R. Balian, Un principe d'incertitude en théorie du signal ou en mécanique quantique, Compte Rendu de l'Académie des Sciences, p.292, 1981.

A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM Journal on Imaging Sciences, vol.2, issue.1, pp.183-202, 2009.

A. Bolstad, B. V. Veen, and R. Nowak, Space-time event sparse penalization for magneto-/electroencephalography, NeuroImage, vol.46, issue.4, pp.1066-81, 2009.

S. Chen, D. Donoho, and M. Saunders, Atomic decomposition by basis pursuit, SIAM Journal on Scientific Computing, vol.20, issue.1, pp.33-61, 1998.
DOI : 10.1137/s003614450037906x

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.113.7694

B. Cottereau, J. Lorenceau, A. Gramfort, M. Clerc, B. Thirion et al., Phase delays within visual cortex shape the response to steady-state visual stimulation, NeuroImage, vol.54, issue.3, pp.1919-1929, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00526019

A. Dale, A. Liu, B. Fischl, and R. Buckner, Dynamic statistical parametric neurotechnique mapping: combining fMRI and MEG for high-resolution imaging of cortical activity, Neuron, vol.26, pp.55-67, 2000.

A. Dale and M. Sereno, Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach, J. Cogn. Neurosci, vol.5, issue.2, pp.162-176, 1993.

D. Donoho and . May, De-noising by soft-thresholding. Information Theory, IEEE Transactions on, vol.41, issue.3, pp.613-627, 1995.
DOI : 10.1109/18.382009

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.161.9704

P. J. Durka, A. Matysiak, E. M. Montes, P. Valdés-sosa, and K. J. Blinowska, Multichannel matching pursuit and EEG inverse solutions, Journal of Neuroscience Methods, vol.148, issue.1, pp.49-59, 2005.
DOI : 10.1016/j.jneumeth.2005.04.001

K. Friston, L. Harrison, J. Daunizeau, S. Kiebel, C. Phillips et al., Multiple sparse priors for the M/EEG inverse problem, Neuroimage, vol.39, issue.3, pp.1104-1124, 2008.

D. Gabor, Theory of communication, J. IEEE, vol.93, pp.429-457, 1946.

A. B. Geva, Spatio-temporal matching pursuit (SToMP) for multiple source estimation of evoked potentials, Electrical and Electronics Eng, pp.113-116, 1996.

I. Gorodnitsky, J. George, and B. Rao, Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm, Electroencephalography and Clinical Neurophysiology, vol.95, issue.4, pp.231-251, 1995.

A. Gramfort, M. Kowalski, and M. Hämäläinen, Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods, Physics in Medicine and Biology, vol.57, issue.7, pp.1937-1961, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00690774

A. Gramfort, T. Papadopoulo, E. Olivi, and M. Clerc, OpenMEEG: opensource software for quasistatic bioelectromagnetics, BioMed Eng OnLine, vol.9, issue.1, p.45, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00467061

A. Gramfort, D. Strohmeier, J. Haueisen, M. Hämäläinen, and M. Kowalski, Functional brain imaging with m/eeg using structured sparsity in time-frequency dictionaries, Information Processing in Medical Imaging, pp.600-611, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00605502

L. Grosenick, B. Klingenberg, B. Knutson, and J. E. Taylor, A family of interpretable multivariate models for regression and classification of whole-brain fMRI data. pre-print, 2011.

M. Hämäläinen and R. Ilmoniemi, Interpreting magnetic fields of the brain: minimum norm estimates, Med Biol Eng Comput, vol.32, issue.1, pp.35-42, 1994.

S. Haufe, V. V. Nikulin, A. Ziehe, K. Müller, and G. Nolte, Combining sparsity and rotational invariance in EEG/MEG source reconstruction, NeuroImage, vol.42, issue.2, pp.726-764, 2008.

S. Haufe, R. Tomioka, T. Dickhaus, C. Sannelli, B. Blankertz et al., Large-scale EEG/MEG source localization with spatial flexibility, NeuroImage, vol.54, issue.2, pp.851-859, 2011.
DOI : 10.1016/j.neuroimage.2010.09.003

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.370.8003

U. Jaros, B. Hilgenfeld, S. Lau, G. Curio, and J. Haueisen, Nonlinear interactions of high-frequency oscillations in the human somatosensory system, Clin Neurophysiol, vol.119, issue.11, pp.2647-57, 2008.

R. Jenatton, J. Mairal, G. Obozinski, and F. Bach, Proximal methods for hierarchical sparse coding, The Journal of Machine Learning Research, vol.12, pp.2297-2334, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00516723

J. Kybic, M. Clerc, T. Abboud, O. Faugeras, R. Keriven et al., A common formalism for the integral formulations of the forward EEG problem, IEEE Transactions on Medical Imaging, vol.24, issue.1, pp.12-28, 2005.

