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Abstract

Recursive relational specifications are commonly used to describe the computational struc-
ture of formal systems. Recent research in proof theory has identified two features that
facilitate direct, logic-based reasoning about such descriptions: the interpretation of atomic
judgments through recursive definitions and an encoding of binding constructs via generic
judgments. However, logics encompassing these two features do not currently allow for the
definition of relations that embody dynamic aspects related to binding, a capability needed
in many reasoning tasks. We propose a new relation between terms called nominal abstrac-
tion as a means for overcoming this deficiency. We incorporate nominal abstraction into a
rich logic also including definitions, generic quantification, induction, and co-induction that
we then prove to be consistent. We present examples to show that this logic can provide
elegant treatments of binding contexts that appear in many proofs, such as those establish-
ing properties of typing calculi and of arbitrarily cascading substitutions that play a role in
reducibility arguments.
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1. Introduction

This paper contributes to an increasingly important approach to using relational speci-
fications for formalizing and reasoning about a wide class of computational systems. This
approach, whose theoretical underpinnings are provided by recent ideas from proof theory
and proof search, has been used with success in codifying within a logical setting the meth-
ods of structural operational semantics that are often employed in describing aspects such
as the evaluation and type assignment characteristics of programming languages. The main
ingredients of this approach are the use of terms to represent the syntactic objects that are
of interest in the relevant systems and the reflection of their dynamic aspects into judgments
over such terms.

One common application of the method has utilized recursive relational specifications or
judgments over algebraic terms. We highlight three stages of development in the kinds of
judgments that have been employed in this context, using the transition semantics for CCS
as a motivating example [1]:

(1) Logic programming, may behavior Logic programming languages allow for a natural
encoding and animation of relational specifications. For example, Horn clauses provide
a simple and immediate encoding of CCS labeled transition systems and unification and
backtracking provide a means for exploring what is reachable from a given process. An
early system based on this observation was Centaur [2], which used Prolog to animate the
operational semantics and typing judgments of programming languages. Traditional logic
programming is, however, limited to describing only may behavior judgments. For example,
using it, we are not able to prove that a given CCS process P cannot make a transition.
Since this negative property is logically equivalent to proving that P is bisimilar to the null
process 0, such systems cannot also capture bisimulation.

(2) Model checking, must behavior One way to account for must behavior is to allow
for the unfolding of specifications in both positive and negative settings. Proof theoretic
techniques that provided for such a treatment were developed in the early 1990s [3, 4] and
extended in subsequent work [5]. In the basic form, these techniques require an unfolding
until termination, and are therefore applicable to recursive definitions that are noetherian.
Specifications that meet this restriction and, hence, to which this method is applicable,
include bisimulation for finite processes and many model checking problems. As an example,
bisimulation for finite CCS can be given an immediate and declarative treatment using these
techniques [6].

(3) Theorem proving, infinite behavior Reasoning about all members of a domain or about
possibly infinite executions requires the addition of induction and co-induction to the above
framework of recursive definitions. Incorporating induction in proof theory goes back to
Gentzen. The work in [5, 7, 8] provides induction and co-induction rules associated with
recursive relational specifications. In such a setting, one can prove, for example, that (strong)
bisimulation in CCS is a congruence.

The systems that are to be specified and reasoned about often involve terms that use
names and binding. An elegant way to treat such terms is to encode them as λ-terms and
equate them using the theory of α, β, and η-conversion. The three stages discussed above
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need to be extended to treat representations based on such terms. The manner in which this
has been done is illustrated next using the relational specification of the π-calculus [9].

(1) Logic programming, λ-tree syntax Higher-order generalizations of logic programming,
such as higher-order hereditary Harrop formulas [10] and the dependently typed LF [11],
adequately capture may behavior for terms containing bindings. In particular, the presence
of hypothetical and universal judgments supports the λ-tree syntax [12] approach to higher-
order abstract syntax [13]. The logic programming languages λProlog [14] and Twelf [15]
support such syntax representations and can be used to provide simple specifications of, for
example, reachability in the π-calculus.

(2) Model checking, ∇-quantification While the notions of universal quantification and
generic judgment are often conflated, a satisfactory treatment of must behavior requires
splitting apart these concepts. The ∇-quantifier [16] was introduced to encode generic judg-
ments directly. To illustrate the need for this split, consider the formula ∀w.¬(λx.x = λx.w).
If we think of λ-terms as denoting abstracted syntax (terms modulo α-conversion), this for-
mula should be provable (variable capture is not allowed in logically sound substitution). On
the other hand, if we think of λ-terms as describing functions, then the equation λy.t = λy.s
is equivalent to ∀y.t = s. But then our example formula is equivalent to ∀w.¬∀x.x = w,
which should not be provable since it is not true in a model with a single element domain.
To think of λ-terms syntactically, we treat λy.t = λy.s as equivalent not to ∀y.t = s but,
rather, to ∇y.t = s. Our example formula then becomes equivalent to ∀w.¬∇x.x = w, which
is provable [16]. Using a representation based on this new quantifier, the π-calculus process
(νx).[x = w].w̄x can be proved to be bisimilar to 0. Bedwyr [17] is a model checker that
treats such generic judgments.

(3) Theorem proving, equality of generic judgments When there is only finite behavior,
logics for recursive definitions do not need the cut or initial rules, and, consequently, there
is no need to know when two judgments are the same. On the other hand, the treatment
of induction and co-induction relies on the ability to make such identifications: e.g., when
carrying out an inductive argument over natural numbers, one must be able to recognize when
the case for i+1 has been reduced to the case for i. This identity question is complicated by
the presence of the ∇-quantifier: for example, the proof search treatment of such quantifiers
involves instantiation with generic objects whose choice of name is arbitrary and this must be
factored into assessments of equality. The LGω proof system [18] provides a way to address
this issue and uses this to support inductive reasoning over recursive definitions. Using
LGω encodings extended with co-induction (as described in this paper), one can prove, for
instance, that (open) bisimulation is a π-calculus congruence.

The key observation underlying this paper is that logics like LGω are still missing an
ingredient that is important to many reasoning tasks. Within these logics, the ∇-quantifier
can be used to control the structure of terms relative to the generic judgments in which they
occur. However, these logics do not possess a complementary device for simply and pre-
cisely characterizing such structure within the logic. Consider, for example, the natural way
to specify typing of λ-terms in this setting [19]. The representation of λ-terms within this
approach uses (meta-level) abstracted variables to encode object-level bound variables and
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∇-bound variables (also called here nominal constants) to encode object-level free variables.
Conceptually, the type specification uses recursion over the representation of λ-terms, trans-
forming abstracted variables into nominal constants, and building a context that associates
nominal constants with types. Now suppose that the list [〈x1, t1〉, . . . , 〈xn, tn〉] represents a
particular context. The semantics of the ∇-quantifier ensures that each xi in this list is a
unique nominal constant. This property is important to the integrity of the type assignment.
Moreover, making it explicit can also be important to the reasoning process; for example, a
proof of the uniqueness of type assignment would draw critically on this fact. Unfortunately,
LGω and related logics do not possess a succinct and general way to express such a property.

This paper describes a way of realizing this missing feature, thereby yielding a logic
that represents a natural endpoint to this line of development. The particular means for
overcoming the deficiency is a relation between terms called a nominal abstraction. In its
essence, nominal abstraction is an extension of the equality relation between terms that allows
for the characterization also of occurrences of nominal constants in such terms. Combining
this relation with definitions, we will, for instance, be able to specify a property of the form

∇x1 · · ·∇xn. cntx [〈x1, t1〉, . . . , 〈xn, tn〉]

which effectively asserts that cntx is true of a list of type assignments to n distinct nominal
constants. By exploiting the recursive structure of definitions, cntx can further be defined so
that the length of the list is arbitrary. We integrate nominal abstraction into a broader logical
context that includes also the ability to interpret definitions inductively and co-inductively.
The naturalness of nominal abstraction is clear from the modular way in which we are able
to define this extended logic and to prove it consistent. We present examples of specification
and reasoning to bring out the usefulness of the resulting logic, focusing especially on the
capabilities resulting from nominal abstraction.1

One of the features desired for the logic presented in this paper is that it support the
λ-tree approach to the treatment of syntax. As discussed earlier in this section, such a
treatment is typically based on permitting λ-bindings into terms and using universal and
hypothetical judgments in analyzing these terms. Hypothetical judgments force an “open-
world” assumption; in the setting of interest, we use them to assert new properties of the
constants that are introduced in treating bound variables. However, our desire to be able to
reason inductively about predicate definitions provides a contradictory tension: the definition
of predicates must be fixed once and for all in order to state induction principles. This tension
is relieved in the logic we describe by disallowing hypothetical judgments and instead using
lists (as illustrated above) to implicitly encode contexts needed in syntactic analyses. This
approach is demonstrated in greater detail through the examples in Section 7.2.

The rest of this paper is structured as follows. We develop a logic called G, that is a
rather rich logic, in the next three sections. Section 2 presents the rules for the core fragment

1While there might appear to be a similarity between nominal abstraction and “atom-abstraction” in
nominal logic [20] from this discussion, these two concepts are technically quite different and should not be
confused. Section 8.2 contains a comparison between G and nominal logic that should make the differences
clear.
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of G that is inherited from LGω. Section 3 introduces the nominal abstraction relation
with its associated inference rules. Finally, Section 4 completes the framework by adding
the mechanism of recursive definitions together with the possibility of interpreting these
inductively or co-inductively. A central technical result of this paper is the cut-elimination
theorem for G, which is presented in Section 5: an immediate consequence of this theorem is
the consistency of G. Section 6 introduces a more flexible and suggestive style for recursive
definitions that allows one to directly define generic judgments: such definitions allow for
the use of “∇ in the head.” We show that this style of definition can be accounted for by
using the nominal abstraction predicate. Section 7 presents a collection of examples that
illustrate the expressiveness of nominal abstraction in G; a reader who is interested in seeing
motivating examples first might peruse this section before digesting the detailed proofs in
the earlier sections. Section 8 compares the development in this paper with recent related
work on specification and reasoning techniques.

This paper extends the conference paper [21] in two important ways. First, nominal
abstraction is used here as a more general and modular method for obtaining the benefits
of allowing ∇-quantification in the “heads of definitions.” Second, the modularity provided
by nominal abstraction is exploited to allow recursive definitions to be read inductively and
co-inductively. The logic in [21] was also called G: this name is reused here for a richer logic.
The logic developed in this paper has been implemented in the Abella system [22]. Abella
has been used successfully in formalizing the proofs of theorems in a number of areas [19].

2. A Logic with Generic Quantification

The core logic underlying G is obtained by extending an intuitionistic and predicative
subset of Church’s Simple Theory of Types with a treatment of generic judgments. The
encoding of generic judgments is based on the quantifier called ∇ (pronounced nabla) intro-
duced by Miller and Tiu [16] and further includes the structural rules associated with this
quantifier in the logic LGω described by Tiu [18]. While it is possible to develop a classical
variant of G as well, we do not follow that path here, observing simply that the choice be-
tween an intuitionistic and a classical interpretation can lead to interesting differences in the
meaning of specifications written in the logic. For example, it has been shown that the spec-
ification of bisimulation for the π-calculus within this logic corresponds to open bisimulation
under an intuitionistic reading and to late bisimulation under a classical reading [23].

2.1. The basic syntax

Following Church [24], terms are constructed from constants and variables using abstrac-
tion and application. All terms are assigned types using a monomorphic typing system;
these types also constrain the set of well-formed expressions in the expected way. The col-
lection of types includes o, a type that corresponds to propositions. Well-formed terms of
this type are also called formulas. We assume that o does not appear in the argument types
of any nonlogical constant. Two terms are considered to be equal if one can be obtained
from the other by a sequence of applications of the α-, β- and η-conversion rules, i.e., the
λ-conversion rules. This notion of equality is henceforth assumed implicitly wherever there
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is a need to compare terms. Logic is introduced by including special constants representing
the propositional connectives ⊤, ⊥, ∧, ∨, ⊃ and, for every type τ that does not contain o,
the constants ∀τ and ∃τ of type (τ → o) → o. The binary propositional connectives are
written as usual in infix form and the expressions ∀τx.B and ∃τx.B abbreviate the formulas
∀τλx.B and ∃τλx.B, respectively. Type subscripts will be omitted from quantified formulas
when they can be inferred from the context or are not important to the discussion. We also
use a shorthand for iterated quantification: if Q is a quantifier, the expression Qx1, . . . , xn.P
will abbreviate Qx1 . . .Qxn.P .

The usual inference rules for the universal quantifier can be seen as equating it to the
conjunction of all of its instances: that is, this quantifier is treated extensionally. There are
several situations where one wishes to treat an expression such as “B(x) holds for all x” as
a statement about the existence of a uniform argument for every instance rather than the
truth of a particular property for each instance [16]; such situations typically arise when
one is reasoning about the binding structure of formal objects represented using the λ-tree
syntax [12] version of higher-order abstract syntax [13]. The ∇-quantifier serves to encode
judgments that have this kind of a “generic” property associated with them. Syntactically,
this quantifier corresponds to including a constant ∇τ of type (τ → o) → o for each type τ
not containing o.2 As with the other quantifiers, ∇τx.B abbreviates ∇τλx.B and the type
subscripts are often suppressed for readability.

2.2. Generic judgments and ∇-quantification

Towards understanding the ∇-quantifier, let us consider the rule for typing abstractions
in the simply-typed λ-calculus as an example of something that we might want to encode
within G. This rule has the form

Γ, x :α ⊢ t : β

Γ ⊢ (λx :α.t) : α → β
x /∈ dom(Γ)

In the conclusion of this rule, the variable x is bound and its scope is clearly delimited
by the abstraction that binds it. It appears that x is free in the premise of the rule, but
it is in fact implicitly bound over the judgment whose subcomponents, specifically Γ, also
constrain its identity. One way to precisely encode this rule in a meta-logic is to introduce
an explicit quantifier over x in the upper judgment; in a proof search setting, the encoding
of the rule can then be understood as one that moves a term level binding to a formula level
binding. However, the quantifier that is used must have special properties. First, it should
enforce a property of genericity on proofs: we want the associated typing judgment to have
a derivation that is independent of the choice of term for x. Second, we should be able to
assume and to use the property that instantiation terms chosen for x are distinct from other
terms appearing in the judgment, in particular, in Γ.

