3D CARDIAC SEGMENTATION WITH POSE-INVARIANT HIGHER-ORDER MRFS

Abstract : This paper proposes a novel pose-invariant segmentation approach for left ventricle in 3D CT images. The proposed formulation is modular with respect to the image support (i.e. landmarks, edges and regional statistics). The prior is represented as a third-order Markov Random Field (MRF) where triplets of points result to a low-rank statistical prior while inheriting invariance to global transformations. The ventricle surface is determined through triangulation where image discontinuities can be easily evaluated and the Divergence theorem provides an exact calculation of regional statistics acting on the image or a derived feature space. Promising results using boosting along with the learned prior demonstrate the potential of our method.
Type de document :
Communication dans un congrès
International Symposium on BIOMEDICAL IMAGING: From Nano to Macro, May 2012, Barcelona, Spain. 2012
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00776025
Contributeur : Bo Xiang <>
Soumis le : lundi 14 janvier 2013 - 18:46:35
Dernière modification le : vendredi 6 avril 2018 - 13:32:01
Document(s) archivé(s) le : lundi 15 avril 2013 - 04:08:24

Fichier

ISBI2012_xiang.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00776025, version 1

Collections

Citation

Bo Xiang, Chaohui Wang, Jean-François Deux, Alain Rahmouni, Nikolaos Paragios. 3D CARDIAC SEGMENTATION WITH POSE-INVARIANT HIGHER-ORDER MRFS. International Symposium on BIOMEDICAL IMAGING: From Nano to Macro, May 2012, Barcelona, Spain. 2012. 〈hal-00776025〉

Partager

Métriques

Consultations de la notice

256

Téléchargements de fichiers

127