C. Lamus, M. S. Hmlinen, S. Temereanca, E. N. Brown, and P. L. Purdon, A spatiotemporal dynamic distributed solution to the meg inverse problem, NeuroImage, vol.63, issue.2, pp.894-909, 2012.

D. Lelic, M. Gratkowski, M. Valeriani, L. Arendt-nielsen, and A. M. Drewes, Inverse modeling on decomposed electroencephalographic data: A way forward, Journal of Clinical Neurophysiology, vol.26, issue.4, pp.227-235, 2009.

F. Lin, J. Belliveau, A. Dale, and M. Hämäläinen, Distributed current estimates using cortical orientation constraints, Hum Brain Mapp, vol.27, pp.1-13, 2006.
DOI : 10.1002/hbm.20155

J. Lina, R. Chowdhury, E. Lemay, E. Kobayashi, and C. Grova, Wavelet-based localization of oscillatory sources from magnetoencephalography data, Biomedical Engineering IEEE Transactions, vol.1, issue.99, 2012.

C. J. Long, P. L. Purdon, S. Temereanca, N. U. Desai, M. S. Hämäläinen et al., State-space solutions to the dynamic magnetoencephalography inverse problem using high performance computing, Annals of Applied Statistics, vol.5, issue.2B, pp.1207-1228, 2011.

K. Matsuura and Y. Okabe, Selective minimum-norm solution of the biomagnetic inverse problem, IEEE Trans Biomed Eng, vol.42, issue.6, pp.608-615, 1995.

D. Model and M. Zibulevsky, Signal reconstruction in sensor arrays using sparse representations, Signal Processing, vol.86, issue.3, pp.624-638, 2006.

J. Mosher, R. Leahy, and P. Lewis, EEG and MEG: Forward solutions for inverse methods, IEEE Transactions on Biomedical Engineering, vol.46, issue.3, pp.245-259, 1999.
DOI : 10.1109/10.748978

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.475.2799

Y. Nesterov and B. Polyak, Cubic regularization of newton's method and its global performance, Mathematical Programming, vol.108, issue.1, pp.177-205, 2006.

W. Ou, M. Hämaläinen, and P. Golland, A distributed spatiotemporal EEG/MEG inverse solver, NeuroImage, vol.44, issue.3, pp.932-946, 2009.

R. Pascual-marqui, Standardized low resolution brain electromagnetic tomography (sLORETA): technical details, Methods Find. Exp. Clin. Pharmacology, vol.24, pp.5-12, 2002.
DOI : 10.1016/s0013-4694(97)88020-4

R. Ramírez, B. Kopell, C. Butson, B. Hiner, and S. Baillet, Spectral signal space projection algorithm for frequency domain MEG and EEG denoising, whitening, and source imaging, Neuroimage, vol.56, issue.1, pp.78-92, 2011.

M. Scherg and D. Von-cramon, Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model, Electroencephalogr Clin Neurophysiol, vol.62, issue.1, pp.32-44, 1985.

P. Soendergard, B. Torrésani, and P. Balazs, The linear time frequency toolbox, 2009.

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society Serie B, vol.58, issue.1, pp.267-288, 1996.

N. J. Trujillo-barreto, E. Aubert-vázquez, and W. D. Penny, Bayesian M/EEG source reconstruction with spatio-temporal priors, Neuroimage, vol.39, issue.1, pp.318-353, 2008.
DOI : 10.1016/j.neuroimage.2007.07.062

M. Uusitalo and R. Ilmoniemi, Signal-space projection method for separating meg or eeg into components, Medical and Biological Engineering and Computing, vol.35, issue.2, pp.135-140, 1997.
DOI : 10.1007/bf02534144

K. Uutela, M. Hämäläinen, and E. Somersalo, Visualization of magnetoencephalographic data using minimum current estimates, Neuroimage, vol.10, pp.173-180, 1999.

P. A. Valdés-sosa, M. Vega-hernández, J. M. Sánchez-bornot, E. Martínez-montes, and M. A. Bobes, EEG source imaging with spatio-temporal tomographic nonnegative independent component analysis, HBM, vol.30, issue.6, pp.1898-910, 2009.

B. V. Veen, W. V. Drongelen, M. Yuchtman, and A. Suzuki, Localization of brain electrical activity via linearly constrained minimum variance spatial filtering, Biomedical Engineering IEEE Transactions on, vol.44, issue.9, pp.867-880, 1997.

J. Wang, S. J. Williamson, and L. Kaufman, Magnetic source images determined by a lead-field analysis: the unique minimum-norm least-squares estimation, Biomedical Engineering IEEE Transactions on, vol.39, issue.7, pp.665-675, 1992.

D. Wipf and S. Nagarajan, A unified Bayesian framework for MEG/EEG source imaging, Neuroimage, vol.44, issue.3, pp.947-966, 2009.