2We may choose to allow ∇-quantification at fewer types in particular applications; such a restriction
may be useful in adequacy arguments for reasons we discuss later.
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B ≈ B′

Σ : Γ, B ⊢ B′ id
Σ : Γ ⊢ B Σ : B, ∆ ⊢ C

Σ : Γ, ∆ ⊢ C
cut

Σ : Γ, B, B ⊢ C

Σ : Γ, B ⊢ C
cL

Σ : Γ,⊥ ⊢ C
⊥L

Σ : Γ, B ⊢ C Σ : Γ, D ⊢ C

Σ : Γ, B ∨ D ⊢ C
∨L

Σ : Γ ⊢ Bi

Σ : Γ ⊢ B1 ∨ B2

∨R, i ∈ {1, 2}

Σ : Γ ⊢ ⊤
⊤R

Σ : Γ, Bi ⊢ C

Σ : Γ, B1 ∧ B2 ⊢ C
∧L, i ∈ {1, 2} Σ : Γ ⊢ B Σ : Γ ⊢ C

Σ : Γ ⊢ B ∧ C
∧R

Σ : Γ ⊢ B Σ : Γ, D ⊢ C

Σ : Γ, B ⊃ D ⊢ C
⊃L

Σ : Γ, B ⊢ C

Σ : Γ ⊢ B ⊃ C
⊃R

Σ,K, C ⊢ t : τ Σ : Γ, B[t/x] ⊢ C

Σ : Γ,∀τx.B ⊢ C
∀L

Σ, h : Γ ⊢ B[h ~c/x]

Σ : Γ ⊢ ∀x.B
∀R, h /∈ Σ,
supp(B) = {~c}

Σ : Γ, B[a/x] ⊢ C

Σ : Γ,∇x.B ⊢ C
∇L, a /∈ supp(B)

Σ : Γ ⊢ B[a/x]

Σ : Γ ⊢ ∇x.B
∇R, a /∈ supp(B)

Σ, h : Γ, B[h ~c/x] ⊢ C

Σ : Γ,∃x.B ⊢ C
∃L, h /∈ Σ,
supp(B) = {~c}

Σ,K, C ⊢ t : τ Σ : Γ ⊢ B[t/x]

Σ : Γ ⊢ ∃τx.B
∃R

Figure 1: The core rules of G

Neither the existential nor the universal quantifier have quite the characteristics needed
for x in the encoding task considered. Miller and Tiu [16] therefore introduced the ∇-
quantifier for this purpose. Using this quantifier, the typing rule can be represented by a
formula like ∀Γ, t, α, β.(∇x.(Γ, x : α ⊢ t x : β)) ⊃ (Γ ⊢ (λx : α.t x) : α → β) where t has
a higher-order type which allows its dependency on x to be made explicit. The inference
rules associated with the ∇-quantifier are designed to ensure the adequacy of such an en-
coding: the formula ∇x.F , also called a generic judgment, must be established by deriving
F assuming x to be a completely generic variable and in deriving ∇x∇y.F it is assumed
that the instantiations for x and y are distinct. In the logic G, we shall assume two fur-
ther “structural” properties for the ∇-quantifier which flow naturally from the application
domains of interest. First, we shall allow for ∇-strengthening, i.e., we will take ∇x.F and
F to be equivalent if x does not appear in F . Second, we shall take the relative order of
∇-quantifiers to be irrelevant, i.e., we shall permit a ∇-exchange principle; the formulas
∇x∇y.F and ∇y∇x.F will be considered to be equivalent. These assumptions facilitate
a simplification of the inference rules, allowing us to realize generic judgments through a
special kind of constants called nominal constants.

2.3. A sequent calculus presentation of the core logic

The logic G assumes that the collection of constants is partitioned into the set C of
nominal constants and the set K of usual, non-nominal constants. We assume the set C

7



contains an infinite number of nominal constants for each type at which ∇ quantification
is permitted. We define the support of a term (or formula), written supp(t), as the set of
nominal constants appearing in it. A permutation of nominal constants is a type-preserving
bijection π from C to C such that {x | π(x) 6= x} is finite. The application of a permutation
π to a term t, denoted by π.t, is defined as follows:

π.a = π(a), if a ∈ C π.c = c, if c /∈ C is atomic
π.(λx.M) = λx.(π.M) π.(M N) = (π.M) (π.N)

We extend the notion of equality between terms to encompass also the application of per-
mutations to nominal constants appearing in them. Specifically, the relation B ≈ B′ holds
if there is a permutation π such that B λ-converts to π.B′. Since λ-convertibility is an
equivalence relation and permutations are invertible and composable, it follows that ≈ is an
equivalence relation.

The rules defining the core of G are presented in Figure 1. Sequents in this logic have
the form Σ : Γ ⊢ C where Γ is a multiset and the signature Σ contains all the free variables
of Γ and C. In keeping with our restriction on quantification, we assume that o does not
appear in the type of any variable in Σ. The expression B[t/x] in the quantifier rules denotes
the capture-avoiding substitution of t for x in the formula B. In the ∇L and ∇R rules, a
denotes a nominal constant of an appropriate type. In the ∃L and ∀R rule we use raising
[25] to encode the dependency of the quantified variable on the support of B; the expression
(h ~c) in which h is a fresh eigenvariable is used in these two rules to denote the (curried)
application of h to the constants appearing in the sequence ~c. The ∀L and ∃R rules make
use of judgments of the form Σ,K, C ⊢ t : τ . These judgments enforce the requirement
that the expression t instantiating the quantifier in the rule is a well-formed term of type τ
constructed from the eigenvariables in Σ and the constants in K∪C. Notice that in contrast
the ∀R and ∃L rules seem to allow for a dependency on only a restricted set of nominal
constants. This asymmetry is not, however, significant: a consequence of Corollary 20 in
Section 5 is that the dependency expressed through raising in the latter rules can be extended
to any number of nominal constants that are not in the relevant support set without affecting
the provability of sequents.

Equality modulo λ-conversion is built into the rules in Figure 1, and also into later
extensions of this logic, in a fundamental way: in particular, proofs are preserved under
the replacement of formulas in sequents by ones to which they λ-convert. A more involved
observation is that we can replace a formula B in a sequent by another formula B′ such that
B ≈ B′ without affecting the provability of the sequent or even the very structure of the
proof. As a particular example, if a and b are nominal constants, then the following three
sequents are all derivable: P a ⊢ P a, P b ⊢ P b, and P a ⊢ P b. The last of these examples
makes clear that nominal constants represent implicit quantification whose scope is limited
to individual formulas in a sequent rather than ranging over the entire sequent. For the core
logic, this observation follows from the form of the id rule and the fact that permutations
distribute over logical structure. We shall prove this property explicitly for the full logic in
Section 5.
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The treatment of ∇-quantification via nominal constants also validates the ∇-exchange
and ∇-strengthening principles discussed earlier. It is interesting to note that the latter
principle implies that every type at which one is willing to use ∇-quantification is non-
empty and, in fact, contains an unbounded number of members. For example, the formula
∃τx.⊤ is always provable, even if there are no closed terms of type τ because this formula
is equivalent to ∇τy.∃τx.⊤, which is provable. Similarly, for any given n ≥ 1, the following
formula is provable

∃τx1 . . . ∃τxn.

[

∧

1≤i,j≤n,i6=j

xi 6= xj

]

.

3. Characterizing Occurrences of Nominal Constants

We are interested in adding to our logic the capability of characterizing occurrences of
nominal constants within terms and also of analyzing the structure of terms with respect to
such occurrences. For example, we may want to define a predicate called name that holds of
a term exactly when that term is a nominal constant. Similarly, we might need to identify
a binary relation called fresh that holds between two terms just in the case that the first
term is a nominal constant that does not occur in the second term. Towards supporting such
possibilities, we define in this section a special binary relation called nominal abstraction and
then present proof rules that incorporate an understanding of this relation into the logic. A
formalization of these ideas requires a careful treatment of substitution. In particular, this
operation must be defined to respect the intended formula level scope of nominal constants.
We begin our discussion with an elaboration of this aspect.

3.1. Substitutions and their interaction with nominal constants

The following definition reiterates a common view of substitutions in logical contexts.

Definition 1. A substitution is a type preserving mapping from variables to terms that is
the identity at all but a finite number of variables. The domain of a substitution is the set of
variables that are not mapped to themselves and its range is the set of terms resulting from
applying it to the variables in its domain. We write a substitution as {t1/x1, . . . , tn/xn} where
x1, . . . , xn is a list of variables that contains the domain of the substitution and t1, . . . , tn is
the value of the map on these variables. The support of a substitution θ, written as supp(θ),
is the set of nominal constants that appear in the range of θ. The restriction of a substitution
θ to the set of variables Σ, written as θ ↑ Σ, is a mapping that is like θ on the variables in
Σ and the identity everywhere else.

A substitution essentially calls for the replacement of variables by their associated terms
in any context to which it is applied. A complicating factor is that we will want to consider
substitutions in which nominal constants appear in the terms that are to replace particular
variables. Such a substitution will typically be determined relative to one formula in a
sequent but may then have to be applied to other formulas in the same sequent. In doing this,
we have to take into account the fact that the scopes of the implicit quantifiers over nominal
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constants are restricted to individual formulas. Thus, the logically correct application of a
substitution should be accompanied by a renaming of these nominal constants in the term
being substituted into so as to ensure that they are not confused with the ones appearing in
the range of the substitution. For example, consider the formula p a x where a is a nominal
constant and x is a variable; this formula is intended to be equivalent to ∇a.p a x. If we
were to substitute f a for x naively into it, we would obtain the formula p a (f a)). However,
this results in an unintended capture of a nominal constant by an (implicit) quantifier as a
result of a substitution. To carry out the substitution in a way that avoids such capture, we
should first rename the nominal constant a in p a x to some other nominal constant b and
then apply the substitution to produce the formula p b (f a).

Definition 2. The ordinary application of a substitution θ to a term B is denoted by B[θ]
and corresponds to the replacement of the variables in B by the terms that θ maps them to,
making sure, as usual, to avoid accidental binding of the variables appearing in the range of
θ. More precisely, if θ = {t1/x1, . . . , tn/xn}, then B[θ] is the term (λx1 . . . λxn.B) t1 . . . tn;
this term is, of course, considered to be equal to any other term to which it λ-converts. By
contrast, the nominal capture avoiding application of θ to B is written as B[[θ]] and is defined
as follows. Assuming that π is a permutation of nominal constants that maps those appearing
in supp(B) to ones not appearing in supp(θ), let B′ = π.B. Then B[[θ]] = B′[θ].

The notation B[θ] generalizes the one used in the quantifier rules in Figure 1. This
ordinary notion of substitution is needed to define such rules and it is used in the proof
theory. As we will see in Section 5, however, it is nominal capture avoiding substitution
that is the logically correct notion of substitution for G since it preserves the provability of
sequents. For this reason, when we speak of the application of a substitution in an unqualified
way, we shall mean the nominal capture avoiding form of this notion. It is interesting to
note that as the treatment of syntax becomes richer and more abstract, the natural notions
of equality of expressions and of substitution also change. When the syntax of terms is
encoded as trees, term equality is tree equality and substitution corresponds to “grafting.”
When syntax involves binding operators (as in first-order formulas or λ-terms), then it is
natural for equality to become λ-convertibility and for substitutions to be “capture-avoiding”
in the usual sense. Here, we have introduced into syntax the additional notion of nominal
constants, for which we need to upgrade equality to the ≈-relation and substitution to the
one which avoids the capture of nominal constants.

The definition of the nominal capture avoiding application of a substitution is ambiguous
in that we do not uniquely specify the permutation to be used. We resolve this ambiguity
by deeming as acceptable any permutation that avoids conflicts. As a special instance of the
lemma below, we see that for any given formula B and substitution θ, all the possible values
for B[[θ]] are equivalent modulo the ≈ relation. Moreover, as we show in Section 5, formulas
that are equivalent under ≈ are interchangeable in the contexts of proofs.

Lemma 3. If t ≈ t′ then t[[θ]] ≈ t′[[θ]].

Proof. Let t be λ-convertible to π1.t
′, let t[[θ]] = (π2.t)[θ] where supp(π2.t) ∩ supp(θ) = ∅,
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and let t′[[θ]] be λ-convertible to (π3.t
′)[θ] where supp(π3.t

′)∩ supp(θ) = ∅. Then we define a
function π partially by the following rules:

1. π(c) = π2.π1.π
−1
3 (c) if c ∈ supp(π3.t

′) and

2. π(c) = c if c ∈ supp(θ).

Since supp(π3.t
′)∩supp(θ) = ∅, these rules are not contradictory, i.e., this (partial) function is

well-defined. The range of the first rule is supp(π2.π1.π
−1
3 .π3.t

′) = supp(π2.π1.t
′) = supp(π2.t)

which is disjoint from the range of the second rule, supp(θ). Since the mapping in each rule
is determined by a permutation, these rules together define a one-to-one partial mapping
that can be extended to a bijection on C. We take any such extension to be the complete
definition of π that must therefore be a permutation.

