its De

Morgan dual. For example, here are two examples of

pairs of introduction rules.

Γ, B1, B2 ⊢ ∆

Γ, B1 ∧ B2 ⊢ ∆

Γ1 ⊢ ∆1, B1 Γ2 ⊢ ∆2, B2

Γ1,Γ2 ⊢ ∆1,∆2, B1 ∧ B2

Γ, B[t/x] ⊢ ∆

Γ,∀xB ⊢ ∆

Γ ⊢ ∆, B[y/x]

Γ ⊢ ∆,∀xB

The right-introduction rule for ∀ has the proviso that

the eigenvariable y does not have a free occurrence

in any formula in Γ ∪ ∆. Notice that in both of these

sets of rules, there is exactly one new occurrence of a

logical connective in the premise when compared to the

premises.

Notice that some inference rules are invertible: that is, if

their conclusion is provable then all their premises are

provable. Of the four introduction rules above, the left

rule for ∧ and the left rule for ∀ are invertible: the other

two introduction rules are not necessarily invertible.

When presenting a sequent calculus proof system for

a specific logic, one usually presents the introduction

rules for the logical connectives of the logic and

usually accepts both identity inference rules (initial

and cut). The structural rules are, however, seldom

adopted without restriction. For example, intuitionistic

logic can be understood as a two-sided sequent calculus

in which the contraction-right rule is not allowed.

Multiplicative-additive linear logic (MALL) admits neither

weakening nor contraction and full linear logic allows

those structural rules only for specially marked formulas

(formulas marked with the so-called exponentials !
and ?). Classical logic, however, generally admits the

structural rules unrestricted.

6.2. Capturing computation via proof search

When considered abstractly, the operational semantics

of functional programming can be viewed as a

systematic process for eliminating cuts from a proof.

(In certain sequent calculi for intuitionistic logic, there

are nice connections to draw between cut-elimination

and β-reduction (38).) Our framework here for unity

involves, instead, using the proof search approach

to computational specification. With this approach,

one considers the dynamics of computation as the

process of attempting to build a cut-free proof from

conclusion to premises. As one moves up a proof

tree, sequents change and that change captures the

dynamics of computation. The cut rule and the cut-

elimination theorem is generally used not as part

of computation but as a means to reason about

computation. The proof search approach to specification

has been used to formalize the operational semantics of

logic programming (27).

6.3. Proof theory as an approach to meaning

“Proof theory semantics” is a term that has been

used for a number of years, largely in the narrow and

philosophical context of determining the proper meaning

of the logical connectives (21). Such a style semantics

uses the inference rules (the “uses” of the connectives)

as the origin of meaning and then employs the meta-

theory of, for example, sequent calculus as the formal

setting for organizing that meaning. Girard’s slogan for

motivating Ludics, “From the rules of logic to the logic

of rules” (18), is another illustration of placing inference

rules at the center of system of meaning. The author

has similarly described the value of replacing model
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theory with proof theory as the vehicle for describing the

meaning of logic-based programming languages (25).

Example: Alan Turing encoded computation using

strings, machines, and computation traces. He used

these to reason about the power of computing via

standard mathematical techniques (inductive definitions,

set-theoretical constructions, encodings as functions,

etc). While this mathematical framework was highly

appropriate for his particular goals of proving the

first theorems about limitations of computation, that

framework has not served us well when we wish to

reason about the meaning of specific computations. In

the proof theory approach to relational programming,

computation can be described using terms, formulas,

and cut-free proofs. On one hand, such cut-free proofs

encode computation traces in much the same way

as Turing’s computation traces. On the other hand,

there is a great deal of structure and many formal

results surrounding sequent calculus proofs that make

it possible to reason richly about computation using

abstractions, substitutions, and cut-elimination (26).

7. FOCUSED PROOF SYSTEMS

If we try to take the construction of proofs literally as a

model for performing computation, one is immediately

struck by the inappropriateness of sequents calculus for

this task: there are just too many ways to build proofs and

most of them differ in truly minor ways. While permuting

the application of inference rules may yield proofs of

different sequents, quite often such permutations yield

different proofs of the same sequent. One would wish

to have a much tighter correspondence between the

application of an inference rule and sometime that might

appear as an interesting “action” within a computation.

