Service interruption on Monday 11 July from 12:30 to 13:00: all the sites of the CCSD (HAL, Epiciences, SciencesConf, AureHAL) will be inaccessible (network hardware connection).
Skip to Main content Skip to Navigation
Conference papers


Abstract : We propose a new family of latent variable models called max-margin min-entropy (M3E) models, which define a distribution over the output and the hidden variables conditioned on the input. Given an input, an M3E model predicts the output with the smallest corresponding Renyi entropy of generalized distribution. This is equivalent to minimizing a score that consists of two terms: (i) the negative log-likelihood of the output, ensuring that the output has a high probability; and (ii) a measure of uncertainty over the distribution of the hidden variables conditioned on the input and the output, ensuring that there is little confusion in the values of the hidden variables. Given a training dataset, the parameters of an M3E model are learned by maximizing the margin between the Renyi entropies of the ground-truth output and all other incorrect outputs. Training an M3E can be viewed as minimizing an upper bound on a user-defined loss, and includes, as a special case, the latent support vector machine framework. We demonstrate the efficacy of M3E models on two standard machine learning applications, discriminative motif finding and image classification, using publicly available datase
Document type :
Conference papers
Complete list of metadata

Cited literature [23 references]  Display  Hide  Download
Contributor : M. Pawan Kumar Connect in order to contact the contributor
Submitted on : Monday, January 14, 2013 - 1:36:26 PM
Last modification on : Thursday, February 3, 2022 - 3:01:40 AM
Long-term archiving on: : Monday, April 15, 2013 - 4:00:36 AM


Files produced by the author(s)


  • HAL Id : hal-00773602, version 1



Kevin Miller, M. Pawan Kumar, Ben Packer, Danny Goodman, Daphne Koller. MAX-MARGIN MIN-ENTROPY MODELS. AISTATS, Apr 2012, La Palma, Spain. ⟨hal-00773602⟩



Record views


Files downloads