To prove that t[[θ]] ≈ t′[[θ]] it suffices to show that if t is λ-convertible to π1.t
′ then

(π2.t)[θ] is λ-convertible to π.((π3.t
′)[θ]). We will prove this by induction on the structure

of t′. Permutations and substitutions distribute over the structure of terms, thus the cases
for when t′ is an abstraction or application follow directly from the induction hypothesis.
If t′ is a nominal constant c then (π2.t)[θ] must be λ-convertible to (π2.π1.c)[θ] = π2.π1.c.
Also, π.((π3.t

′)[θ]) must be λ-convertible to π.π3.c. Further, in this case the first rule for
π applies which means π.π3.c = π2.π1.π

−1
3 .π3.c = π2.π1.c. Thus (π2.t)[θ] is λ-convertible to

π.((π3.t
′)[θ]). Finally, suppose t′ is a variable x. In this case t must be λ-convertible to x so

that we must show x[θ] λ-converts to π.(x[θ]). If x does not have a binding in θ then both
terms are equal. Alternatively, if x[θ] = s then π.s = s follows from an inner induction on s
and the second rule for π. Thus (π2.t)[θ] λ-converts to π.((π3.t

′)[θ]), as is required.

We shall need to consider the composition of substitutions later in this section. The
definition of this notion must also pay attention to the presence of nominal constants.

Definition 4. Given a substitution θ and a permutation π of nominal constants, let π.θ
denote the substitution that is obtained by replacing each t/x in θ with (π.t)/x. Given any
two substitutions θ and ρ, let θ ◦ρ denote the substitution that is such that B[θ ◦ρ] = B[θ][ρ].
In this context, the nominal capture avoiding composition of θ and ρ is written as θ • ρ
and defined as follows. Let π be a permutation of nominal constants such that supp(π.θ) is
disjoint from supp(ρ). Then θ • ρ = (π.θ) ◦ ρ.

The notation θ ◦ ρ in the above definition represents the usual composition of θ and ρ
and can, in fact, be given in an explicit form based on these substitutions. Thus, θ • ρ can
also be presented in an explicit form. Notice that our definition of nominal capture avoiding
composition is, once again, ambiguous because it does not fix the permutation to be used,
accepting instead any one that satisfies the constraints. However, as before, this ambiguity is
harmless. To understand this, we first extend the notion of equivalence under permutations
to substitutions.

Definition 5. Two substitutions θ and ρ are considered to be permutation equivalent, written
θ ≈ ρ, if and only if there is a permutation of nominal constants π such that θ = π.ρ. This
notion of equivalence may also be parameterized by a set of variables Σ as follows: θ ≈Σ ρ
just in the case that θ ↑ Σ ≈ ρ ↑ Σ.
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It is easy to see that all possible choices for θ • ρ are permutation equivalent and that
if ϕ1 ≈ ϕ2 then B[[ϕ1]] ≈ B[[ϕ2]] for any term B. Thus, if our focus is on provability, the
ambiguity in Definition 4 is inconsequential by a result to be established in Section 5. As a
further observation, note that B[[θ • ρ]] ≈ B[[θ]][[ρ]] for any B. Hence our notion of nominal
capture avoiding composition of substitutions is sensible.

The composition operation can be used to define an ordering relation between substitu-
tions:

Definition 6. Given two substitutions ρ and θ, we say ρ is less general than θ, denoted
by ρ ≤ θ, if and only if there exists a σ such that ρ ≈ θ • σ. This relation can also be
parametrized by a set of variables: ρ is less general than θ relative to Σ, written as ρ ≤Σ θ,
if and only if ρ ↑ Σ ≤ θ ↑ Σ.

The notion of generality between substitutions that is based on nominal capture avoiding
composition has a different flavor from that based on the traditional form of substitution
composition. For example, if a is a nominal constant, the substitution {a/x} is strictly less
general than {a/x, y′a/y} relative to Σ for any Σ which contains x and y. To see this, note
that we can compose the latter substitution with {(λz.y)/y′} to obtain the former, but the
naive attempt to compose the former with {y′a/y} yields {b/x, y′a/y} where b is a nominal
constant distinct from a. In fact, the “most general” solution relative to Σ containing {a/x}
will be {a/x} ∪ {z′a/z | z ∈ Σ\{x}}.

3.2. Nominal Abstraction

The nominal abstraction relation allows implicit formula level bindings represented by
nominal constants to be moved into explicit abstractions over terms. The following notation
is useful for defining this relationship.

Notation 7. Let t be a term, let c1, . . . , cn be distinct nominal constants that possibly occur
in t, and let y1, . . . , yn be distinct variables not occurring in t and such that, for 1 ≤ i ≤ n,
yi and ci have the same type. Then we write λc1 . . . λcn.t to denote the term λy1 . . . λyn.t

′

where t′ is the term obtained from t by replacing ci by yi for 1 ≤ i ≤ n.

There is an ambiguity in the notation introduced above in that the choice of variables
y1, . . . , yn is not fixed. However, this ambiguity is harmless: the terms that are produced by
acceptable choices are all equivalent under a renaming of bound variables.

Definition 8. Let n ≥ 0 and let s and t be terms of type τ1 → · · · → τn → τ and τ ,
respectively; notice, in particular, that s takes n arguments to yield a term of the same type
as t. Then the expression s D t is a formula that is referred to as a nominal abstraction of
degree n or simply as a nominal abstraction. The symbol D is used here in an overloaded
way in that the degree of the nominal abstraction it participates in can vary. The nominal
abstraction s D t of degree n is said to hold just in the case that s λ-converts to λc1 . . . cn.t
for some nominal constants c1, . . . , cn.

12



Clearly, nominal abstraction of degree 0 is the same as equality between terms based
on λ-conversion, and we will therefore use = to denote this relation in that situation. In
the more general case, the term on the left of the operator serves as a pattern for isolating
occurrences of nominal constants. For example, if p is a binary constructor and c1 and c2

are nominal constants, then the nominal abstractions of the following first row hold while
those of the second do not.

λx.x D c1 λx.p x c2 D p c1 c2 λx.λy.p x y D p c1 c2

λx.x 6D p c1 c2 λx.p x c2 6D p c2 c1 λx.λy.p x y 6D p c1 c1

The symbol D corresponds, at the moment, to a mathematical relation that holds between
pairs of terms as explicated by Definition 8. We now overload this symbol by treating it
also as a binary predicate symbol of G. In the next subsection we shall add inference rules
to make the mathematical understanding of D coincide with its syntactic use as a predicate
in sequents. It is, of course, necessary to be able to determine when we mean to use D in
the mathematical sense and when as a logical symbol. When we write an expression such as
s D t without qualification, this should be read as a logical formula whereas if we say that
“s D t holds” then we are referring to the abstract relation from Definition 8. We might also
sometimes use an expression such as “(s D t)[[θ]] holds.” In this case, we first treat s D t
as a formula to which we apply the substitution θ in a nominal capture avoiding way to
get a (syntactic) expression of the form s′ D t′. We then read D in the mathematical sense,
interpreting the overall expression as the assertion that “s′ D t′ holds.” Note in this context
that s D t constitutes a single formula when read syntactically and hence the expression
(s D t)[[θ]] is, in general, not equivalent to the expression s[[θ]] D t[[θ]].

In the proof-theoretic setting, nominal abstraction will be used with terms that contain
free occurrences of variables for which substitutions can be made. The following definition
is relevant to this situation.

Definition 9. A substitution θ is said to be a solution to the nominal abstraction s D t just
in the case that (s D t)[[θ]] holds.

Solutions to a nominal abstraction can be used to provide rich characterizations of the
structures of terms. For example, consider the nominal abstraction (λx.fresh x T ) D S in
which T and S are variables and fresh is a binary predicate symbol. Any solution to this
problem requires that S be substituted for by a term of the form fresh a R where a is a
nominal constant and R is a term in which a does not appear, i.e., a must be “fresh” to R.

An important property of solutions to a nominal abstraction is that these are preserved
under permutations to nominal constants. We establish this fact in the lemma below; this
lemma will be used later in showing the stability of the provability of sequents with respect
to the replacement of formulas by ones they are equivalent to modulo the ≈ relation.

Lemma 10. Suppose (sDt) ≈ (s′Dt′). Then sDt and s′Dt′ have exactly the same solutions.
In particular, s D t holds if and only if s′ D t′ holds.
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{Σθ : Γ[[θ]] ⊢ C[[θ]] | θ is a solution to (s D t)}θ

Σ : Γ, s D t ⊢ C
DL

Σ : Γ ⊢ s D t
DR, s D t holds

Figure 2: Nominal abstraction rules

{Σθ : Γ[[θ]] ⊢ C[[θ]] | θ ∈ CSNAS(Σ, s, t)}θ

Σ : Γ, s D t ⊢ C
DLCSNAS

Figure 3: A variant of DL based on CSNAS

Proof. We prove the particular result first. It suffices to show it in the forward direction
since ≈ is symmetric. Let π be a permutation such that the expression s′ D t′ λ-converts to
π.(s D t). Now suppose s D t holds since s λ-converts to λ~c.t. Then an inner induction on t′

shows that s′ λ-converts to λ(π.~c).t′ where π.~c is the result of applying π to each element in
the sequence ~c. Thus s′ D t′ holds.

For the general result it again suffices to show it in one direction, i.e., that all the solutions
of sDt are solutions to s′Dt′. Let θ be a substitution such that (sDt)[[θ]] holds. By Lemma 3,
(s D t)[[θ]] ≈ (s′ D t′)[[θ]]. When the substitutions are carried out, this relation has the same
form as the particular result from the first half of this proof, and thus (s′ D t′)[[θ]] holds.

3.3. Proof rules for nominal abstraction

We now add the left and right introduction rules for D that are shown in Figure 2 to link
its use as a predicate symbol to its mathematical interpretation. The expression Σθ in the DL
rule denotes the application of a substitution θ = {t1/x1, . . . , tn/xn} to the signature Σ that
is defined to be the signature that results when removing from Σ the variables {x1, . . . , xn}
and then adding every variable that is free in any term in {t1, . . . , tn}. Notice also that in
the same inference rule the operator [[θ]] is applied to a multiset of formulas in the natural
way: Γ[[θ]] = {B[[θ]] | B ∈ Γ}. Note that the DL rule has an a priori unspecified number
of premises that depends on the number of substitutions that are solutions to the relevant
nominal abstraction. If s D t expresses an unsatisfiable constraint, meaning that it has no
solutions, then the premise of DL is empty and the rule provides an immediate proof of its
conclusion.

The DL and DR rules capture nicely the intended interpretation of nominal abstraction.
However, there is an obstacle to using the former rule in derivations: this rule has an infinite
number of premises any time the nominal abstraction sD t has a solution. We can overcome
this difficulty by describing a rule that includes only a few of these premises but in such way
that their provability ensures the provability of all the other premises. Since the provability
of Γ ⊢ C implies the provability of Γ[[θ]] ⊢ C[[θ]] for any θ (a property established formally in
Section 5), if the first sequent is a premise of an occurrence of the DL rule, the second does
not need to be used as a premise of that same rule occurrence. Thus, we can limit the set of
premises to be considered if we can identify with any given nominal abstraction a (possibly
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finite) set of solutions from which any other solution can be obtained through composition
with a suitable substitution. The following definition formalizes the idea of such a “covering
set.”

Definition 11. A complete set of nominal abstraction solutions (CSNAS) of s and t on Σ
is a set S of substitutions such that

1. each θ ∈ S is a solution to s D t, and

2. for every solution ρ to s D t, there exists a θ ∈ S such that ρ ≤Σ θ.

We denote any such set by CSNAS(Σ, s, t).

Using this definition we present an alternative version of DL in Figure 3. Note that if we
can find a finite complete set of nominal abstraction solutions then the number of premises
to this rule will be finite.

Theorem 12. The rules DL and DLCSNAS are inter-admissible.

Proof. Suppose we have the following arbitrary instance of DL in a derivation:

{Σθ : Γ[[θ]] ⊢ C[[θ]] | θ is a solution to (s D t)}θ

Σ : Γ, s D t ⊢ C
DL

This rule can be replaced with a use of DLCSNAS instead if we could be certain that, for
each ρ ∈ CSNAS(Σ, s, t), it is the case that Σρ : Γ[[ρ]] ⊢ C[[ρ]] is included in the set of premises
of the shown rule instance. But this must be the case: by the definition of CSNAS, each
such ρ is a solution to s D t.

In the other direction, suppose we have the following arbitrary instance of DLCSNAS.

{Σθ : Γ[[θ]] ⊢ C[[θ]] | θ ∈ CSNAS(Σ, s, t)}θ

Σ : Γ, s D t ⊢ C
DLCSNAS

To replace this rule with a use of the DL rule instead, we need to be able to construct a
derivation of Σρ : Γ[[ρ]] ⊢ C[[ρ]] for each ρ that is a solution to s D t. By the definition of
CSNAS, we know that for any such ρ there exists a θ ∈ CSNAS(Σ, s, t) such that ρ ≤Σ θ,
i.e., such that there exists a σ for which ρ ↑ Σ ≈ (θ ↑ Σ) • σ. Since we are considering
the application of these substitutions to a sequent all of whose eigenvariables are contained
in Σ, we can drop the restriction on the substitutions and suppose that ρ ≈ θ • σ. Now,
we shall show in Section 5 that if a sequent has a derivation then the result of applying
a substitution to it in a nominal capture-avoiding way produces a sequent that also has a
derivation. Using this observation, it follows that Σθσ : Γ[[θ]][[σ]] ⊢ C[[θ]][[σ]] has a proof. But
this sequent is permutation equivalent to Σρ : Γ[[ρ]] ⊢ C[[ρ]] which must, again by a result
established explicitly in Section 5, also have a proof.