One of the first attempts to provide the sequent calculus

with normal forms that could correspond to computation

was the work on uniform proofs and backchaining (27)

that was used to provide a proof theory foundation of

logic programming. It was, however, Andreoli’s focused

proof system (1) for linear logic that really allowed

one to more richly restriction and organize the sequent

calculus. The earlier work on uniform proofs was rather

limited, both in its “focusing behavior” and in the subsets

of logic to which it could be applied. Andreoli’s result,

however, applied to a full and rich logic. We provide here

a high-level outline of the key ideas behind focused proof

systems.

Focused proofs are generally divided into two, alter-

nating phases. The first phase incorporates the infer-

ence rules that are invertible. This phase, sometimes

also called the negative or asynchronous phase, ends

(reading the proof from conclusion to premises) when

all invertible inference rules have been applied. The

second phase selects a formula on which to “focus”:

the inference rule that is applied to this formula is not

necessarily invertible. Furthermore, if after the (reverse)

application of that introduction rule, a subformula of

that focused formula appears that also requires a non-

invertible inference rule, then the phase continues with

that subformula as the new focus. This second phase,

also called the positive or synchronous phase, ends

when either the proof ends with an instance of the initial

rule or when only formulas with invertible inference rules

are encountered. Certain “structural” rules are used to

recognize the end of a phase or the switch from one

phase to another.

7.1. A focused proof system for classical logic

This description of a focused proof system is only

approximate. It is better to present a complete focused

proof system to see a concrete example. Consider

a presentation of first-order classical logic in which

negations are applied only to atomic formulas and where

the propositional connectives t, f , ∧, and ∨ are replaced

by two “polarized” versions: t−, t+, f−, f+, ∧−, ∧+, ∨−,

∨+. We shall also assume that to complete the notion of

polarized formula, the atomic formulas are also polarized

either positively or negatively. A formula is negative if it is

a negative atom, the negation of a positive atom, or if its

top-level connective is one of t−, f−, ∧−, ∨−. A formula is

positive if it is a positive atom, the negation of a negative

atom, or if its top-level connective is one of t+, f+, ∧+,

∨+. Notice that taking the De Morgan dual of a formula

causes its polarity to flip.

The inference rules for the LKF focused proof system

(23) for classical logic is given in Figure 1. Sequents are

divided into negative sequents ⊢ Θ ⇑ Γ and positive

sequents ⊢ Θ ⇓ B, where Θ and Γ are multisets

of formulas and B is a formula. (These sequents are

formally one-sided sequents: formulas on the left of

⇑ and ⇓ are not negated as they are in two-sided

sequents.) Notice that in this focused proof system, we

have reused the term “structural rule” for a different set

of rules which formally contains instances of weakening

(Id) and contraction (Focus). Notice also that in any

proof that has a conclusion of the form ⊢ · ⇑ B, the only

formulas that are to the left of an ⇑ or ⇓ occurring in that

proof are either positive formulas or negative literals: it is

only these formulas that are weakened (in the Id rule).

The only formulas contracted (in the Focus rule) are

positive formulas. Thus, although linear logic is not used

here directly, non-atomic negative formulas are treated

linearly in the sense that they are never duplicated nor

weakened in an LKF proof.

