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3 Radiology Department, Henri Mondor Hospital, Créteil, France

ABSTRACT

This paper proposes a novel pose-invariant segmentation ap-

proach for left ventricle in 3D CT images. The proposed for-

mulation is modular with respect to the image support (i.e.

landmarks, edges and regional statistics). The prior is repre-

sented as a third-order Markov Random Field (MRF) where

triplets of points result to a low-rank statistical prior while in-

heriting invariance to global transformations. The ventricle

surface is determined through triangulation where image dis-

continuities can be easily evaluated and the Divergence theo-

rem provides an exact calculation of regional statistics acting

on the image or a derived feature space. Promising results

using boosting along with the learned prior demonstrate the

potential of our method.

Index Terms— Left ventricle segmentation, pose-invariant

shape prior, higher-order MRF

1. INTRODUCTION

Left ventricle (LV) segmentation is a prerequisite for quanti-

tative analysis on diagnosing cardiovascular diseases. It is a

well studied problem in biomedical imaging and most of the

existing methods combine anatomical prior knowledge with

observed visual support towards automatic delineation of LV.

Early approaches have considered slice-by-slice segmen-

tation [1] using active contours.The use of active shape mod-

els [2] as well as active appearance models was a step for-

ward where geometric and photometric variations were mod-

eled using linear sub-spaces either at the frame level or dur-

ing the entire cardiac cycle. Level set methods [3] were also

considered for LV segmentation towards providing accurate

integration of boundary and visual support. Non-parametric

statistics was an alternative to linear subspaces towards cap-

turing more complex variations. Graph-based methods [4]

have also emerged due to their computational efficiency com-

bined with certain user interaction. Spatio-temporal models

involving poly-parametric class of transformations were re-

cently investigated. Last but not least, the biomechanical prior

models [5] modeled the complete cardiac behavior which was

calibrated through the image observations.

All the above methods are modeled in a common subspace

where statistics are learned in order to describe the variability

among individuals. Such a process introduces strong statisti-

cal bias and at the same time makes the applicability of the

model problematic when referring to diseased subjects. Fur-

thermore, the construction of prior models is problematic due

to the lack of sufficient number of training examples given the

dimensionality of the model. Last but not least, these methods

account partially for visual support with some of them acting

on the boundaries, some of them on the regional statistics and

some on anatomical landmarks. The aim of this paper is to

propose a unified formulation that can integrate all existing

sources of information, while being pose-invariant and able

to cope with linear and non-linear statistics.

To this end, we adopt a Point Distribution Model asso-

ciated with higher-order MRF. Triangulation on the surface

provides third-order terms where an exact estimation of the

boundary support and regional statistics is feasible through

the Divergence theorem [6]. Furthermore, third-order cliques

are also considered to encode prior knowledge [7]. Incre-

mental deformation of the model coupled with landmark con-

straints is considered within a dual-decomposition approach

to recover the optimal solution into a new image. Our ap-

proach is most closely related to the work [6, 7]. The prob-

lem solved in [7] is simply graph matching (corresponding

to a certain extend to the landmark part of the proposed for-

mulation), while the 2D applied method in [6] neither inherits

global pose invariance nor encompasses the use of landmarks.

The reminder of the paper is organized as follows. Section

2 presents the pose-invariant model and its associated statis-

tical shape prior. In Section 3 we discuss the integration of

visual and prior terms in a sound theoretical framework. Ex-

perimental results are presented in Section 4 and discussion

in Section 5 concludes the paper.

2. POSE-INVARIANT POINT DISTRIBUTION

MODEL

An essential task in knowledge-based image segmentation

is to determine a statistical shape model as a prior knowl-

edge which is then combined with visual support in an



inference process. We represent the shape as a Point Dis-

tribution Model X = {x1, · · · ,xn} (Fig.1), consisting of

a set V = {1, · · · , n} of n control points (marked as blue

dots in Fig.1(a)) lying on the boundary. Let xi(i ∈ V) de-

note the 3D position of the control point i. Meanwhile

a subset Vl ⊂ V of points are considered as anatomical

landmarks (marked as green crosses in Fig.1(a)). Fur-

thermore, we associate this model with a set of triangles

T = {tijk = (xi,xj ,xk)|i, j, k ∈ V, i 6= j, j 6= k, k 6= i}
connecting any three points i, j, k. A subset S ⊂ T of tri-

angles are defined as the surface triangles (Fig.1(b)) which

compose a closed mesh (2-manifold).

Based on the shape representation, the next task is to build

a statistic model from a training set in order to construct the

prior. The existing global approaches, such as ASM, often

suffer from their lack of flexibility, while they also require

a significant number of training samples to capture statistics

due to their high-dimensional representation. To overcome

these limitations, we propose a similarity-invariant model

based on local interactions.