Theorem 12 allows us to choose which of the left rules we wish to consider in any given
context. We shall assume the DL rule in the formal treatment in the rest of this paper,
leaving the use of the DLCSNAS rule to practical applications of the logic.
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3.4. Computing complete sets of nominal abstraction solutions

For the DLCSNAS rule to be useful, we need an effective way to compute restricted
complete sets of nominal abstraction solutions. We show here that the task of finding such
complete sets of solutions can be reduced to that of finding complete sets of unifiers (CSU) for
higher-order unification problems [26]. In the straightforward approach to finding a solution
to a nominal abstraction sD t, we would first identify a substitution θ that we apply to sD t
to get s′ D t′ and we would subsequently look for nominal constants to abstract from t′ to
get s′. To relate this problem to the usual notion of unification, we would like to invert this
order: in particular, we would like to consider all possible ways of abstracting over nominal
constants first and only later think of applying substitutions to make the terms equal. The
difficulty with this second approach is that we do not know which nominal constants might
appear in t′ until after the substitution is applied. However, there is a way around this
problem. Given the nominal abstraction s D t of degree n, we first consider substitutions for
the variables occurring in it that introduce n new nominal constants in a completely general
way. Then we consider all possible ways of abstracting over the nominal constants appearing
in the altered form of t and, for each of these cases, we look for a complete set of unifiers.

The idea described above is formalized in the following definition and associated theorem.
We use the notation CSU(s, t) in them to denote an arbitrary but fixed selection of a complete
set of unifiers for the terms s and t.

Definition 13. Let s and t be terms of type τ1 → . . . → τn → τ and τ , respectively. Let
c1, . . . , cn be n distinct nominal constants disjoint from supp(s D t) such that, for 1 ≤ i ≤ n,
ci has the type τi. Let Σ be a set of variables and for each h ∈ Σ of type τ ′, let h′ be a distinct
variable not in Σ that has type τ1 → . . . → τn → τ ′. Let σ = {h′ c1 . . . cn/h | h ∈ Σ} and
let s′ = s[σ] and t′ = t[σ]. Let

C =
⋃

~a

CSU(λ~b.s′, λ~b.λ~a.t′)

where ~a = a1, . . . , an ranges over all selections of n distinct nominal constants from supp(t)∪

{~c} such that, for 1 ≤ i ≤ n, ai has type τi and ~b is some corresponding listing of all the
nominal constants in s′ and t′ that are not included in ~a. Then we define

S(Σ, s, t) = {σ • ρ | ρ ∈ C}

The use of the substitution σ above represents another instance of the application of the
general technique of raising that allows certain variables (the h variables in this definition)
whose substitution instances might depend on certain nominal constants (c1, . . . , cn here) to
be replaced by new variables of higher type (the h′ variables) whose substitution instances
are not allowed to depend on those nominal constants. This technique was previously used
in the ∃L and ∀R rules presented in Section 2.

An important observation concerning Definition 13 is that it requires us to consider all
possible (ordered) selections a1, . . . , an of distinct nominal constants from supp(t)∪{~c}. The
set of such selections is potentially large, having in it at least n! members. However, in
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Σ : Γ, B p ~t ⊢ C

Σ : Γ, p ~t ⊢ C
defL

Σ : Γ ⊢ B p ~t

Σ : Γ ⊢ p ~t
defR

Figure 4: Introduction rules for atoms whose predicate is defined as ∀~x. p ~x , B p ~x

the uses that we have seen of G in reasoning tasks, n is typically small, often either 1 or
2. Moreover, in these reasoning applications, the cardinality of the set supp(t) ∪ {~c} is also
usually small.

Theorem 14. S(Σ, s, t) is a complete set of nominal abstraction solutions for s D t on Σ.

Proof. First note that supp(σ)∩ supp(sD t) = ∅ and thus (sD t)[[θ]] is equal to (s′ D t′). Now
we must show that every element of S(Σ, s, t) is a solution to s D t. Let σ • ρ ∈ S(Σ, s, t)

be an arbitrary element where σ is as in Definition 13, ρ is from CSU(λ~b.s′, λ~b.λ~a.t′), and

s′ = s[σ] and t′ = t[σ]. By the definition of CSU we know (λ~b.s′ = λ~b.λ~a.t′)[ρ]. This means
(s′ = λ~a.t′)[[ρ]] holds and thus (s′ D t′)[[ρ]] holds. Rewriting s′ and t′ in terms of s and t this
means (s D t)[[σ]][[ρ]]. Thus σ • ρ is a solution to s D t.

In the other direction, we must show that if θ is a solution to s D t then there exists
σ • ρ ∈ S(Σ, s, t) such that θ ≤Σ σ • ρ. Let θ be a solution to s D t. Then we know (s D t)[[θ]]
holds. The substitution θ may introduce some nominal constants which are abstracted out
of the right-hand side when determining equality, so let us call these the important nominal
constants. Let σ = {h′ c1 . . . cn/h | h ∈ Σ} be as in Definition 13 and let π′ be a permutation
which maps the important nominal constants of θ to nominal constants from c1, . . . , cn. This
is possible since n nominal constants are abstract from the right-hand side and thus there
are at most n important nominal constants. Then let θ′ = π′.θ, so that (s D t)[[θ′]] holds and
it suffices to show that θ′ ≤Σ σ • ρ. Note that all we have done at this point is to rename
the important nominal constants of θ so that they match those introduced by σ. Now we
define ρ′ = {λc1 . . . λcn.r/h

′ | r/h ∈ θ′} so that θ′ = σ • ρ′. Thus (s D t)[[σ]][[ρ′]] holds. By
construction, σ shares no nominal constants with s and t, thus we know (s′ D t′)[[ρ′]] where
s′ = s[σ] and t′ = t[σ]. Also by construction, ρ′ contains no important nominal constants
and thus (s′ = λ~a.t′)[[ρ]] holds for some nominal constants ~a taken from supp(t) ∪ {~c}. If we

let ~b be a listing of all nominal constants in s′ and t′ but not in ~a, then (λ~b.s′ = λ~b.λ~a.t′)[[ρ]]
holds. At this point the inner equality has no nominal constants and thus the substitution
ρ can be applied without renaming: (λ~b.s′ = λ~b.λ~a.t′)[ρ′] holds. By the definition of CSU,

there must be a ρ ∈ CSU(λ~b.s′, λ~b.λ~a.t′) such that ρ′ ≤ ρ. Thus σ•ρ′ ≤Σ σ•ρ as desired.

4. Definitions, Induction, and Co-induction

The sequent calculus rules presented in Figure 1 treat atomic judgments as fixed, unana-
lyzed objects. We now add the capability of defining such judgments by means of formulas,
possibly involving other predicates. In particular, we shall assume that we are given a fixed,
finite set of clauses of the form ∀~x. p ~x , B p ~x where p is a predicate constant that takes
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a number of arguments equal to the length of ~x. Such a clause is said to define p and the
entire collection of clauses is called a definition. The expression B, called the body of the
clause, must be a term that does not contain p or any of the variables in ~x and must have a
type such that B p ~x has type o. Definitions are also restricted so that a predicate is defined
by at most one clause. The intended interpretation of a clause ∀~x. p ~x , B p ~x is that the
atomic formula p ~t, where ~t is a list of terms of the same length and type as the variables in
~x, is true if and only if B p ~t is true. This interpretation is realized by adding to the calculus
the rules defL and defR shown in Figure 4 for unfolding predicates on the left and the right
of sequents using their defining clauses.

Definitions can have a recursive structure. In particular, the predicate p can appear free
in the body B p ~x of a clause of the form ∀~x. p ~x , B p ~x. A fixed-point interpretation is
intended for definitions with clauses that are recursive in this way. Additional restrictions
are needed to ensure that fixed points actually exist in this setting and that their use is
compatible with the embedding logic. Two particular constraints suffice for this purpose.
First, the body of a clause must not contain any nominal constants. This restriction can be
justified from another perspective as well: as we see in Section 5, it helps in establishing that
≈ is a provability preserving equivalence between formulas. Second, definitions should be
stratified so that clauses, such as a , (a ⊃ ⊥), in which a predicate has a negative dependency
on itself, are forbidden. While such stratification can be enforced in different ways, we use
a simple approach to doing this in this paper. This approach is based on associating with
each predicate p a natural number that is called its level and that is denoted by lvl(p). This
measure is then extended to arbitrary formulas by the following definition.

Definition 15. Given an assignment of levels to predicates, the function lvl is extended to
all formulas in λ-normal form as follows:

1. lvl(p t̄) = lvl(p)

2. lvl(⊥) = lvl(⊤) = lvl(s D t) = 0

3. lvl(B ∧ C) = lvl(B ∨ C) = max(lvl(B), lvl(C))

4. lvl(B ⊃ C) = max(lvl(B) + 1, lvl(C))

5. lvl(∀x.B) = lvl(∇x.B) = lvl(∃x.B) = lvl(B)

In general, the level of a formula B, written as lvl(B), is the level of its λ-normal form.

A definition is stratified if we can assign levels to predicates in such a way that lvl(B p ~x) ≤
lvl(p) for each clause ∀~x. p ~x , B p ~x in that definition.

The defL and defR rules do not discriminate between any of the fixed points of a def-
inition. We now allow for the selection of least and greatest fixed points so as to support
inductive and co-inductive definitions of predicates. Specifically, we denote an inductive
clause by ∀~x. p ~x

µ
= B p ~x and a co-inductive one by ∀~x. p ~x

ν
= B p ~x. As a refinement of

the earlier restriction on definitions, a predicate may have at most one defining clause that
is designated to be inductive, co-inductive or neither. The defL and defR rules may be used
with clauses in any one of these forms. Clauses that are inductive admit additionally the left
rule IL shown in Figure 5. This rule is based on the observation that the least fixed point of
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~x : B S ~x ⊢ S ~x Σ : Γ, S ~t ⊢ C

Σ : Γ, p ~t ⊢ C
IL

provided p is defined as ∀~x. p ~x
µ
= B p ~x and S is a term that has the same type as p and

does not contain nominal constants

Σ : Γ ⊢ S ~t ~x : S ~x ⊢ B S ~x

Σ : Γ ⊢ p ~t
CIR

provided p is defined as ∀~x. p ~x
ν
= B p ~x and S is a term that has the same type as p and

does not contain nominal constants

Figure 5: The induction left and co-induction right rules

a monotone operator is the intersection of all its pre-fixed points; intuitively, anything that
follows from any pre-fixed point should then also follow from the least fixed point. In a proof
search setting, the term corresponding to the schema variable S in this rule functions like the
induction hypothesis and is accordingly called the invariant of the induction. Clauses that
are co-inductive, on the other hand, admit the right rule CIR also presented in Figure 5.
This rule reflects the fact that the greatest fixed point of a monotone operator is the union
of all the post-fixed points; any member of such a post-fixed point must therefore also be a
member of the greatest fixed point. The substitution that is used for S in this rule is called
the co-invariant or the simulation of the co-induction. Just like the restriction on the body of
clauses, in both IL and CIR, the (co-)invariant S must not contain any nominal constants.

As a simple illustration of the use of these rules, consider the clause p
µ
= p. The desired

inductive reading of this clause implies that p must be false. In a proof-theoretic setting, we
would therefore expect that the sequent · : p ⊢ ⊥ can be proved. This can, in fact, be done
by using IL with the invariant S = ⊥. On the other hand, consider the clause q

ν
= q. The

co-inductive reading intended here implies that q must be true. The logic G satisfies this
expectation: the sequent · : · ⊢ q can be proved using CIR with the co-invariant S = ⊤.

The addition of inductive and co-inductive forms of clauses and the mixing of these
forms in one setting requires a stronger stratification condition to guarantee consistency.
One condition that suffices and that is also practically acceptable is the following that is
taken from [27]: in a clause of any of the forms ∀~x. p ~x , B p ~x, ∀~x. p ~x

µ
= B p ~x or

∀~x. p ~x
ν
= B p ~x, it must be that lvl(B (λ~x.⊤) ~x) < lvl(p). This disallows any mutual

recursion between clauses, a restriction which can easily be overcome by merging mutually
recursive clauses into a single clause. We henceforth assume that all definitions satisfy all
three conditions described for them in this section. Corollary 22 in Section 5 establishes the
consistency of the logic under these restrictions.
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5. Some Properties of the Logic

We have now described the logic G completely: in particular, its proof rules consist of
the ones in Figures 1, 2, 4 and 5. This logic combines and extends the features of several
logics such as FOλ∆IN [5], FOλ∆∇ [16], LGω [28] and Linc− [27]. The relationship to
Linc− is of special interest to us below: G is a conservative extension to this logic that is
obtained by adding a treatment of the ∇ quantifier and the associated nominal constants
and by generalizing the proof rules pertaining to equality to ones dealing with nominal
abstraction. This correspondence will allow the proof of the critical meta-theoretic property
of cut-elimination for Linc− to be lifted to G.

We shall actually establish three main properties of G in this section. First, we shall
show that the provability of a sequent is unaffected by the application of permutations of
nominal constants to formulas in the sequent. This property consolidates our understanding
that nominal constants are quantified implicitly at the formula level; such quantification
also renders irrelevant the particular names chosen for such constants. Second, we show that
the application of substitution in a nominal capture-avoiding way preserves provability; by
contrast, ordinary application of substitution does not have this property. Finally, we show
that the cut rule can be dispensed with from the logic without changing the set of provable
sequents. This implies that the left and right rules of the logic are balanced and, moreover,
that the logic is consistent. This is the main result of this section and its proof uses the
earlier two results together with the argument for cut-elimination for Linc−.

Several of our arguments will be based on induction on the heights of proofs. This
measure is defined formally below. Notice that the height of a proof can be an infinite
ordinal because the DL rule can have an infinite number of premises. Thus, we will be using
a transfinite form of induction.

Definition 16. The height of a derivation Π, denoted by ht(Π), is 1 if Π has no premise
derivations and is the least upper bound of {ht(Πi) + 1}i∈I if Π has the premise derivations
{Πi}i∈I where I is some index set. Note that the typing derivations in the rules ∀L and ∃R
are not considered premise derivations in this sense.