Let B be a formula of first-order logic. By a polarization of

B we mean a formula, say B′, where all the propositional

connectives are replaced by polarized versions of the

same connective and where all atomic formulas are

assigned either a positive or negative polarity. Thus,

an occurrence of the disjunction ∨ is replaced by

7
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Structural Rules

⊢ Θ, C ⇑ Γ

⊢ Θ ⇑ Γ, C
Store

⊢ Θ ⇑ N

⊢ Θ ⇓ N
Release

⊢ P,Θ ⇓ P

⊢ P,Θ ⇑ ·
Focus

⊢ ¬P,Θ ⇓ P
Id (literal P )

Introduction of negative connectives

⊢ Θ ⇑ Γ, t−
⊢ Θ ⇑ Γ, A ⊢ Θ ⇑ Γ, B

⊢ Θ ⇑ Γ, A ∧− B

⊢ Θ ⇑ Γ

⊢ Θ ⇑ Γ, f−

⊢ Θ ⇑ Γ, A, B

⊢ Θ ⇑ Γ, A ∨− B

⊢ Θ ⇑ Γ, A

⊢ Θ ⇑ Γ,∀xA

Introduction of positive connectives

⊢ Θ ⇓ t+
⊢ Θ ⇓ A ⊢ Θ ⇓ B

⊢ Θ ⇓ A ∧+ B

⊢ Θ ⇓ Ai

⊢ Θ ⇓ A1 ∨
+ A2

⊢ Θ ⇓ A[t/x]

⊢ Θ ⇓ ∃xA

Figure 1: The focused proof system LKF for classical logic.

Here, P is positive, N is negative, C is a positive formula or

a negative literal, Θ consists of positive formulas and negative

literals, and x is not free in Θ, Γ. Endsequents have the form

⊢ · ⇑ Γ.

an occurrence of either ∨+ or ∨−; similarly with ∧
and with the logical constants for true t and false f .

For simplicity, we shall assume that polarization for

atomic formulas is a global assignment to all atomic

formulas. Properly speaking, focused proof systems

contain polarized formulas and not simply formulas.

Theorem LKF is sound and complete for classical

logic. More precisely, let B be a first order formula and let

B′ be a polarization of B. Then B is provable in classical

logic if and only if there is an LKF proof of ⊢ · ⇑ B′ (23).

Notice that polarization does not affect provability but it

does affect the shape of possible LKF proofs. To illustrate

an application of the correctness of LKF, we show how it

provides a direct proof the following theorem.

Herbrand’s Theorem Let B is quantifier-free formula

and let x̄ be a (non-empty) list of variables containing

the free variables of B. The formula ∃x̄B is classically

provable if and only if there is a list of substitutions

θ1, . . . , θm (m ≥ 1), all with domain x̄, such that the

(quantifier-free) disjunction Bθ1 ∨ · · · ∨ Bθm is provable

(i.e., tautologous).

Proof. The converse direction is straightforward. Thus,

assume that ∃x̄B is provable. Let B′ be the result of

polarizing all occurrences of propositional connectives

negatively. By the completeness of LKF, there is an LKF

proof Ξ of ⊢ ∃x̄B ⇑ ·. The only sequents of the form

⊢ Θ ⇑ · in Ξ are such that Θ is equal to {∃x̄B′} ∪ L
for L a multiset of literals. Such a sequent can only

be proved by a Decide rule by focusing on either a

positive literal in L or the original formula ∃x̄B′: in the

latter case, the synchronous phase above it provides a

substitution for all the variables in x̄. One only needs to

collect all of these substitutions into a list θ1, . . . , θm and

then show that the proof Ξ is essentially also a proof of

⊢ B′θ1 ∨
+ · · · ∨+ B′θm ⇑ ·. QED.

7.2. Positive and negative macro inference rules

Focused proof systems such as LKF allow us to change

the size of inference rules with which we work. Let us

call individual introduction rules (such as displayed in

Section 6.1 and in Figure 1) “micro-rules”. An entire

phase within a focused proof can be seen as a “macro-

rule”. In particular, consider the following derivation.

⊢ Θ, D ⇑ N1 · · · ⊢ Θ, D ⇑ Nn

⊢ Θ, D ⇓ D

⊢ Θ, D ⇑ ·

Here, the selection of the formula D for the focus can

be taken as selecting among several macro-rules: this

derivation illustrates one such macro-rule: the inference

rule with conclusion ⊢ Θ, D ⇑ · and with n ≥ 0 premises

⊢ Θ, D ⇑ N1, . . . ,⊢ Θ, D ⇑ Nn (where N1, . . . , Nn are

negative formulas). We shall say that this macro-rule

is positive. Similarly, there is a corresponding negative

macro-rule with conclusion, say, ⊢ Θ, D ⇑ Ni, and with

m ≥ 0 premises of the form ⊢ Θ, D, C ⇑ ·, where C is a

multiset of positive formulas or negative literals.