Let us consider a triplet of points i, j and k, the geometri-

cal constraint between their positions tijk = (xi,xj ,xk) can

be charactered in a pose-invariant manner using two inner an-

gles {α = 6 (xixjxk), β = 6 (xjxkxi)} of the triangle tijk,

while the third angle is a linear combination of the two. The

inner angle can be computed as follows:

α = arccos
−−→
xixj ·

−−−→
xjxk

‖xixj‖ ‖xjxk‖
(1)

An important property of the angle measurement is that it

leads to a shape model invariant with respect to the global

pose (i.e. translation, rotation and scale).

Given a training set X = {X1, · · · ,Xm} of m instances

of the shape, each example consists of n control points which

are located in correspondences. For ∀i ∈ V , we have the set

Xi = {x1
i , · · · ,x

m
i } representing the instances of the ith

control point in the shape. Then using a statistical model,

we learn from the training set the probability density distri-

butions pijk(α, β) of the angles which are determined by a

triplet of control points i, j and k. Let C = {(i, j, k)|i, j, k ∈
V, i 6= j, j 6= k, k 6= i} denote the triplet set correspond-

ing to the triangle set T . Thus ∀c ∈ C, a distribution pc(α, β)
is learned to describe the point position dependencies in the

triplet c. With the accumulation of all these local distribution

densities, the prior manifold is constructed through all triplet

interactions. In this manner, our shape model encodes global

consistency as well as local variations. Without loss of gen-

erality, both simple and complex distribution models can be

used to learn the statistics. We use a Gaussian distribution

model in practice.

So far, we build our pose-invariant point distribution

model M = (X , C,P). It consists of a set of control

points X , a triplet set C, and the statistical shape prior

P = {pc(α, β)|c ∈ C}. Based on this representation,

(a) Distribution of the control points (b) Triangulated mesh

Fig. 1. 3D myocardium Point Distribution Model.

knowledge-based segmentation can be easily encoded in a

MRF model towards efficient optimization.

3. KNOWLEDGE-BASED SEGMENTATION

Cardiac computed tomography (CT) image segmentation is

challenging due to its complex background and low contrast.

We aim to segment the myocardium structure which is the

muscle between endocardium and epicardium. However, the

boundaries of myocardium are not clearly visible because: (1)

endocardium detection can be disturbed by the papillary mus-

cles in the blood pool; (2) epicardium is not distinct between

the myocardium and the right ventricle. To deal with these

problems, we combine the anatomical landmarks, regional

and boundary support to achieve a good segmentation.

We formulate the segmentation problem as an energy min-

imization problem. Given an initial position of the shape

model, we aim to search for the optimal control point dis-

placements to best compromise between the visual support

and shape-fitness in an observed image. To this end, we use

a higher-order Markov Random Field (MRF) formulation, in

which a node models a control point and a third-order clique

models the interaction by a triplet.

Given a graph G = (V, C), V denotes the node set and

C denotes the three-order clique set. We also denote a node

set Vl ⊂ V corresponding to the anatomical landmarks and a

clique set Cs ⊂ C corresponding to the surface triangles. Let

Xi (i ∈ V) denote the latent variable (i.e. the 3D position) of

node i, and Ui denote the candidate space for the configura-

tion xi. To this end, the segmentation problem is formulated

as the inference of the configuration Θ = (xi)i∈V of all the

nodes over the candidate space U =
∏

i∈V Ui:

Θopt = arg min
Θ∈U

E(Θ) (2)

The MRF energy E(Θ) is defined as a combination of land-

mark energy φ, region and boundary energy ψ(1) and shape

prior energy ψ(2), while the first is a singleton term and the

other two are higher-order (third-order) terms:

E(Θ) =
∑

i∈Vl

φi(xi) +
∑

c∈Cs

ψ(1)
c (xc) +

∑

c∈C

ψ(2)
c (xc) (3)

The definitions of each energy are described in following.



3.1. Landmark Correspondences

In the proposed graphical-model framework, we consider a

set of salient points/anatomical landmarks (e.g. an apical con-

trol point) among the vertices of the surface model. They can

be localized by a detector based on machine learning tech-

niques such as Randomized Forests [8]. A singleton term is

then introduced to enforce the consistency between the de-

tected position and the estimated one for each landmark i:

φi(xi) = C0 · |xi − x̂i|
2 (4)

where x̂i denotes the detected position for landmark i.

3.2. Regional Statistics & Boundary Support

Region-driven and boundary-based terms are based on the hy-

pothesis that the populations in the image can be separated by

their statistical properties. To represent the statistics, voxel in-

tensity as a low-level representation has the limitation on the

capability to recognize different objects, for example when

the intensities of objects are overlapped. In this context, we

use a high-dimensional feature vector for each voxel instead

of an intensity value. The feature vector consists of patches

of intensities and Gabor features [9] in view of their abilities

to capture texture features in different scales and orientations.