Many proof systems, such as Linc−, include a weakening rule that allows formulas to be
dropped (reading proofs bottom-up) from the left-hand sides of sequents. While G does not
include such a rule directly, its effect is captured in a strong sense as we show in the lemma
below. Two proofs are to be understood here and elsewhere as having the same structure if
they are isomorphic as trees, if the same rules appear at corresponding places within them
and if these rules pertain to formulas that can be obtained one from the other via a renaming
of eigenvariables and nominal constants.

Lemma 17. Let Π be a proof of Σ : Γ ⊢ B and let ∆ be a multiset of formulas whose
eigenvariables are contained in Σ. Then there exists a proof of Σ : ∆, Γ ⊢ B which has the
same structure as Π. In particular ht(Π) = ht(Π′) and Π and Π′ end with the same rule
application.

Proof. The lemma can be proved by an easy induction on ht(Π). We omit the details.
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The following lemma shows a strong form of the preservation of provability under per-
mutations of nominal constants appearing in formulas, the first of our mentioned results.

Lemma 18. Let Π be a proof of Σ : B1, . . . , Bn ⊢ B0 and let Bi ≈ B′
i for i ∈ {0, 1, . . . , n}.

Then there exists a proof Π′ of Σ : B′
1, . . . , B

′
n ⊢ B′

0 which has the same structure as Π. In
particular ht(Π) = ht(Π′) and Π and Π′ end with the same rule application.

Proof. The proof is by induction on ht(Π) and proceeds specifically by considering the last
rule used in Π. When this is a left rule, we shall assume without loss of generality that it
operates on Bn.

The argument is easy to provide when the last rule in Π is one of ⊥L or ⊤R. If this rule
is an id, i.e., if Π is of the form

Bj ≈ B0

Σ : B1, . . . , Bn ⊢ B0
id

then, since ≈ is an equivalence relation, it must be the case that B′
j ≈ B′

0. Thus, we can let
Π′ be the derivation

B′
j ≈ B′

0

Σ : B′
1, . . . , B

′
n ⊢ B′

0

id

If the last rule is a DR applied to a nominal abstraction s D t then the result follows
immediately from Lemma 10.

In the remaining cases we shall show that the last rule in Π can also have Σ : B′
1, . . . , B

′
n ⊢

B′
0 as a conclusion with the premises in this application of the rule being related via permu-

tations in the way required by the lemma to the premises of the rule application in Π. The
lemma then follows from the induction hypothesis.

In the case when the last rule in Π pertains to a binary connective—i.e., when the rule
is one of ∨L, ∨R, ∧L, ∧R, ⊃L or ⊃R—the desired conclusion follows naturally from the
observation that permutations distribute over the connective. The proof can be similarly
completed when a ∃L, ∃R, ∀L or ∀R rule ends the derivation, once we have noted that
the application of permutations can be moved under the ∃ and ∀ quantifiers. For the cut

and cL rules, we have to show that permutations can be extended to include the newly
introduced formula in the upper sequent(s). This is easy: for the cut rule we use the identity
permutation and for cL we replicate the permutation used to obtain B′

n from Bn.
The two remaining rules from the core logic are ∇L and ∇R. The argument in these

cases are similar and we consider only the later in detail. In this case, the last rule in Π is
of the form

Σ : B1, . . . , Bn ⊢ C[a/x]

Σ : B1, . . . , Bn ⊢ ∇x.C
∇R

where a /∈ supp(C). Obviously, B′
0 = ∇x.C ′ for some C ′ such that C ≈ C ′. Let d be a

nominal constant such that d /∈ supp(C) and d /∈ supp(C ′). Such a constant must exist since
both sets are finite. Then C[a/x] ≈ C[d/x] ≈ C ′[d/x]. Thus the following

Σ : B′
1, . . . , B

′
n ⊢ C ′[d/x]

Σ : B′
1, . . . , B

′
n ⊢ ∇x.C ′ ∇R
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is also an instance of the ∇R rule and its upper sequent has the desired form.
When the last rule in Π is DL, it has has the structure

{Σθ : B1[[θ]], . . . , Bn−1[[θ]] ⊢ B0[[θ]] | θ is a solution to s D t}

Σ : B1, . . . , s D t ⊢ B0
DL

Here we know that B′
n is a nominal abstraction s′ D t′ that, by Lemma 10, has the same

solutions as s D t. Further, by Lemma 3, Bi[[θ]] ≈ B′
i[[θ]] for any substitution θ. Thus

{

Σθ : B′
1[[θ]], . . . , B

′
n−1[[θ]] ⊢ B′

0[[θ]] | θ is a solution to s′ D t′
}

Σ : B′
1, . . . , s

′ D t′ ⊢ B′
0

DL

is also an instance of the DL rule and its upper sequents have the required property.
The arguments for the rules defL and defR are similar and we therefore only consider

the case for the former rule in detail. Here, Bn must be of the form p ~t where p is a predicate
symbol and the upper sequent must be identical to the lower one except for the fact that Bn

is replaced by a formula of the form B p ~t where B contains no nominal constants. Further,
B′

n is of the form p ~s where p ~t ≈ p ~s. From this it follows that B p ~t ≈ B p ~s and hence
that Σ : B′

1, . . . , B
′
n ⊢ B′

0 can be the lower sequent of a rule whose upper sequent is related
in the desired way via permutations to the upper sequent of the last rule in Π.

The only remaining rules to consider are IL and CIR. Once again, the arguments in
these cases are similar and we therefore consider only the case for IL in detail. Here, Π ends
with a rule of the form

~x : B S ~x ⊢ S ~x Σ : B1, . . . , S ~t ⊢ B0

Σ : B1, . . . , p ~t ⊢ B0

IL

where p is a predicate symbol defined by a clause of the form ∀~x. p ~x
µ
= B p ~x and S contains

no nominal constants. Now, B′
n must be of the form p ~r where p ~t ≈ p ~r. Noting the proviso

on S, it follows that S ~t ≈ S ~r. But then the following

~x : B S ~x ⊢ S ~x Σ : B′
1, . . . , S ~r ⊢ B′

0

Σ : B′
1, . . . , p ~r ⊢ B′

0

IL

is also an instance of the IL rule and its upper sequents are related in the manner needed
to those of the IL rule used in Π.

Several rules in G require the selection of eigenvariables and nominal constants. Lemma 18
shows that we obtain what is essentially the same proof regardless of how we choose nominal
constants in such rules so long as the local non-occurrence conditions are satisfied. A similar
observation with regard to the choice of eigenvariables is also easily verified. We shall
therefore identify below proofs that differ only in the choices of eigenvariables and nominal
constants.

We now turn to the second of our desired results, the preservation of provability under
substitutions.
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Lemma 19. Let Π be a proof of Σ : Γ ⊢ C and let θ be a substitution. Then there is a proof
Π′ of Σθ : Γ[[θ]] ⊢ C[[θ]] such that ht(Π′) ≤ ht(Π).

Proof. We show how to transform the proof Π into a proof Π′ for the modified sequent.
The transformation is by recursion on ht(Π), the critical part of it being a consideration of
the last rule in Π. The transformation is, in fact, straightforward in all cases other than
when this rule is DL, ∀R, ∃L, ∃R, ∀L, IL and CIR. In these cases, we simply apply the
substitution in a nominal capture avoiding way to the lower and any possible upper sequents
of the rule. It is easy to see that the resulting structure is still an instance of the same rule
and its upper sequents are guaranteed to have proofs (of suitable heights) by induction.

Suppose that the last rule in Π is an DL, i.e., it is of the form

{Σρ : Γ[[ρ]] ⊢ C[[ρ]] | ρ is a solution to s D t}

Σ : Γ, s D t ⊢ C
DL

Then the following

{Σ(θ • ρ′) : Γ[[θ • ρ′]] ⊢ C[[θ • ρ′]] | ρ′ is a solution to (s D t)[[θ]]}

Σθ : Γ[[θ]], (s D t)[[θ]] ⊢ C[[θ]]
DL

is also an DL rule. Noting that if ρ′ is a solution to (s D t)[[θ]], then θ • ρ′ is a solution to
s D t, we see that the upper sequents of this rule are contained in the upper sequents of the
rule in Π. It follows that we can construct a proof of the lower sequent whose height is less
than or equal to that of Π.

The argument is similar in the cases when the last rule in Π is a ∀R or a ∃L so we
consider only the former in detail. In this case the rule has the form

Σ, h : Γ ⊢ B[h ~c/x]

Σ : Γ ⊢ ∀x.B
∀R

where {~c} = supp(∀x.B). Let {~a} = supp((∀x.B)[[θ]]). Further, let h′ be a new variable
name. We assume without loss of generality that neither h nor h′ appear in the domain or
range of θ. Letting ρ = θ ∪ {λ~c.h′ ~a/h}, consider the structure

(Σ, h)ρ : Γ[[ρ]] ⊢ B[h ~c/x][[ρ]]

Σθ : Γ[[θ]] ⊢ (∀x.B)[[θ]]

The upper sequent here is equivalent under λ-conversion to Σθ, h′ : Γ[[θ]] ⊢ (B[[θ]])[h′ ~a/x]
so this structure is, in fact, also an instance of the ∀R rule. Moreover, its upper sequent is
obtained via substitution from the upper sequent of the rule in Π. The lemma then follows
by induction.

The arguments for the cases when the last rule is an ∃R or an ∀L are similar and so we
provide it explicitly only for the former. In this case, we have the rule

Σ,K, C ⊢ t : τ Σ : Γ ⊢ B[t/x]

Σ : Γ ⊢ ∃τx.B
∃R
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ending Π. Let π be a permutation such that supp(π.(B[t/x])) ∩ supp(θ) = ∅. We assume
without loss of generality that x does not appear in the domain or range of θ. Then consider
the structure

Σθ,K, C ⊢ (π.t)[θ] : τ Σθ : Γ[[θ]] ⊢ (π.B)[θ][(π.t)[θ]/x]

Σθ : Γ[[θ]] ⊢ (∃τx.B)[[θ]]

The typing derivation here is well-formed since permutations and substitutions are type
preserving. Additionally, supp(B) ⊆ supp(B[t/x]) implies supp(π.B) ∩ supp(θ) = ∅, and so
the conclusion of the lower sequent is equivalent to ∃τx.(π.B)[θ]. Thus this structure is an
instance of the ∃R rule. The term (π.B)[θ][(π.t)[θ]/x] is equal to (π.(B[t/x]))[θ] which is
equivalent to (B[t/x])[[θ]]. Thus the upper right sequent is obtained via substitution from
the upper right sequent of the rule in Π. The lemma then follows by induction.

The only remaining cases for the last rule are IL and CIR. The arguments in these
cases are, yet again, similar and it suffices to make only the former explicit. In this case, the
end of Π has the form

~x : B S ~x ⊢ S ~x Σ : Γ, S ~t ⊢ C

Σ : Γ, p ~t ⊢ C
IL

But then the following

~x : B S ~x ⊢ S ~x Σθ : Γ[[θ]], (S ~t)[[θ]] ⊢ C[[θ]]

Σθ : Γ[[θ]], (p ~t)[[θ]] ⊢ C[[θ]]

is also an instance of the IL rule. Moreover, the same proof as in Π can be used for the left
upper sequent and the right upper sequent has the requisite form for using the induction
hypothesis.

The proof of Lemma 19 effectively defines a transformation of a derivation Π based on a
substitution θ. We shall use the notation Π[[θ]] to denote the transformed derivation. Note
that ht(Π[[θ]]) can be less than ht(Π). This may happen because the transformed version of
a DL rule can have fewer upper sequents.

Corollary 20. The following rules are admissible.

Σ, h : Γ ⊢ B[h ~a/x]

Σ : Γ ⊢ ∀x.B
∀R∗

Σ, h : Γ, B[h ~a/x] ⊢ C

Σ : Γ,∃x.B ⊢ C
∃L∗

where h /∈ Σ and ~a is any listing of distinct nominal constants which contains supp(B).

Proof. Let Π be a derivation for Γ ⊢ B[h ~a/x], let h′ be a variable that does not appear in Π,
and let {~c} = supp(B). By Lemma 19, Π[[λ~a.h′ ~c/h]] is a valid derivation. Since ~a contains
~c, no nominal constants appear in the substitution {λ~a.h′ ~c/h}. It can now be seen that the
last sequent in Π[[λ~a.h′ ~c/h]] has the form Σ, h′ : Γ′ ⊢ B′ where B′ ≈ B[h′ ~c/h] and Γ′ results
from replacing some of the formulas in Γ by ones that they are equivalent to under ≈. But
then, by Lemma 18, there must be a derivation for Σ, h′ : Γ ⊢ B[h′ ~c/h]. Using a ∀R rule
below this we get a derivation for Σ : Γ ⊢ ∀x.B, verifying the admissibility of ∀R∗. The
argument for ∃L∗ is analogous.
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We now turn to the main result of this section, the redundancy from a provability per-
spective of the cut rule in G. The usual approach to proving such a property is to define a set
of transformations called cut reductions on derivations that leave the end sequent unchanged
but that have the effect of pushing occurrences of cut up the proof tree to the leaves where
they can be immediately eliminated. The difficult part of such a proof is showing that these
cut reductions always terminate. In simpler sequent calculi such as the one for first-order
logic, this argument can be based on an uncomplicated measure such as the size of the cut
formula. However, the presence of definitions in a logic like G renders this measure inade-
quate. For example, the following is a natural way to define a cut reduction between a defL
and a defR rule that work on the cut formula:

Π′

Σ : Γ ⊢ B p ~t

Σ : Γ ⊢ p ~t
defR

Π′′

Σ : B p ~t, ∆ ⊢ C

Σ : p ~t, ∆ ⊢ C
defL

Σ : Γ, ∆ ⊢ C
cut ⇒

Π′

Σ : Γ ⊢ B p ~t
Π′′

Σ : B p ~t, ∆ ⊢ C

Σ : Γ, ∆ ⊢ C
cut

Notice that B p ~t, the cut formula in the new cut introduced by this transformation, could be
more complex than p ~t, the old cut formula. To overcome this difficulty, a more complicated
argument based on the idea of reducibility in the style of Tait [29] is often used. Tiu and
Momigliano [27] in fact formulate a notion of parametric reducibility for derivations that is
based on the Girard’s proof of strong normalizability for System F [30] and that works in the
presence of the induction and co-induction rules for definitions. Our proof makes extensive
use of this notion and the associated argument structure.