In this way, focused proofs allow us to view the

construction of proofs from conclusions of the form

⊢ Θ ⇑ · as first attaching a positive macro rule (by

focusing on some formula in Θ) and then attaching

negative inference rules to the resulting premises until

one is again to sequents of the form ⊢ Θ′ ⇑ ·. Such

a combination of a positive macro rule below negative

macro rules is often called a bipole (2).

7.3. Fixed points and equality

In order for capture some interesting computational

problems, the logic of propositional connectives and

first-order quantifiers can be augmented with equality

and fixed point operators. Consider the left and right

introduction rules for = and µ given in Figure 2. Notice

that since the left and right introduction rules for µ are

the same, µ is self-dual: that is, the De Morgan dual of µ
is µ. It is possible to have a more expressive proof theory

for fixed points that provides also for least and greatest

fixed points (see, for example, (6; 4)): in that case, the

De Morgan dual of the least fixed point is the greatest

fixed point.

Example Identify the natural numbers as terms

involving 0 for zero and s for successor. The following
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Γ, B(µB)t̄ ⊢ ∆

Γ, µBt̄ ⊢ ∆

Γ ⊢ ∆, B(µB)t̄

Γ ⊢ ∆, µBt̄

Γσ ⊢ ∆σ
Γ, s = t ⊢ ∆

†
Γ, s = t ⊢ ∆

‡
Γ ⊢ ∆, t = t

Figure 2: Introduction rules for = and µ. B is a formula with

n ≥ 0 variables abstracted and t̄ is a list of n terms. The †

proviso requires the terms s and t to be unifiable and σ to be

their most general unifier. The ‡ proviso requires that the terms

s and t are not unifiable.

⊢ Θσ ⇑ Γσ

⊢ Θ ⇑ Γ, s 6= t
†

⊢ Θ ⇑ Γ, s 6= t
‡

⊢ Θ ⇓ t = t

⊢ Θ ⇑ Γ, B(µB)t̄

⊢ Θ ⇑ Γ, µBt̄

⊢ Θ ⇓ B(µB)t̄

⊢ Θ ⇓ µBt̄

Figure 3: Focused inference rules for = and µ. The proviso †

and ‡ and the definition of σ are the same as above.

simple logic program defines two predicates on natural

numbers.

nat 0 ⊂ true.

nat (s X) ⊂ nat X.

leq 0 Y ⊂ true.

leq (s X) (s Y ) ⊂ leq X Y.

The predicate nat can be written as the fixed point

µ(λpλx.(x = 0) ∨ ∃y.(s y) = x ∧ p y)

and binary predicate leq (less-than-or-equal) can be

written as the fixed point

µ(λqλxλy.(x = 0) ∨ ∃u∃v.(s u) = x ∧ (s v) = y ∧ q u v).

In a similar fashion, any Horn clause specification can be

made into fixed point specifications (mutual recursions

requires standard encoding techniques).

These two logical connectives can be added to LKF

as follows. First, we classify both = and µ as positive

connectives (this choice is forced for equality while µ
can be polarized either way). The (one-sided) focused

versions of the introduction rules above are given in

Figure 3.

Example Consider proving the positive focused

sequent

⊢ Θ ⇓ (leq m n ∧+ N1) ∨
+ (leq n m ∧+ N2),

where m and n are natural numbers and leq is the fixed

point expression displayed above but this time with all

occurrences of ∧ and ∨ polarized with their positive

variants. If both N1 and N2 are negative formulas, then

there are exactly two possible macro rules: one with

premise ⊢ Θ ⇑ N1 when m ≤ n and one with premise

⊢ Θ ⇑ N2 when n ≤ m (thus, if m = n, either premise

is possible). In this sense, a macro inference rule can

contain an entire Prolog-style computation.

