A. Agarwal and B. Triggs, Tracking articulated motion using a mixture of autoregressive models, ECCV, pages III, pp.54-65, 2004.
URL : https://hal.archives-ouvertes.fr/inria-00548550

A. Blake, C. Rother, M. Brown, P. Perez, and P. H. Torr, Interactive image segmentation using an adaptive GMMRF model, ECCV, pages I, pp.428-441, 2004.

A. Blake and A. Zisserman, Visual Reconstruction, 1987.

E. Borenstein and S. Ullman, Class-specific, top-down segmentation, ECCV, page II: 109 ff, 2002.

Y. Boykov and M. P. Jolly, Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images, ICCV, pages I, pp.105-112, 2001.

J. M. Coughlan, A. L. Yuille, C. English, and D. Snow, Efficient optimization of a deformable template using dynamic programming, CVPR, pp.747-752, 1998.

D. Cremers, N. Sochen, and C. Schnoerr, Mutliphase dynamic labelling for variational recognition-driven image segmentation, IJCV, vol.66, pp.67-81, 2006.
DOI : 10.1007/978-3-540-24673-2_7

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

P. F. Felzenszwalb, Representation and detection of deformable shapes, CVPR, pages I, pp.102-108, 2003.

P. F. Felzenszwalb and D. P. Huttenlocher, Efficient matching of pictorial structures, CVPR, pages II, pp.66-73, 2000.

P. F. Felzenszwalb and D. P. Huttenlocher, Fast algorithms for large state space HMMs with applications to web usage analysis, NIPS, 2003.

R. Fergus, P. Perona, and A. Zisserman, Object class recognition by unsupervised scale-invariant learning, CVPR, pages II, pp.264-271, 2003.
DOI : 10.1109/cvpr.2003.1211479

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. A. Fischler and R. A. Elschlager, The representation and matching of pictorial structures, TC, vol.22, pp.67-92, 1973.

D. Freedman and T. Zhang, Interactive graph cut based segmentation with shape priors, CVPR, pages I, pp.755-762, 2005.
DOI : 10.1109/cvpr.2005.191

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. M. Gavrilla, Pedestrian detection from a moving vehicle, ECCV, pages II, pp.37-49, 2000.

A. Gelman, J. Carlin, H. Stern, and D. Rubin, Bayesian Data Analysis, 1995.

S. Geman and D. Geman, Stochastic relaxation, gibbs distributions, and the bayesian restoration of images, PAMI, vol.6, issue.6, pp.721-741, 1984.

J. Goldstein, J. Platt, and C. Burges, Redundant bit vectors for quickly searching high-dimensional regions, Deterministic and Statistical Methods in Machine Learning, pp.137-158, 2005.

P. Hammer, Some network flow problems solved with pseudo-boolean programming, Operations Research, vol.13, pp.388-399, 1965.

R. Huang, V. Pavlovic, and D. N. Metaxas, A graphical model framework for coupling MRFs and deformable models, CVPR, pages II, pp.739-746, 2004.

P. Kohli, M. P. Kumar, and P. H. Torr, P3 & beyond: Solving energies with higher order cliques, CVPR, 2007.

V. Kolmogorov and R. Zabih, What energy functions can be minimized via graph cuts, IEEE PAMI, vol.26, issue.2, pp.147-159, 2004.
DOI : 10.1109/tpami.2004.1262177

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. P. Kumar, P. H. Torr, and A. Zisserman, Extending pictorial structures for object recognition, BMVC, pages II, pp.789-798, 2004.
DOI : 10.5244/c.18.81

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. P. Kumar, P. H. Torr, and A. Zisserman, Learning layered motion segmentations of video, International Journal of Computer Vision, vol.76, issue.3, pp.301-319, 2008.

J. Lafferty, A. Mccallum, and F. Pereira, Conditional random fields: Probabilistic models for segmenting and labelling sequence data, ICML, 2001.

B. Leibe and B. Schiele, Interleaved object categorization and segmentation, BMVC, pages II, pp.264-271, 2003.
DOI : 10.5244/c.17.78

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Levin and Y. Weiss, Learning to combine bottom-up and top-down segmentation, ECCV, pages IV, pp.581-594, 2006.

P. Meer and B. Georgescu, Edge detection with embedded confidence, pp.1351-1365, 2001.

A. Opelt, A. Pinz, and A. Zisserman, Incremental learning of object detectors using a visual shape alphabet, CVPR, pages I, pp.3-10, 2006.

M. Prasad, A. Zisserman, A. Fitzgibbon, M. P. Kumar, and P. H. Torr, Learning class-specific edges for object detection and segmentation, ICVGIP, 2006.

D. Ramanan, Using segmentation to verify object hypothesis, CVPR, 2007.

D. Ramanan and D. A. Forsyth, Using temporal coherence to build models of animals, ICCV, pp.338-345, 2003.

J. Rihan, P. Kohli, and P. H. Torr, OBJCUT for face detection, ICVGIP, 2006.

C. Rother, V. Kolmogorov, and A. Blake, Grabcut: interactive foreground extraction using iterated graph cuts, SIGGRAPH, pp.309-314, 2004.

T. Schoenemann and D. Cremers, Globally optimal image segmentation with an elastic shape prior, ICCV, 2007.

T. Schoenemann and D. Cremers, Globally optimal shape-based tracking in real-time, CVPR, 2008.

J. Shotton, A. Blake, and R. Cipolla, Contour-based learning for object detection, ICCV, pages I, pp.503-510, 2005.

J. Shotton, J. Winn, C. Rother, and A. Criminisi, TextonBoost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation, ECCV, pages I, pp.1-15, 2006.

B. Stenger, A. Thayananthan, P. H. Torr, and R. Cipolla, Hand pose estimation using heirarchical detection, Intl. Workshop on Human-Computer Interaction, pp.105-116, 2004.

A. Thayananthan, B. Stenger, P. H. Torr, and R. Cipolla, Shape context and chamfer matching in cluttered scenes, CVPR, pages I, pp.127-133, 2003.

A. Torralba, K. P. Murphy, and W. T. Freeman, Sharing visual features for multiclass and multiview object detection, PAMI, vol.29, issue.5, pp.854-869, 2007.

K. Toyama and A. Blake, Probabilistic tracking in a metric space, ICCV, pages II, pp.50-57, 2001.

M. Varma and A. Zisserman, Texture classification: Are filter banks necessary, CVPR, pages II, pp.691-698, 2003.
DOI : 10.1109/cvpr.2003.1211534

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Winn and N. Jojic, LOCUS: Learning Object Classes with Unsupervised Segmentation, ICCV, pages I, pp.756-763, 2005.
DOI : 10.1109/iccv.2005.148

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Winn and J. Shotton, The layout consistent random field for recognizing and segmenting partially occluded objects, CVPR, pages I, pp.37-44, 2006.
DOI : 10.1109/cvpr.2006.305

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Yedidia, W. Freeman, and Y. Weiss, Bethe free energy, kikuchi approximations, and belief propagation algorithms, 2001.
DOI : 10.1109/tit.2005.850085

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=