Theorem 21. The cut rule can be eliminated from G without affecting the provability rela-
tion.

Proof. The relationship between G and the logic Linc− treated by Tiu and Momigliano can
be understood as follows: Linc− does not treat the ∇ quantifier and therefore has no rules for
it. Consequently, it does not have nominal constants, it does not use raising over nominal
constants in the rules ∀R and ∃L, it has no need to consider permutations in the id (or
initial) rule and has equality rules in place of nominal abstraction rules. The rules in G
other than the ones for ∇, including the ones for definitions, induction, and co-induction,
are essentially identical to the ones in Linc− except for the additional attention to nominal
constants.

Tiu and Momigliano’s proof can be extended to G in a fairly direct way since the addition
of nominal constants and their treatment in the rules is quite modular and does not create
any new complexities for the reduction rules. The main issues in realizing this extension is
building in the idea of identity under permutations of nominal constants and lifting the Linc−

notion of substitution on terms, sequents, and derivations to a form that avoids capture of
nominal constants. The machinery for doing this has already been developed in Lemmas 18
and 19. In the rest of this proof we assume a familiarity with the argument for cut-elimination
for Linc− and discuss only the changes to the cut reductions of Linc− to accommodate the
differences.
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The id rule in G identifies formulas which are equivalent under ≈ which is more permissive
than equality under λ-convertability that is used in the Linc− initial rule. Correspondingly,
we have to be a bit more careful about the cut reductions associated with the id (initial)
rule. For example, consider the following reduction:

B ≈ B′

Σ : Γ, B ⊢ B′ id Π′

Σ : B′, ∆ ⊢ C

Σ : B, Γ, ∆ ⊢ C
cut ⇒ Π′

Σ : B′, ∆ ⊢ C

This reduction has not preserved the end sequent. However, we know B ≈ B′ and so we
can now use Lemma 18 to replace Π′ with a derivation of Σ : B, ∆ ⊢ C. Then we can use
Lemma 17 to produce a derivation of Σ : B, Γ, ∆ ⊢ C as desired. The changes to the cut
reduction when id applies to the right upper sequent of the cut rule are similar.

The ∀R and ∃L rules of G extend the corresponding rules of Linc− by raising over nominal
constants in the support of the quantified formula. The ∀L and ∃R rules of G also extend
the corresponding rules in Linc− by allowing instantiations which contain nominal constants.
Despite these changes, the cut reductions involving these quantifier rules remain unchanged
for G except for the treatment of essential cuts that involve an interaction between ∀R and
∀L and, similarly, between ∃R and ∃L. The first of these is treated as follows:

Π′

Σ, h : Γ ⊢ B[h ~c/x]

Σ : Γ ⊢ ∀x.B
∀R

Π′′

Σ : ∆, B[t/x] ⊢ C

Σ : ∆,∀x.B ⊢ C
∀L

Σ : Γ, ∆ ⊢ C
cut ⇒

Π′[[λ~c.t/h]]
Σ : Γ ⊢ B[t/x]

Π′′

Σ : ∆, B[t/x] ⊢ C

Σ : Γ, ∆ ⊢ C
cut

The existence of the derivation Π′[[λ~c.t/h]] (with height at most that of Π′) is guaranteed by
Lemma 19. The end sequent of this derivation is Σ : Γ[[λ~c.t/h]] ⊢ B[h ~c/x][[λ~c.t/h]]. However,
Γ[[λ~c.t/h]] ≈ Γ because h is new to Γ and B[h ~c/x][[λ~c.t/h]] ≈ B[t/x] because {~c} = supp(B)
and so λ~c.t has no nominal constants in common with supp(B). Thus, by Lemma 18 and by
an abuse of notation, we may consider Π′[[λ~c./h]] to also be a derivation of Σ : Γ ⊢ B[t/x].
The reduction for a cut involving an interaction between an ∃R and an ∃L rule is analogous.

The logic G extends the equality rules in Linc− to treat the more general case of nominal
abstraction. Our notion of nominal capture-avoiding substitution correspondingly general-
izes the Linc− notion of substitution, and we have shown in Lemma 19 that this preserves
provability. Thus the reductions for nominal abstraction are the same as for equality, except
that we use nominal capture-avoiding substitution in place of regular substitution. For ex-
ample, the essential cut involving an interaction between an DR and an DL rule is treated
as follows:

Σ : Γ ⊢ s D t
DR

{

Πθ

Σθ : ∆[[θ]] ⊢ C[[θ]]

}

Σ : ∆, s D t ⊢ C
DL

Σ : Γ, ∆ ⊢ C
cut ⇒ Πǫ

Σ : ∆ ⊢ C

Here we know s D t holds and thus ǫ, the identity substitution, is a solution to this nominal
abstraction. Therefore we have the derivation Πǫ as needed. We can then apply Lemma 17
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to weaken this derivation to one for Σ : Γ, ∆ ⊢ C. For the other cuts involving nominal
abstraction, we make use of the fact proved in Lemma 19 that nominal capturing avoiding
substitution preserves provability. This allows us to commute other rules with DL. For
example, consider the following occurrence of a cut where the upper right derivation uses an
DL on a formula different from the cut formula:

Π′

Σ : Γ ⊢ B

{

Πθ

Σθ : B[[θ]], ∆[[θ]] ⊢ C[[θ]]

}

Σ : B, ∆, s D t ⊢ C
DL

Σ : Γ, ∆, s D t ⊢ C
cut

Cut reduction produces from this the following derivation:







Π′[[θ]]
Σθ : Γ[[θ]] ⊢ B[[θ]]

Πθ

Σθ : B[[θ]], ∆[[θ]] ⊢ C[[θ]]

Σθ : Γ[[θ]], ∆[[θ]] ⊢ C[[θ]]
cut







Σ : Γ, ∆, s D t ⊢ C
DL

Finally, G has new rules for treating the ∇-quantifier. The only reduction rule which
deals specifically with either the ∇L or ∇R rule is the essential cut between both rules
which is treated as follows:

Π′

Σ : Γ ⊢ B[a/x]

Σ : Γ ⊢ ∇x.B
∇R

Π′′

Σ : B[a/x], ∆ ⊢ C

Σ : ∇x.B, ∆ ⊢ C
∇L

Σ : Γ, ∆ ⊢ C
cut ⇒

Π′

Σ : Γ ⊢ B[a/x]
Π′′

Σ : B[a/x], ∆ ⊢ C

Σ : Γ, ∆ ⊢ C
cut

.

With these changes, the cut-elimination argument for Linc− extends to G, i.e., G admits
cut-elimination.

The consistency of G is an easy consequence of Theorem 21.

Corollary 22. The logic G is consistent, i.e., not all sequents are provable in it.

Proof. The sequent ⊢ ⊥ has no cut-free proof and, hence, no proof in G.

The cut-elimination theorem is important for more reasons than showing the consistency
of G. As one example, using the cut-rule in constructing proofs in G involves the invention
of relevant cut formulas that function as lemmas. Thus, knowing that this kind of creative
step is not essential is helpful in designing automatic theorem provers that are both practical
and complete.
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6. A Pattern-Based Form for Definitions

When presenting a definition for a predicate, it is often convenient to write this as a
collection of clauses whose applicability is also constrained by patterns appearing in the head.
For example, in logics that support equality but not nominal abstraction, list membership
may be defined by the two pattern based clauses shown below.

member X (X :: L) , ⊤ member X (Y :: L) , member X L

These logics also include rules for directly treating definitions presented in this way. In
understanding these rules, use may be made of the translation of the extended form of
definitions to a version that does not use patterns in the head and in which there is at most
one clause for each predicate. For example, the definition of the list membership predicate
would be translated to the following form:

member X K , (∃L. K = (X :: L)) ∨ (∃Y ∃L. K = (Y :: L) ∧ member X L)

The treatment of patterns and multiple clauses can now be understood in terms of the rules
for definitions using a single clause and the rules for equality, disjunction, and existential
quantification.

In the logic G, the notion of equality has been generalized to that of nominal abstrac-
tion. This allows us also to expand the pattern-based form of definitions to use nominal
abstraction in determining the selection of clauses. By doing this, we would allow the head
of a clausal definition to describe not only the term structure of the arguments, but also
to place restrictions on the occurrences of nominal constants in these arguments. For ex-
ample, suppose we want to describe the contexts in typing judgments by lists of the form
〈c1, T1〉 :: 〈c2, T2〉 :: . . . :: nil with the further proviso that each ci is a distinct nominal con-
stant. We will allow this to be done by using the following pattern-based form of definition
for the predicate cntx :

cntx nil , ⊤ (∇x.cntx (〈x, T 〉 :: L)) , cntx L

Intuitively, the ∇ quantifier in the head of the second clause imposes the requirement that,
to match it, the argument of cntx should have the form 〈x, T 〉 :: L where x is a nominal
constant that does not occur in either T or L. To understand this interpretation, we could
think of the earlier definition of cntx as corresponding to the following one that does not use
patterns or multiple clauses:

cntx K , (K = nil) ∨ (∃T∃L. (λx.〈x, T 〉 :: L) D K ∧ cntx L)

Our objective in the rest of this section is to develop machinery for allowing the extended
form of definitions to be used directly. We do this by presenting its syntax formally, by
describing rules that allow us to employ such definitions and, finally, by justifying the new
rules by means of a translation of the kind indicated above.
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Σ : Γ ⊢ (B p ~x)[θ]

Σ : Γ ⊢ p ~s
defRp

for any clause ∀~x.(∇~z.p ~t) , B p ~x in D and any θ
such that range(θ) ∩ Σ = ∅ and (λ~z.p ~t)[θ] D p ~s holds

{

Σθ : Γ[[θ]], (B p ~x)[[θ]] ⊢ C[[θ]] ∀~x.(∇~z.p ~t) , B p ~x ∈ D and

θ is a solution to ((λ~z.p ~t) D p ~s)

}

Σ : Γ, p ~s ⊢ C
defLp

Figure 6: Introduction rules for a pattern-based definition D

Definition 23. A pattern-based definition is a finite collection of clauses of the form

∀~x.(∇~z.p ~t) , B p ~x

where ~t is a sequence of terms that do not have occurrences of nominal constants in them,
p is a constant such that p ~t is of type o and B is a term devoid of occurrences of p, ~x and
nominal constants and such that B p ~t is of type o. Further, we expect such a collection
of clauses to satisfy a stratification condition: there must exist an assignment of levels to
predicate symbols such that for any clause ∀~x.(∇~z.p ~t) , B p ~x occurring in the set, assuming
p has arity n, it is the case that lvl(B (λ~x.⊤) ~x) < lvl(p). Notice that we allow the collection
to contain more than one clause for any given predicate symbol.

The logical rules for treating pattern-based definitions are presented in Figure 6. These
rules encode the idea of matching an instance of a predicate with the head of a particular
clause and then replacing the predicate with the corresponding clause body. The kind of
matching involved is made precise through the construction of a nominal abstraction after
replacing the ∇ quantifiers in the head of the clause by abstractions. The right rule embodies
the fact that it is enough if an instance of any one clause can be used in this way to yield
a successful proof. In this rule, the substitution θ that results from the matching must be
applied in a nominal capture avoiding way to the body. However, since B does not contain
nominal constants, the ordinary application of the substitution also suffices. To accord with
the treatment in the right rule, the left rule must consider all possible ways in which an
instance of an atomic assumption p ~s can be matched by a clause and must show that a
proof can be constructed in each such case.

The soundness of these rules is the content of the following theorem whose proof also
makes explicit the intended interpretation of the pattern-based form of definitions.

Theorem 24. The pattern-based form of definitions and the associated proof rules do not
add any new power to the logic. In particular, the defLp and defRp rules are admissible
under the intended interpretation via translation of the pattern-based form of definitions.
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Proof. Let p be a predicate whose clauses in the definition being considered are given by the
following set of clauses.

{∀~xi. (∇~zi.p ~ti) , Bi p ~xi}i∈1..n

Let p′ be a new constant symbol with the same argument types as p. Then the intended
interpretation of the definition of p in a setting that does not allow the use of patterns in
the head and that limits the number of clauses defining a predicate to one is given by the
clause

∀~y.p ~y ,
∨

i∈1..n

∃~xi.((λ~zi.p
′ ~ti) D p′ ~y) ∧ Bi p ~xi

in which the variables ~y are chosen such that they do not appear in the terms ~ti for 1 ≤ i ≤ n.
Note also that we are using the term constructor p′ here so as to be able to match the entire
head of a clause at once, thus ensuring that the ∇-bound variables in the head are assigned
a consistent value for all arguments of the predicate.

Based on this translation, we can replace an instance of defRp,

Γ ⊢ (Bi p ~xi)[θ]

Γ ⊢ p ~s
defRp

with the following sequence of rules, where a double inference line indicates that a rule is
used multiple times.

Γ ⊢ (λ~zi.p
′ ~ti)[θ] D p′ ~s

DR
Γ ⊢ (Bi p ~xi)[θ]

Γ ⊢ ((λ~zi.p
′ ~ti)[θ] D p′ ~s) ∧ (Bi p ~xi)[θ]

∧R

Γ ⊢ ∃~xi.((λ~zi.p
′ ~ti) D p′ ~s) ∧ Bi p ~xi

∃R

Γ ⊢
∨

i∈1..n ∃~xi.((λ~zi.p
′ ~ti) D p′ ~s) ∧ Bi p ~xi

∨R

Γ ⊢ p ~s
defR

Note that we have made use of the fact that θ instantiates only the variables xi and thus
has no effect on ~s. Further, the side condition associated with the defRp rule ensures that
the DR rule that appears as a left leaf in this derivation is well-formed.