Example Macro rules can be built to match many

computational situations. Consider, for example, defining

simulation as the (greatest) fixed point of the equivalence

sim P Q ≡ ∀P ′∀A[P
A

−→ P ′ ⊃ ∃Q′[Q
A

−→ Q′∧sim P ′ Q′]].

Although the right-hand-side of this definition looks

complex, we show how it is possible to see proof

search with this formula as being exactly two macro

inference rules. First, the expression P
A

−→ P ′ is,

presumably, given via some SOS (structured operational

semantic) specifications. Such specifications are simple,

syntax-directed inference rules that can be captured

as a least fixed point expression. As above, we will

view such fixed point expressions as purely positive

formulas. Thus, the expression ∀P ′∀A[P
A

−→ P ′ ⊃
·] is a negative macro rule: since all possible actions

A and continuations P ′ must be computed, there are

no choices to be made in building a proof for this

expression. (Here, we are assuming that the implication

B ⊃ C is rendered as ¬B ∨− C in the polarized

setting.) On the other hand, focusing on the expression

∃Q′[Q
A

−→ Q′∧+ ·] yields a non-invertible, positive macro

rule. In this way, the focused proof system is aligned

directly with the structure of the actual (model-checking)

problem. Notice that if one wishes to communicate a

proof of a simulation to a proof checker, no information

regarding the use of the negative macro rule needs

to be communicated since the proof checker can also

perform the computation behind that inference rule (i.e.,

enumerating all possible transitions of a given process

P ).

7.4. The engineering of proof systems

The fact that an entire computation can fit within a

macro rule (using purely positive fixed point expressions)

provides a great deal of flexibility in designing inference

rules. Such flexibility allows inference rules to be

designed so that they correspond to an “action” within

a given computational system. One should note that

placing arbitrary computation within an inference rule is

probably too much: we usually use the term “inference

rule” for some step of a proof for which it is decidable to

check validity. Thus, some care should be exercised in

balancing the complexity of a macro rule with the needs

of proof systems to have their correctness be decidable.

Another technique in applying focusing proofs is the

use of delays. Within LKF, we can define the delaying

operators

∂+(B) = B ∧+ t+ and ∂−(B) = B ∧− t−.
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Clearly, B, ∂−(B), and ∂+(B) are all logically equivalent

but ∂−(B) is always negative and ∂+(B) is always

positive. If one wishes to break a positive macro rule

resulting from focusing on a given positive formula into

smaller pieces, then one can insert ∂−(·) into that

formula. Similarly, inserting ∂+(·) can limit the size of a

negative macro rule. By inserting many delay operators,

a focused proof can be made to emulate an unfocused

proof.

In general, proofs can be very large objects. If they

are to be checked and communicated, then there

must be some mechanisms that allow for exploring

trade-offs between their size and their checking time.

Focused proof systems here can help. First, although

not illustrated here, focused proof systems can certainly

contain versions of the cut-rule so lemmas can be

incorporated into focused proof objects. Second, since

macro inference rules correspond to computational

steps, the designer of a proof system should often have a

good sense of whether or not the search for short proofs

could be transferred to the proof checker. For example,

in the case of the judgment P
A

−→ P ′, one might expect

that the proof checker could search for proofs of such

judgments given that this judgment is defined over (finite)

syntactic expressions. Thus, by asking the proof checker

to do some proof search, the size of proof certificates

could be variably reduced.

8. THE UNITY OF PROOF SYSTEMS

Recent work in applying proof theory to the foundations

of computational logic systems reveals that there are

significant chances that a range of proof systems for,

at least, classical, intuitionistic, and linear logics can be

given a common foundation. We describe some of this

recent work below.

