[. Blum, F. Cucker, M. Shub, and S. Smale, Complexity and real computation, 1998.
DOI : 10.1007/978-1-4612-0701-6

P. [. Brattka, K. Hertling, and . Weihrauch, A Tutorial on Computable Analysis, New Computational Paradigms, pp.425-491, 2008.
DOI : 10.1007/978-0-387-68546-5_18

]. A. Far11 and . Farjudian, On the Kolmogorov complexity of continuous real functions, CiE, pp.81-91, 2011.

]. H. Fri84 and . Friedman, The computational complexity of maximization and integration, Advances in Math, vol.53, issue.1, pp.80-98, 1984.

A. Kawamura, Lipschitz Continuous Ordinary Differential Equations are Polynomial-Space Complete, computational complexity, vol.19, issue.2, pp.305-332, 2010.
DOI : 10.1007/s00037-010-0286-0

URL : http://arxiv.org/abs/1004.4622

S. [. Kawamura and . Cook, Complexity Theory for Operators in Analysis, Proc. of the 42nd ACM Symposium on Theory of Computing, pp.495-502, 2010.

K. Ko and H. Friedman, Computational complexity of real functions, Theoretical Computer Science, vol.20, issue.3, pp.323-352, 1982.
DOI : 10.1016/S0304-3975(82)80003-0

]. Ko82 and . Ko, The maximum value problem and NP real numbers, J. Comput. Syst. Sci, vol.24, issue.1, pp.15-35, 1982.

A. Kawamura, H. Ota, C. Rösnick, and M. Ziegler, Computational Complexity of Smooth Differential Equations, MFCS, pp.578-589, 2012.
DOI : 10.1007/978-3-642-32589-2_51

M. Schröder, Spaces allowing Type-2 Complexity Theory revisited, MLQ, vol.50, issue.45, pp.443-459, 2004.
DOI : 10.1002/malq.200310111

]. M. Tow90 and . Townsend, Complexity for type-2 relations, Notre Dame Journal of Formal Logic, vol.31, issue.2, pp.241-262, 1990.

]. K. Wei00 and . Weihrauch, Computable Analysis: An Introduction, 2000.

]. K. Wei03 and . Weihrauch, Computational complexity on computable metric spaces, Math. Log. Q, vol.49, issue.1, pp.3-21, 2003.