Similarly, we can replace an instance of defLp,
{

Σθ : Γ[[θ]], (Bi p ~xi)[[θ]] ⊢ C[[θ]] | θ is a solution to ((λ~z.p ~ti) D p ~s)
}

i∈1..n

Σ : Γ, p ~s ⊢ C
defLp

with the following sequence of rules






















{

Γ[[θ]], (Bi p ~xi)[[θ]] ⊢ C[[θ]] | θ is a solution to ((λ~z.p′ ~ti) D p′ ~s)
}

Γ, (λ~zi.p
′ ~ti) D p′ ~s, Bi p ~xi ⊢ C

DL

Γ, ((λ~zi.p
′ ~ti) D p′ ~s) ∧ Bi p ~xi ⊢ C

∧L∗

Γ,∃~xi.((λ~zi.p
′ ~ti) D p′ ~s) ∧ Bi p ~xi ⊢ C

∃L























i∈1..n

Γ,
∨

i∈1..n ∃~xi.((λ~zi.p
′ ~ti) D p′ ~s) ∧ Bi p ~xi ⊢ C

∨L

Γ, p ~s ⊢ C
defL
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{

~xi : Bi S ~xi ⊢ ∇~zi.S ~ti
}

i∈1..n
Σ : Γ, S ~s ⊢ C

Σ : Γ, p ~s ⊢ C
ILp

assuming p is defined by the set of clauses {∀~xi.(∇~zi.p ~ti)
µ
= Bi p ~xi}i∈1..n

Figure 7: Induction rule for pattern-based definitions

Here ∧L∗ is an application of cL followed by ∧L1 and ∧L2 on the contracted formula. It is
easy to see that the solutions to (λ~z.p ~ti) D p ~s and (λ~z.p′ ~ti) D p′ ~s are identical and hence
the leaf sequents in this partial derivation are exactly the same as the upper sequents of the
instance of the defLp rule being considered.

A weak form of a converse to the above theorem also holds. Suppose that the predicate
p is given by the following clauses

{∀~xi. (∇~zi.p ~ti) , Bi p ~xi}i∈1..n

in a setting that uses pattern-based definitions and that has the defLp and defRp but not
the defL and defR rules. In such a logic, it is easy to see that the following is provable:

∀~y.

[

(p ~y ⊃
∨

i∈1..n

∃~xi.((λ~zi.p
′ ~ti) D p′ ~y) ∧ Bi p ~xi) ∧

(
∨

i∈1..n

∃~xi.((λ~zi.p
′ ~ti) D p′ ~y) ∧ Bi p ~xi ⊃ p ~y)

]

Thus, in the presence of cut, the defL and defR rules can be treated as derived rules relative
to the translation interpretation of pattern-based definitions.

We would like also to allow patterns to be used in the heads of clauses when writing
definitions that are intended to pick out the least and greatest fixed points, respectively.
Towards this end we admit in a definition also clauses of the form ∀~x.(∇~z.p ~t)

µ
= B p ~x and

∀~x.(∇~z.p ~t)
ν
= B p ~x with the earlier provisos on the form of B and ~t and the types of B

and p and with the additional requirement that all the clauses for any given predicate are
unannotated or annotated uniformly with either µ or ν. Further, a definition must satisfy
stratification conditions as before. In reasoning about the least or greatest fixed point forms
of definitions, we may use the translation into the earlier, non-pattern form together with
the rules IL and CIR. It is possible to formulate an induction rule that works directly
from pattern-based definitions using the idea that to show S to be an induction invariant for
the predicate p, one must show that every clause of p preserves S. A rule that is based on
this intuition is presented in Figure 7. The soundness of this rule is shown in the following
theorem.

Theorem 25. The ILp rule is admissible under the intended translation of pattern-based
definitions.
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Proof. Let the clauses for p in the pattern-based definition be given by the set

{∀~xi.(∇~zi.p ~ti)
µ
= Bi p ~xi}i∈1..n

in which case the translated form of the definition for p would be

∀~y.p ~y
µ
=

∨

i∈1..n

∃~xi.((λ~zi.p
′ ~ti) D p′ ~y) ∧ Bi p ~xi.

In this context, the rightmost upper sequents of the ILp and the IL rules that are needed
to derive a sequent of the form Σ : Γ, p ~s ⊢ C are identical. Thus, to show that ILp rule is
admissible, it suffices to show that the left upper sequent in the IL rule can be derived in
the original calculus from all but the rightmost upper sequent in an ILp rule. Towards this
end, we observe that we can construct the following derivation:






















{

(~y, ~xi)θ : (Bi p ~xi)[[θ]] ⊢ (S ~y)[[θ]] | θ is a solution to ((λ~z.p′ ~ti) D p′ ~y)
}

~y, ~xi : (λ~zi.p
′ ~ti) D p′ ~y, Bi S ~xi ⊢ S ~y

DL

~y, ~xi : ((λ~zi.p
′ ~ti) D p′ ~y) ∧ Bi p ~xi ⊢ S ~y

∧L∗

~y : ∃~xi.((λ~zi.p
′ ~ti) D p′ ~y) ∧ Bi S ~xi ⊢ S ~y

∃L























i∈1..n

~y :
∨

i∈1..n ∃~xi.((λ~zi.p
′ ~ti) D p′ ~y) ∧ Bi S ~xi ⊢ S ~y

∨L

Since the variables ~y are distinct and do not occur in ~ti, the solutions to (λ~z.p′ ~ti)Dp′ ~y have
a simple form. In particular, let ~t′i be the result of replacing in ~ti the variables ~z with distinct
nominal constants. Then ~y = ~t′i will be a most general solution to the nominal abstraction.
Thus the upper sequents of this derivation will be

~xi : Bi p ~xi ⊢ S ~t′i

which are derivable if and only if the sequents

~xi : Bi p ~xi ⊢ ∇~zi.S ~ti

are derivable.

We do not introduce a co-induction rule for pattern-based definitions largely because we
have encountered few interesting co-inductive definitions that require patterns and multiple
clauses.

7. Examples

We now provide some examples to illuminate the properties of nominal abstraction and
its usefulness in both specification and reasoning tasks; while G has many more features, their
characteristics and applications have been exposed in other work (e.g., see [7, 8, 31, 32]).
In the examples that are shown, use will be made of the pattern-based form of definitions
described in Section 6. We will also adopt the convention that tokens given by capital letters
denote variables that are implicitly universally quantified over the entire clause.
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B[c/z] ⊢ fresh c ~x
defRp

B[c/z] ⊢ B[c/z]
id

B[c/z] ⊢ fresh c ~x ∧ B[c/z]
∧R

B[c/z] ⊢ ∃z.(fresh z ~x ∧ B)
∃R

∇z.B ⊢ ∃z.(fresh z ~x ∧ B)
∇L

Figure 8: The proof of an entailment involving ∇ and the fresh predicate

7.1. Properties of ∇ and freshness

We can use nominal abstraction to gain a better insight into the behavior of the ∇
quantifier. Towards this end, let the fresh predicate be defined by the following clause.

(∇x.fresh x E) , ⊤

We have elided the type of fresh here; it will have to be defined at each type that it is
needed in the examples we consider below. Alternatively, we can “inline” the definition
by using nominal abstraction directly, i.e., by replacing occurrences of of fresh t1 t2 with
∃E.(λx.〈x, E〉 D 〈t1, t2〉) for a suitably typed pairing construct 〈·, ·〉.

Now let B be a formula whose free variables are among z, x1, . . . , xn, and let ~x = x1 ::
. . . :: xn :: nil where :: and nil are constructors in the logic.3 Then the following formulas
are provable from one another in G.

∇z.B ∃z.(fresh z ~x ∧ B) ∀z.(fresh z ~x ⊃ B)

Note that the type of z allows it to be an arbitrary term in the last two formulas, but its
occurrence as the first argument of fresh will restrict it to being a nominal constant (even
when ~x = nil). Figure 8 shows a derivation for one of these entailments. Similar proofs can
be constructed for the other entailments.

In the original presentation of the ∇ quantifier [33], it was shown that one can move a
∇ quantifier inwards over universal and existential quantifiers by using raising to encode an
explicit dependency. To illustrate this, let B be a formula with two variables abstracted out,
and let C ≡ D be shorthand for (C ⊃ D) ∧ (D ⊃ C). The following formulas are provable
in the logic.

∇z.∀x.(B z x) ≡ ∀h.∇z.(B z (h z)) ∇z.∃x.(B z x) ≡ ∃h.∇z.(B z (h z))

In order to move a ∇ quantifier outwards over universal and existential quantifiers, one would
need a way to make non-dependency (i.e., freshness) explicit. This is now possible using
nominal abstraction as shown by the following equivalences.

∀x.∇z.(B z x) ≡ ∇z.∀x.(fresh z x ⊃ B z x)

∃x.∇z.(B z x) ≡ ∇z.∃x.(fresh z x ∧ B z x)

3We are, once again, finessing typing issues here in that the xi variables may not all be of the same type.
However, this problem can be solved by surrounding each of them with a constructor that yields a term with
a uniform type.
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x : a ∈ Γ
Γ ⊢ x : a

Γ ⊢ t1 : a → b Γ ⊢ t2 : a

Γ ⊢ (t1 t2) : b

Γ, x : a ⊢ t : b

Γ ⊢ (λx :a. t) : a → b
x /∈ dom(Γ)

Figure 9: Type assignment for λ-terms

member P (P :: L)
µ
= ⊤

member P (Q :: L)
µ
= member P L

of L X A
µ
= member 〈X, A〉 L

of L (app M N) B
µ
= ∃A.of L M (arr A B) ∧ of L N A

of L (abs A R) (arr A B)
µ
= ∇x.of (〈x, A〉 :: L) (R x) B

Figure 10: Encoding of type assignment for λ-terms

Finally, we note that the two sets of equivalences for moving the ∇ quantifier interact nicely.
Specifically, starting with a formula like ∇z.∀x.(B z x) we can push the ∇ quantifier inwards
and then outwards to obtain ∇z.∀h.(fresh z (h z) ⊃ B z (h z)). Here fresh z (h z) will only
be satisfied if h does not use its first argument, as expected.

7.2. Type uniqueness for the simply-typed λ-calculus

As a more complete example, we consider the problem of showing the uniqueness of type
assignment for the simply-typed λ-calculus. The typing rules used in the assignment are
shown in Figure 9. We introduce the type tp to denote the collection of simple types and
the constants i : tp to represent the (single) atomic type and arr : tp → tp → tp to represent
the function type constructor. Representations of λ-terms will have the type tm and will be
constructed using the constants app : tm → tm → tm and abs : ty → (tm → tm) → tm
that are chosen to represent application and abstraction, respectively. Finally we introduce
a type a for typing assumptions together with the constant 〈·, ·〉 : tm → tp → a, and the
type alist for lists of typing assumptions constructed from the constants nil : alist and
the infix constant :: of type a → alist → alist. We define the predicate member of type
a → alist → o and encode the simple typing of λ-terms in the definition of a predicate of

with type alist → tm → tp → o as shown in Figure 10. Note here that the side-condition
on the rule for typing abstractions is subsumed by the treatment of ∇ in the logic.

Given this encoding of simple typing, the task of showing the uniqueness of type assign-
ment reduces to proving the following formula:

∀t, a, b.(of nil t a ∧ of nil t b) ⊃ a = b.

While the theorem that is ultimately of interest is stated with a nil context, it is not difficult
to see that in an inductive proof we will have to consider the more general case where this
context is not empty. However, the typing context is not entirely arbitrary. It must have the
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cntx nil
µ
= ⊤

(∇x.cntx (〈x, A〉 :: L))
µ
= cntx L

Figure 11: cntx in G

cntx nil
µ
= ⊤

cntx (〈X, A〉 :: L)
µ
= (∀M, N.X = app M N ⊃ ⊥) ∧

(∀R,B.X = abs B R ⊃ ⊥) ∧

(∀B.member 〈X, B〉 L ⊃ ⊥) ∧

cntx L

Figure 12: cntx in LGω

form 〈x1, a1〉 :: . . . :: 〈xn, an〉 :: nil where each xi is unique and atomic (a nominal constant).
If we assume a predicate cntx which restricts the structure of typing contexts in this way,
then we can state our generalized result as follows.

∀ℓ, t, a, b.(cntx ℓ ∧ of ℓ t a ∧ of ℓ t b) ⊃ a = b

This is now provable by a straightforward induction on either of the typing assumptions.
We turn now to the question of defining a suitable cntx predicate. Using nominal abstrac-

tion, we can define cntx directly and succinctly as shown in Figure 11. An instance of the
second clause must replace x with a nominal constant and A and L by terms which do not
contain that nominal constant. The atomicity and distinct properties of typing assumptions
follow naturally from this. To better appreciate the elegance of this approach, consider how
one would enforce atomicity and distinctness without nominal abstraction. In a logic such
as LGω, the restrictions imposed by cntx would have to be encoded via negative information
as shown in Figure 12. This description of typing contexts is cumbersome and non-modular.
For example, if we were to add a new constructor for λ-terms and a typing rule associated
with this constructor then, even though the structure of typing contexts has not changed,
we would need to change cntx to rule out this constructor from occurring in typing contexts.
We will use the definition of cntx with nominal abstraction going forward.

When proving the generalized type uniqueness property, the typing context becomes
important at two points: when considering the base case where a typing assumption is
looked up in the context, and when extending the context with a new typing assumption.
When a typing assumption is found in the context, we must show that it is unique. The
definition of cntx describes the structure of typing assumptions that occur at the head of a
context, and the following lemma uses induction to generalize this to arbitrary elements of
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the context.