Alternative approaches to unbounded behavior

While Girard’s original proposal to extend the core of

linear logic (MALL) with the exponentials (?, !) in order

to achieve unbounded behaviors is elegant, especially

in its simplicity, this approach has some deficiencies. In

particular, the use of exponentials breaks up focused

proofs into smaller and smaller phases, thus negating

the applicability of focusing in the first place. There have

been at least a couple of recent proposals that try to

provide alternatives to the exponentials. For example,

Baelde and Miller (6; 4) proposed adding least and

greatest fixed points to MALL directly. The resulting logic

is surprisingly elegant and expressive. MALL plus fixed

points has been used to describe the logical foundations

of a model checker (5) and is being used to design a new

theorem proving architecture for the search for proofs

involving induction. Liang and Miller (24) have blended

together classical logic (which has natural notions of

unbounded behavior) and MALL. The resulting logic is

an exciting new approach to the Unity of Logic (17),

one where we can retain focusing behavior for classical,

intuitionistic, and linear logics.

Logic programming vs model checking vs theorem

proving The differences between these three activ-

ities can be characterized by their different uses of

fixed points. Logic programming involves may behavior

only, which involves unfolding fixed points and non-

deterministically picking a path to a success. On the

other hand, both model checking and theorem proving

deal with must as well as may behavior. These two

differ in that model checkers generally assume finite

fixed points (or have specialized methods for handling

loops) while (inductive) theorem provers use invariants

to characterize possible infinite unfoldings. Given these

rough descriptions, it is possible to see rich ways that

these activities can fit together into one system (and

one logic!) and enhance each other: for example, a

theorem prover might prove certain symmetry lemmas

(via induction) and these could be used in the model

checker to reduce search space. Similarly, tabling within

model checkers can be seen as lemma generation in

theorem provers (28).

Many proof systems just differ in polarization

Nigam and Miller (30) have recently shown that a

range of commonly used proof systems (sequent

calculus, natural deduction, tableaux, Hilbert-style, etc)

are, in fact, just different polarizations of a common

specification for inference rules. Thus it should be

possible to create a single, formal framework for

specifying and implementing many proof systems.

Accounting for rewriting proofs Algebraic-style

rewriting is an important proof technique for reasoning

about functional expressions. To what extent can

rewriting with functions be captured within a relational

setting? Functions can, of course, encode relations

using set-valued functions and different order relations

(Plotkin/Hoare/Smyth). Conversely, relations can directly

encode functions: the graphs of functions are, simply,

graphs of relations. It is also interesting to note that

the restriction on relations that make them into functions

(for all input values there is a unique output value) has

a precise connection to focusing: in particular, if the

binary predicate P represents a function (first argument

denoting the input and the second argument, the output),

then the formulas

∀x.P (t, x) ⊃ Q(x) and ∃x.P (t, x) ∧ Q(x)

are logically equivalent: the underlying P -typed quanti-

fier is, in fact, self dual. This observation immediately

relates to how one can structure focused proofs.

Model-checking-as-deduction and deduction-as-

model-checking As we have mentioned, many

(high-level aspects of) model checking can be seen

as focused deduction with fixed points (4; 5; 6). Other
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recent work (12) has shown that (in certain weak

logics), deduction can be achieved by looking for

winning strategies in suitable games. The search for

winning strategies is a typical and important example

of something model checkers can do well. These two

lines of research make it possible to hope that model

checkers and theorem provers might ultimately be seen

as sharing many common features that might allow their

implementations to be tightly integrated.

9. BENEFITS OF A UNIFYING FRAMEWORK

The fractured nature of logical systems can be

addressed by ad hoc solutions: standardized challenge

problems, standardized frameworks, XML formats for

formulas and proofs, protocols for plugging one tool

into another tool, etc. While well engineered and

inter-operating systems can have important practical

consequences, one should insist that broader and more

expressive foundations for computational logic systems

be developed.

There are a number of important consequences to

providing such a common framework to logic and its

uses in computer systems.

