M. Kaus, S. Warfield, A. Nabavi, P. Black, F. Jolesz et al., Automated Segmentation of MR Images of Brain Tumors, Radiology, vol.218, issue.2, pp.586-591, 2001.

S. Parisot, H. Duffau, S. Chemouny, and N. Paragios, Graph Based Spatial Position Mapping of Low-Grade Gliomas, Part II, pp.508-515, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00775865

J. Friedman, T. Hastie, and R. Tibshirani, Additive Logistic Regression: a Statistical View of Boosting, The Annals of Statistics, vol.38, issue.2, pp.337-407, 2000.

C. Lee, S. Wang, A. Murtha, M. Brown, and R. Greiner, Segmenting brain tumors using pseudo?conditional random fields. D. Metaxas et al. : MICCAI, Part I, LNCS 5241, pp.359-366, 2008.
DOI : 10.1007/978-3-540-85988-8_43

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.150.7747

M. Prastawa, E. Bullit, N. Moon, K. Leemput, and G. Gerig, Automatic Brain Tumor Segmentation by Subject Specific Modification of Atlas Priors, Academic Radiology, vol.10, issue.12, pp.1341-1348, 2003.

R. Stefanescu, O. Commowick, G. Malandain, P. Bondiau, N. Ayache et al., Non-rigid atlas to subject registration with pathologies for conformal brain radiotherapy, 2004.

M. Bach-cuadra, M. De-craene, V. Duay, B. Macq, C. Pollo et al., Dense deformation field estimation for atlas-based segmentation of pathological MR brain images, Computer methods and programs in biomedicine, vol.84, issue.2-3, pp.66-75, 2006.

A. Yezzi, L. Zollei, and T. Kapur, A variational framework for integrating segmentation and registration through active contours, In: Medical Image Analysis, vol.7, pp.171-185, 2003.

P. P. Wyatt and J. A. Noble, MAP MRF joint segmentation and registration of medical images, Medical Image Analysis, vol.7, issue.4, pp.539-52, 2003.

A. Gooya, K. M. Pohl, M. Bilello, G. Biros, C. Davatzikos et al., Joint Segmentation and Deformable Registration of Brain Scans Guided by a Tumor Growth Model, Part II, pp.532-540, 2011.

B. Glocker, N. Komodakis, G. Tziritas, N. Navab, and N. Paragios, Dense image registration through MRFs and efficient linear programming, Medical Image Analysis, vol.12, issue.6, pp.731-741, 2008.

Y. Boykov and G. Funka-lea, Graph Cuts and Efficient ND Image Segmentation, International Journal of Computer Vision, vol.70, issue.2, pp.109-131, 2006.

N. Komodakis, G. Tziritas, and N. Paragios, Performance vs computational efficiency for optimizing single and dynamic MRFs: Setting the state of the art with primaldual strategies, Computer Vision and Image Understanding, vol.112, issue.1, pp.14-29, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00918699

F. Michel, M. Bronstein, A. Bronstein, and N. Paragios, Boosted metric learning for 3D multi-modal deformable registration, pp.1209-1214, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00856123

S. Kang, R. Szeliski, and J. Chai, Handling occlusions in dense multi-view stereo, In: CVPR. IEEE, vol.1, p.103, 2001.

N. Komodakis, Efficient training for pairwise or higher order CRFs via dual decomposition, In: CVPR, pp.1841-1848, 2011.
DOI : 10.1109/cvpr.2011.5995375