∀ℓ, m, a, b.(cntx ℓ ∧ member 〈m, a〉 ℓ ∧ member 〈m, b〉 ℓ) ⊃ a = b

This property can be shown by induction on cntx followed by case analysis on the member

hypotheses. The interesting case is when we have ℓ = 〈m, a〉 :: ℓ′ and member 〈m, b〉 ℓ′.
Applying defRp to cntx (〈m, a〉 :: ℓ′) in this case replaces m with a nominal constant that ℓ′

cannot contain. The assumption that member 〈m, b〉 ℓ′ then leads to a contradiction, thus
eliminating this case. Moving on to the second point, when adding a typing assumption to
the context, we need to show that the resulting context still satisfies the cntx predicate. This
boils down to showing the following.

∀ℓ, a.(cntx ℓ ⊃ ∇x.cntx (〈x, a〉 :: ℓ))

This follows directly from applying defRp to cntx. With these issues taken care of, the rest
of the type uniqueness proof is straightforward.

In order for the above reasoning to be meaningful, we must show that our encoding of
the simply-typed λ-calculus is adequate. The crux of this is showing that Γ ⊢ t : a holds in
the simply-typed λ-calculus if and only if ⊢ of pΓq ptq paq is provable in G. Here p·q is a
bijective mapping between objects of the simply-typed λ-calculus and their representation
in G. Since G admits cut-elimination, it is straightforward to analyze how ⊢ of pΓq ptq paq
might be proved in the logic. Then the only subtlety in showing adequacy is that the first
clause for of allows the type of any object to be looked up in the context while the first typing
rule for simply-typed λ-calculus only allows the type of variables to be looked up. This is
resolved by noting that typing contexts only contain bindings for variables. Alternatively,
using nominal abstraction, it is possible to give a definition of typing which is closer to the
original rules (Figure 9) by replacing the first clause of of with the following.

(∇x.of (L x) x A)
µ
= ∇x.member 〈x, A〉 (L x)

An additional benefit of this encoding is that in proofs such as for type uniqueness we no
longer need to consider spurious cases where the type of a term such as app m n is looked
up in the typing context.

We can now put everything together to establish the type uniqueness result for the
simply-typed λ-calculus. Suppose Γ ⊢ t : a and Γ ⊢ t : b are judgments in the simply-typed
λ-calculus. Then by adequacy we know ⊢ of pΓq ptq paq and ⊢ of pΓq ptq pbq are provable
in G. Using these assumptions, the cut rule, and the type uniqueness result proved earlier in
G, we know that ⊢ paq = pbq has a proof in G. Thus it also has a cut-free proof. This proof
must end with with DR which means that paq is equal to pbq. Finally, since p·q is bijective,
a must equal b.

7.3. Polymorphic type generalization

In addition to reasoning, nominal abstraction can also be useful in providing declarative
specifications of computations. We consider the context of a type inference algorithm that
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is also discussed in [34] to illustrate such an application. In this setting, we might need a
predicate spec that relates a polymorphic type σ, a list of distinct variables ~α (represented
by nominal constants) and a monomorphic type τ just in the case that σ = ∀~α.τ . Using
nominal abstraction, we can define this predicate as follows.

spec (monoTy T ) nil T
µ
= ⊤

(∇x.spec (polyTy P ) (x :: L) (T x))
µ
= ∇x.spec (P x) L (T x).

Note that we use ∇ in the head of the second clause to associate the variable x at the head
of the list L with its occurrences in the type (T x). We then use ∇ in the body of this clause
to allow for the recursive use of spec.

7.4. Arbitrarily cascading substitutions

Many reducibility arguments, such as Tait’s proof of normalization for the simply typed
λ-calculus [29], are based on judgments over closed terms. During reasoning, however, one
has often to work with open terms. To accommodate this requirement, the closed term judg-
ment is extended to open terms by considering all possible closed instantiations of the open
terms. When reasoning with G, open terms are denoted by terms with nominal constants
representing free variables. The general form of an open term is thus M c1 · · · cn, and we
want to consider all possible instantiations M V1 · · · Vn where the Vi are closed terms. This
type of arbitrary cascading substitutions is difficult to realize in reasoning systems where
variables are given a simple type since M would have an arbitrary number of abstractions
but the type of M would a priori fix that number of abstractions.

We can define arbitrary cascading substitutions in G using nominal abstraction. In
particular, we can define a predicate which holds on a list of pairs 〈ci, Vi〉, a term with
the form M c1 · · · cn and a term of the form M V1 · · · Vn. The idea is to iterate over
the list of pairs and for each pair 〈c, V 〉 use nominal abstraction to abstract c out of the
first term and then substitute V before continuing. The following definition of the predicate
subst is based on this idea.

subst nil T T
µ
= ⊤

(∇x.subst (〈x, V 〉 :: L) (T x) S)
µ
= subst L (T V ) S

The ideas in this substitution predicate have been used to formalize Tait’s logical relations
argument for the weak normalization of the simply-typed λ-calculus in a logic similar to
G [19]. Here, an important property of arbitrary cascading substitutions is that they act
compositionally. For instance, taking the slightly simpler example of the untyped λ-calculus,
we can show that subst acts compositionally via the following lemmas.

∀ℓ, t, r, s. subst ℓ (app t r) s ⊃ ∃u, v.(s = app u v ∧ subst ℓ t u ∧ subst ℓ r v)

∀ℓ, t, r. subst ℓ (abs t) r ⊃ ∃s.(r = abs s ∧∇z.subst ℓ (t z) (s z))

Both of these lemmas have straightforward proofs by induction on subst.
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8. Related Work

We structure the discussion of related work into three parts: the previously existing
framework that G builds on, alternative proposals for treating binding in syntax and different
approaches for relating specifications of formal systems and reasoning about them.

8.1. The precursors for G

The logic G that we have described in this paper provides a framework for intuitionistic
reasoning that is characterized by its use of typed λ-terms for representing objects, of a
fixed-point notion of definitions with associated principles of induction and co-induction, of
the special ∇-quantifier to express generic judgments and of nominal abstraction for making
explicit the properties of objects captured by the ∇-quantifier. All these features except
the last derive from previously described logics. The style in which definitions are treated
originates from work by Schroeder-Heister [35] and Girard [3]. McDowell and Miller used
this idea within a fragment of the Simple Theory of Types and added to this also a treatment
of induction over natural numbers [5]. The resulting logic, called FOλ∆IN, provides a means
for reasoning about specifications of computations over objects involving abstractions in
which universally quantified judgments are used to capture the dynamic aspects of such
abstractions. While such an encoding suffices for many purposes, Miller and Tiu discovered
its inadequacy in, for example, treating the distinctness of names in arguments relating
to the π-calculus and they developed the logic FOλ∆∇ with the new ∇-quantifier as a
vehicle for overcoming this deficiency [16]. Tiu then showed how to incorporate inductive
and co-inductive forms of definitions into this context [8]. However, the properties initially
assumed for the ∇-quantifier were too weak to support sophisticated forms of reasoning
based on (co-)induction, and this led to the addition of the ∇-strengthening and ∇-exchange
principles [18]. The logic that is a composite of all these features still lacks the ability,
often needed in inductive arguments, to make explicit in a systematic way properties such
as the freshness and distinctness of nominal constants (i.e., the variables bound by the
∇-quantifier). Nominal abstraction, whose study has been the main focus of this paper,
provides a natural means for reflecting such properties into definitions and as such represents
a culmination of this line of development.

The exchange property assumed for the ∇-quantifier appears to have a natural justi-
fication. On the other hand, the strengthening property, while useful in many reasoning
contexts, brings with it the implicit requirement that the types at which ∇-quantifiers are
used be inhabited by an unbounded number of members. This assumption may complicate
the process of showing the adequacy of an encoding, an important part of using a logical
framework in formalizing the properties of a computational system. The observation con-
cerning adequacy has led Baelde to develop an alternative approach to enriching the structure
provided by FOλ∆∇ [36, 37]. Specifically, he has proposed treating the ∇-quantifier as a
defined symbol, including in its definition also the ability to lift its predicative effect over
types. The exchange property for the quantifier follows from this enrichment, while the
properties (∇x.P ) ⊃ P and P ⊃ (∇x.P ) where x does not occur in P are shown to hold
for certain syntactic classes of formulas. The resulting logic has a domain of application
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that overlaps with that of G but, in our opinion, may not be as convenient to use in actual
reasoning tasks. A detailed consideration of this issue and also the quantification of the real
differences in adequacy arguments are left for future investigation.

8.2. Nominal logic

The ∇-quantifier of G bears several similarities to the N-quantifier contained in nominal
logic. As presented in [20], nominal logic is, in essence, a variant of first-order logic whose
defining characteristics are that it distinguishes certain domains as those of atoms or names
and takes as primitive a freshness predicate—denoted by the infix operator #—between
atoms and other objects and a swapping operation involving a pair of names and a term.
The logic then formalizes certain properties of the swapping operation (referred to as equiv-
ariance properties) and of freshness. One of the freshness axioms leads to the availability
of an unbounded supply of names, an aspect that is reminiscent of the consequence of the
strengthening rule associated with the ∇-quantifier. Letting φ be a formula whose free vari-
ables are a, x1, . . . , xn where a is of atom type, another consequence of the swapping and
freshness axioms is the following equivalence:

∃a.(a#x1 ∧ . . . ∧ a#xn ∧ φ) ≡ ∀a.(a#x1 ∧ . . . ∧ a#xn ⊃ φ)

The N-quantifier can be defined in this setting by translating Na.φ into either one of the
formulas shown in this equivalence. In our presentation of G, we have taken the ∇-quantifier
to be primitive and we have shown that we can define a fresh predicate using nominal
abstraction. As we have seen in Section 7.1, we then get a set of equivalences between ∇,
the traditional quantifiers and fresh that is reminiscent of the one discussed here involving
the N-quantifier.

At a deeper level, there appears to be some convergence in the treatment of syntax
between the nominal logic approach and the one supported by G using λ-terms. For example,
both make use of self-dual quantifiers to manage names and both provide predicates for
freshness, equality, and inequality relating to names. Probably the most fruitful way to
compare these approaches in detail is via their respective proof theories: see [38, 39] for
some proof theory developments for nominal logics. To illustrate such a convergence, we note
that nominal logic has inspired a variant to logic programming in the form of the αProlog
language [34]. The specifications written in αProlog have a Horn clause like structure with
the important difference that the N-quantifier is permitted to appear in the head. Clauses of
this kind bear a resemblance to the pattern-based form of definitions discussed in Section 6
in which the ∇-quantifier may appear at the front of clauses. In fact, it is shown in [40] that
the former can be directly translated to the latter. The animation of such definitions in G
through the defRp rule requires the solution of nominal abstraction problems that is similar
in several respects to the equivariant unification [41] needed in an interpreter for αProlog.

These similarities notwithstanding, the intrinsic structures of nominal logic and G are
actually quite different. The former logic is first-order in spirit and does not include a binding
construct at the outset. While it is possible to define a (first-order) binding constructor in
nominal logic that obeys the principle of α-equivalence, the resulting binder is not capable
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of directly supporting λ-tree syntax. In particular, β-equivalence is not internalized with
these terms: as a consequence, term-level substitution has to be explicitly formalized and
its formal properties need to be established on a case-by-case basis. While such a first-order
encoding has some drawbacks from the perspective of treating binding structure, it also has
the benefit that it can be more easily formalized within the logic of existing theorem provers
such as Coq and Isabelle/HOL [42, 43, 44].

8.3. Separation of specification and reasoning logics

An important envisaged use of G is in realizing the two-level approach to reasoning about
the operational semantics of programming languages and process calculi. The first step in
this approach is to use a specification logic to encode such operational semantics as well
as assortments of other properties such as typing. The second step involves embedding
provability of this first logic into a second logic, called the reasoning logic. This two level-
logic approach, pioneered by McDowell and Miller [31, 45], offers several benefits, such as the
ability to internalize into the reasoning logic properties about derivations in the specification
logic and to use these uniformly in reasoning about the specifications of particular systems.
For example, cut-elimination for the specification logic can be used to prove substitution
lemmas in the reasoning logic. Another benefit is that λ-tree syntax is available for both
logics since the specification logic is a simple definition within the reasoning logic. Part of our
motivation for G was for it to play the role of a powerful reasoning logic. In particular, G has
been provided an implementation in the Abella system [22]. Given the richer expressiveness
of G, it was been possible to redo the example proofs in [31] in a much more understandable
way [22, 46].

Pfenning and Schürmann [47] also describe a two-level approach in which the terms and
types of a dependently typed λ-calculus called LF [11] are used as specifications and a logic
called M2 is used for the reasoning logic. Schürmann’s PhD thesis [48] further extended that
reasoning logic to one called M+

2 . This framework is realized in the Twelf system [15], which
also provides a related style of meta-reasoning based on mode, coverage, and termination
checking over higher-order judgments in LF. This approach makes use of λ-tree syntax at
both the specification and reasoning levels and goes beyond what is available with G in that
it exploits the sophistication of dependent types that also provides for the encoding of proof
objects. On the other hand, the kinds of meta-level theorems that can be proved in this
setting are structurally weaker than those that can be proved in G. For example, implication
and negation are not present in M+

2 and cannot be encoded in higher-order LF judgments.
Concretely, this means that properties such as bisimulation for CCS or the π-calculus are
not provable in this approach.

A key component in M+
2 and in the higher-order LF judgment approach to meta-

reasoning is the ability to specify invariants related to the structure of meta-logical contexts.
These invariants are called regular worlds and their analogue in our system is judgments such
as cntx which explicitly describe the structure of contexts. While the approach to proving
properties in Twelf is powerful and convenient for many applications, it may be preferable
to have the ability to define invariants such as cntx explicitly rather than relying on regular
worlds, since this allows more general judgments over contexts to be described, such as in the
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example of arbitrary cascading substitutions (Section 7.4) where the subst predicate actively
manipulates the context of a term.
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