Flexible proof certificates An emphasis on unity

(along with the technical results required to make it real)

can be a game changer. Consider, for example, what

can happen if a highly flexible form of proof certificate

(one of the promises of focused proof system) were

available. No longer are formal systems isolated. If

proof certificates can be transmitted and easily checked,

then one formal system can accept proofs from other

systems no matter how well those formal systems trust

each other. The existence of such proof certificates

open an entirely new world of possibilities for attacking

the problems of proving systems formally correct. For

example, it should be possible to have libraries of proofs

that take contributions from a wide range of deductive

engines and not be limited to submissions from just

one deduction engine. Also, since the proof certificates

here are based on proof theory principles, rich search

conditions against the library should be possible. Also

possible should be a marketplace of proofs: the most

successful practitioners in formal methods will be those

who can choose the right combination of tools for getting

formal results. Such a marketplace could lead to many

new tools being developed for specialize but important

domains (e.g., avionics).

Transfer of implementation techniques A formal

and rich foundation for a wide variety of computational

logic systems will allow researchers and developers to

transfer solutions they have developed in one area—

e.g., data structures, algorithms, or search heuristics—

to other areas.

Rich integration of different technologies In a

similar way, it should be possible to see that different

tools are, at least formally, performing deduction in the

same kind of proof systems as another tool: as such, rich

forms of integration of those tools should be possible.

For example, model checking and inductive/coinductive

theorem proving can be seen as building sequent

calculus proofs in a logic with fixed points (6; 4). Such

a common deductive setting can be used to more tightly

integrate these two rather different styles of deduction.

New breeds of computational logic systems One

reason to push for new foundations over engineered

integration is that such new foundations should make

it possible to provide for completely new approaches to

the architecture and scope of logic-based systems. For

example, linear logic (16) was presented as a revolution

in computation logic and it has, indeed, made it possible

to rethink a great deal of the conceptual nature of logic.

Today, we have much richer ways of thinking about the

structural rules (e.g., contraction, weakening), about the

role of games and interaction in logic, about concurrency

in proofs, and about organizing inference rules into large-

scale inference rules.

Teaching of logic An extremely important aspect of

the foundation of any science is its ability to explain

clearly the totality of the science. A new foundation

should provide a meaningful way to organize and present

most aspects of computational logic systems. In turn,

such developments will lead to new ways to teach logic

so that its unity can be stressed.

10. CONCLUSION AND SOME CHALLENGES

Specialization and compartmentalization will continue

to be important activities from both an industrial and

academic point-of-view. But we must ask for more: we

should insist also on the unity of logic from which one

would expect deep new insights into the foundations of

computer science and greatly improved and integrated

tools for dealing with the correctness of software and

hardware systems. We conclude by listing some specific

challenges.

Challenge 1: Unify a wide range of logical features into a

single framework. How best can we explain the many

enhancements that have been designed for logic: for

example, classical / intuitionistic / linear, fixed points,

first-order / higher-order quantification, modalities, and

temporal operators? Can we explain these as involving

orthogonal compositions as is the case for quantification

and classical propositional connectives?

Challenge 2: Unify a wide spectrum of proof systems.

If computer logic systems build proofs objects (explicitly

or implicitly), those proofs can come from a wide

range of different proof systems: for example, sequent
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calculus, natural deduction, tableaux, Hilbert-style proof,

resolution refutations, DPLL-trees, tabled deduction,

matrix-based proofs, rewriting, etc. There is strong,

recent evidence that several of these style of proof

systems can be accounted for uniformly within a single

(focused) proof system (24; 30; 32). Can a single,

declarative proof checker be built that can check all of

these forms of proofs?

Challenge 3: Unify the disciplines of theorem proving,

model checking, and computation. Although these

disciplines can all be viewed as certain kinds of

deduction in a logic with fixed points, the literature

and systems behind these disciplines are wildly

different. Can we develop a principled approach to their

integration?

Challenge 4: Design new architectures for supporting

a wide range of deduction techniques within a single,

integrated framework. A great number of algorithms

and data structures have been developed to build

working model checkers and theorem provers. These

different domains share little in common. If we can

establish common proof theoretic explanations of these

different activities, can we also develop common,

universally agreed upon implementation architectures

and techniques than can be shared across these

activities?
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