In our case, a 5×5×5 patch and Gabor features with 3 scales

and 6 orientations are used.

Based on the feature images, we learn an Adaboost clas-

sifier [10] for the object and background and we apply the

classifier responses to obtain a likelihood image of the testing

image (Fig.2). Each voxel is represented by a signed score

in [-1, 1], whose sign symbol indicates the pixel label (i.e.

negative for object and positive for background) and absolute

value indicates the possibility to be object or background (dis-

tinguished in blue and red in Fig.2(b)). The likelihood image

is used for both region and boundary related potentials.

With regard to the regional potential, the exact calculation

of regional likelihood on the volume can be factorized by us-

ing Divergence theorem, which states that volume V integral

can be transferred into surface S integral.
y

V

f dv =
{

S

(F · n) ds =
∑

c∈Cs

γregion
c (xc) (5)

where f = ∇ · F is the likelihood image, n is the outward

pointing unit normal of the boundary surface S. For surface

triplet c ∈ Cs, the regional potential is defined as follows:

γregion
c (xc) = C1 ·

x

sc

(F · n) ds (6)

where sc denotes the surface area determined by triplet c.

Furthermore, we define the boundary related energy as a sur-

face integral on surface triplet c ∈ Cs:

γboundary
c (xc) = C2 ·

x

sc

M(x)ds (7)

(a) Original image
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Fig. 2. Image Likelihood.

where M(x) is a boundary map which is the output of an

boundary detector. For simplicity, we measure it by the dot

product of the unit facet normal and the likelihood gradient at

the position x, i.e. M(x) = −n · ∇f . This weak boundary

detector is sufficient since we combine other image cues and

shape prior in our framework. To this end, the data related

energy defined on surface triplet c ∈ Cs is:

ψ(1)
c (xc) = γregion

c (xc) + γboundary
c (xc) (8)

3.3. Prior Knowledge Constraints

The prior term encodes the spatial constraints of the control

points configuration with respect to the shape manifold. The

energy of local interaction on triplet c ∈ C is defined as:

ψ(2)
c (xc) = − log pc(α, β) (9)

where pc(α, β) denotes the possibility density of angles in the

triplet c, which is obtained in the statistical shape model.

4. EXPERIMENTAL VALIDATION

We validate the proposed method on a dataset of 20 3D CT

cardiac volumes. The volumes from different subjects have an

approximate mean size of 512× 512× 250 voxels, where the

voxel size is about 0.35× 0.35× 0.5mm3. Manual segmen-

tation on the dataset is available and is considered as ground

truth using for both learning and validation procedures.

We perform a leave-one-out cross-validation on the

dataset. A dual-decomposition optimization framework [11]

is adopted to perform the Maximum-a-Posteriori (MAP)

inference for the proposed higher-order MRF. The weight

parameters C0, C1, C2 in MRF energy potentials are once

adjusted manually to balance the corresponding terms for a

good performance and then are kept for all the testing vol-

umes. For quantitative evaluation, we compute the Dice coef-

ficient between the segmented volume and the ground truth,

which is one of the most common similarity measures be-

tween two volumes. We compare the proposed method with

a Random Walks algorithm [4] and a baseline ASM [2] using

the same likelihood image. In Fig.3 we present the distribu-

tions of the Dice coefficients obtained by the three methods



����

����

����

����

����

����

����

����

�
�	
A
B	
C
A
DD
�	
�A
E
FB

C��B�AF�C� ��E�C�B����� ���

Fig. 3. Boxplot of the Dice coefficient statistics.

evaluating on the whole dataset. Noted that a higher Dice co-

efficient implies a more accurate segmentation performance,

our method outperforms the related work. Visual examples

of experimental results are presented in Fig.4, showing that

the proposed method deals well with the shape variations and

poor image quality. Both quantitative and qualitative analyses

demonstrate the potential of our method.

5. CONCLUSION

In this paper, we propose a novel segmentation method based

on graph theory with its explicit representations and have

tested it using cardiac images. To the best of our knowl-

edge, this is the first formulation that is pose invariant and

can integrate common visual supports of any nature. It is

achieved through the use of higher-order MRF where third-

order cliques encode pose-invariant prior knowledge as well

as boundary and regional statistics.

The main limitation of the method is the inherited com-

putational complexity that is proportional to the number of

higher-order cliques. We are investigating a more compact

manner to encode prior knowledge that requires the smallest

possible number of third-order cliques without altering the

ability to express the shape manifold. Combined segmenta-

tion with landmark selection is another promising direction

since geometric methods are known to be robust to the initial

conditions. Last but not least, the extension of the method to

account for the temporal nature of the cardiac motion through

higher-order spatio-temporal priors is under investigation.
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