Skip to Main content Skip to Navigation
Conference papers

Optimisation du produit matrice-vecteur creux sur architecture GPU pour un simulateur de réservoir

Corentin Rossignon 1, 2
1 RUNTIME - Efficient runtime systems for parallel architectures
CNRS - Centre National de la Recherche Scientifique : UMR5800, UB - Université de Bordeaux, Inria Bordeaux - Sud-Ouest
Abstract : For the Total Company, simulating reservoirs is an important step in the process of optimizing production. Nowadays, these simulations run entirely on CPUs. Thus, we have attempted to accelerate the sparse matrix-vector product operators of the simulation by using GPUs. Common GPU libraries for sparse linear algebra use generic formats for sparse matrix storage, that are more or less performant on GPU but that do not allow to fully exploit the specific structure of the matrices used in the reservoir simulator. In order to exploit this structure, we have adapted for our matrices a storage format that enables us to accelerate with a 20x factor the sparse matrix-vector product on 3 GPUs in comparison with a 8-core CPU, and with a 1.5x factor on GPU in comparison with the generic matrix format used by NVIDIA in cuSPARSE.
Mots-clés : solveur creux GPU SpMV CSR
Complete list of metadata

https://hal.inria.fr/hal-00773571
Contributor : Olivier Aumage <>
Submitted on : Monday, January 14, 2013 - 12:09:03 PM
Last modification on : Tuesday, February 9, 2021 - 3:12:03 PM
Long-term archiving on: : Monday, April 15, 2013 - 3:58:03 AM

File

crossignon_solver_gpu_compas20...
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00773571, version 1

Citation

Corentin Rossignon. Optimisation du produit matrice-vecteur creux sur architecture GPU pour un simulateur de réservoir. ComPAS'13 / RenPar'21 - 21es Rencontres francophones du Parallélisme, Inria Grenoble, Jan 2013, Grenoble, France. ⟨hal-00773571v1⟩

Share

Metrics

Record views

200

Files downloads

1258