
HAL Id: hal-00776495
https://hal.inria.fr/hal-00776495

Submitted on 12 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

UMLAUT: an Extendible UML Transformation
Framework

Wai Ming Ho, Jean-Marc Jézéquel, Alain Le Guennec, François Pennaneac’H

To cite this version:
Wai Ming Ho, Jean-Marc Jézéquel, Alain Le Guennec, François Pennaneac’H. UMLAUT: an Ex-
tendible UML Transformation Framework. Proc. Automated Software Engineering, ASE’99, Oct
1999, Florida, United States. �hal-00776495�

https://hal.inria.fr/hal-00776495
https://hal.archives-ouvertes.fr

UMLAUT� an Extendible UML Transformation

Framework
�

Wai Ming Ho� Jean�Marc J�z�quel� Alain Le Guennec� Fran�ois Pennaneac�h

May� �th� �			

Abstract

Many UML CASE tools allow software engineers to draw diagrams

and generate code skeletons from them� But often advanced users want

to do more with their UML models� e�g�� apply speci�c design patterns�

generate code for embedded systems� simulate the functional and non�

functional behavior of the system� run validation tools on the model� etc�

which are very di�cult to do with the scripting facilities o�ered in most

UML case tools� In this paper� we describe UMLAUT� a freely available

UML Transformation Framework allowing complex manipulations to be

applied to a UML model� These manipulations are expressed as algebraic

compositions of rei�ed elementary transformations� They are thus open to

extensions through inheritance and aggregation� To illustrate the interest

of our approach� we show how the model of an UML distributed appli�

cation can be automatically transformed into a labeled transition system

validated using advanced protocol validation technology�

� The need for formal manipulation of UMLmod�

els

��� UML� the silver�bullet of modeling notations �

Since it was standardized by the OMG in ����� UML has been on its way
to become also a de�facto standard� as support for its diagrammatic notations
in object�oriented modeling tools keeps growing� Its use will range from ba�
sic applications for personal computers to large and complex software� This
spectrum of UML�modelizable systems will grow up with the next projected
releases of the notation� For example� future extensions to the UML will cov�
er real�time� scheduling and performance���	� or enterprise distributed object
computing
EDOC���	�� It is likely that such additions to the UML will push
designers to use it for even larger� and more critical software�

��� Complex software needs validation and test

Unfortunately� extending the notation will not be sucient to improve the qual�
ity of such large� distributed systems� Indeed� distributed systems raise their

�This work has been partially funded by CNET under the METAFOR project�

�

own issues� due to the complexity of their communication mechanisms� in the
case of asynchronous communications� messages may be never delivered� race
conditions or deadlocks may happen���

The reliability of these intrinsically concurrent systems can be enhanced
with the use of formal techniques� such as model�checking� simulation or test
generation� This is particularly true for telecommunication systems� a context
that has been widely explored for several years and gave birth to standardized
Formal Description Techniques
FDT� and associated tools� There is obviously
a lack in the UML for similar concepts� and the integration of already existing
validation techniques into the UML is not an easy process� This is mainly due to
the facts that FDT don�t �t well into the object�oriented concepts of the UML�
have a steep learning curve and impose restrictions to the model
for example�
the semantics of communication in FDT is often restricted��

This is why we advocate for the use of UML as a formal language� Of course�
we must keep in mind that the UML is not as formalized as FDT� and �rst its
semantics has to be enforced to ensure models can be validated and tested� But
UML has some strong advantages �

� its notation is very expressive�

� it is an OMG adopted standard�

� it has some support for distributed systems
asynchronous calls� deploy�
ment diagrams�����

� some parts of the UML have their semantics de�ned�

The validation of software should not be seen as a kind of �post�phase� in the
development process� but rather as a continuous activity that has its roots
in the early speci�cation phases and builds gradually� following the re�nement
process� This is another point in favor of a formalization of UML� the validation
is achieved partly through traceability between the re�ned models� Such a
traceability requires that a re�ned model and the model it derives from can
be compared� formalization is the way to prove two models re�ect the same
speci�cation� The next step is the generalization of such traceability links in
order to build libraries of generic model transformations that can be proven
equivalent for a re�nement relationship�

��� UML in tools� what�s behind the notation �

The lack of formalization in the UML implies weaknesses in current tools� which
most of the time limit themselves to powerful graphical editors with many bells
and whistles� but behave poorly in the process of automating some painful and
error�prone tasks� let alone validation� Code generators are good examples�
the static part of the notation is often well�understood� and most tools allow
for the generation of class skeletons from class diagrams� Then it�s often up
to the programmer
we can�t speak here of a designer �� to manually �ll in
the gaps with hand�written code to get a complete and sometimes running
program� We think the role of tools should not be limited to help the designer
in the implementation phase of the development process� but to better assist
him during the whole software development cycle�

�

Some CASE tools editors have recognized the needs for more automation
capabilities and provide some scripting capabilities in their software� This allows
for basic operations on models such as adding a method to many classes� But
it still remains dicult to express complex operations such as the application
of a design�pattern to a model�

The choice of another scripting language would not help that much� it is not
only a language problem� but also a consistency problem� even in the case of
an elementary operation� there is no means to check for the validity of such a
transformation� Most of the time� tools allow any operation to be performed on
a model� provided the result is syntactically correct� No semantics checks can
be performed� no traceability from the original model is realized�

In this paper� we describe UMLAUT� a freely available UML transforma�
tion framework allowing complex manipulations to be applied to a UML model

Section ��� These manipulations are expressed as algebraic compositions of rei�
�ed elementary transformations
Section ��� They are thus open to extensions
through inheritance and aggregation� To illustrate the interest of our approach�
we show
Section �� how the model of an UML distributed application can be
automatically transformed into a labeled transition system validated using ad�
vanced protocol validation technology� Then we conclude on the perspectives
open by this approach
Section ���

� UMLAUT � An extendible transformation frame�

work

UMLAUT is a tool dedicated to the manipulation of UML models� It has the
ability to import and export model descriptions in various formats� The fact
that it�s available for free and some of the known formats are well�documented
and�or standardized
such as CDIF� and XMI in the future� ensures that our
tool is open and ready for being integrated as a background processor in other
popular modelers� It can also work as a standalone application driven by a
portable GUI built with Java and the Swing libraries�

��� General architecture

UMLAUT is a generic framework composed of a core engine which commu�
nicates with its surroundings via hot�spots
i�e�� interfaces�� where functional
modules can be plugged in order to specialize the behavior to meet speci�c
requirements
see �gure ��� Some ready�to�use plug�ins already exist and are
provided with the tool� they cover various topics such as code�generation as�
pects
Ei�el or Java�� communications via interchange format
CDIF or MDL��
or transformations of models dedicated to the validation of distributed reactive
systems�

��� Core engine

Basically� the UMLAUT Core Engine is a set of collaborative classes that im�
plements the UML meta�model� as described in��	� This meta�model is de�ned
with a set of UML class diagrams� which contain classes and associations be�
tween these classes�

�

1 *

*

1

Application of

transformation

rules

UML meta-model

Implementation Framework

Outil commercial
Java/Eiffel/C(++)

Outil commercialCommercial Tool

Outil commercialCommercial Tool

CDIF /Petal
 XML

...

Validation Framework

Validation Engines (Open CAESAR)

Outil commercial
 GUI (Java)

UMLAUT
Protocol

 BDL
extension Outil commercial

BDL <->
(MSC/Statecharts)

UMLAUT
Protocol

Figure �� UMLAUT Architecture

It is easy to deduce a simple code generator for such a static model� the UML
classes immediately map into a set of Ei�el classes� The associations map in�
to attributes which contain an object or a collection of objects� depending on
the multiplicity of the association ends� The following example highlights this
process�

� an instance of a class UML�PACKAGE will be created to represent a Package
in a model�

� the association ownedElement from Package to ModelElementwill expand
into an attribute ownedElement in class UML�PACKAGE of type
COLLECTION�UML�MODEL�ELEMENT�� and conversely an attribute package

of type UML�PACKAGE in class UML�MODEL�ELEMENT�

Of course� some di�erent implementations are possible� such as one that would
reify associations between objects as true objects� instead of using references
which are clumsy to maintain
because the two or more ends in an association
must be updated consistently��

The choice of a speci�c meta�model implementation is not really a problem�
since our tool is capable of reading model description
and thus it can read
the whole UML meta�model� which expresses itself in UML�� and generating
the adequate Ei�el code� The way to deal with associations is just a matter of
specializing the generator�

But the Core Engine is more than a repository for elements in a model� Once
a model has been loaded� it lives in memory as an Abstract Syntax Tree� Some
utilities and tools are available to ease the building of plug�ins� by providing
speci�c functions for the manipulation of this Abstract Syntax Tree� For ex�
ample� it o�ers a hierarchy of visitor design�patterns which implement di�erent
traversal strategies of a model� A code generator is a specialization of an ab�
stract OO�CODE�GENERATORwhich overrides utilities methods such as visit�class
or visit�operation�

�

� A Framework for Automatic Transformation of

UML models

A UML model consists of a large collection of modeling entities� In order to
facilitate the transformation of such a model� we propose an object oriented
framework that automates the tedious tasks involved with such a transforma�
tion� We propose the use of a mixed object�oriented and functional program�
ming paradigm to develop a reusable toolbox of transformation operators� The
functional paradigm has a strong orientation towards generic composition of op�
erators while an object�oriented provides an intuitive extension mechanism via
inheritance and aggregation� In general� transformation involves two distinct
operations� First� the collection of meta�model elements in a given UML model
needs to be traversed� During traversal� a given set of meta�model elements that
conforms to a given criterion is selected and a transformation operator applied
to it�

��� Iterating Model Elements

visit order:
visit(1)
visit(2)
visit(4)
visit(3)

3

4

2

1

4. visit(3)

3. visit(4)

2. visit(2)
1. visit(1)

Figure �� Depth��rst traversal of Iterator

Each UML model is made up of an instance of a collection of meta�classes
from the meta�model��	� This meta�class collection forms a complex network of
associations among one another� Among all these associations� we are particu�
larly interested in the composition relation of these meta�model elements� This
composition relation forms a spanning tree of all UML meta�model elements
in the model� In the transformation framework� we apply an iterator over this
spanning structure to produce a �linear� sequence of meta�model elements� The
�linearization� of the spanning tree allows us to apply standard list processing
techniques for our transformation�

To understand how we �linearize� a spanning tree� it is necessary to know
that our iterator implements the Visitor design pattern��	� A typical iterator
will �visit� a given root node of the meta�model spanning tree� which in turn
request the iterator to �visit� its sub�nodes� This process is repeated recursively�
completely traversing the spanning structure in depth��rst order
see �gure ���

We designed our iterator to be driven externally� allowing our transformation
operators to �see� the iterator as providing a �linear� sequence of elements� Once

�

we have �virtually� linearized our meta�model instance� we can proceed with the
description of the transformation operation itself�

��� Transformation Using An Applicative Approach

Our intention is to address the problem of providing a mechanism that sepa�
rates the concerns of �exibly recombining transformation operations and their
algorithmic details� We have identi�ed three axes or aspects to this problem
� Iteration of UML models� The manipulation operations� and the problem of
�exibly and generically composing these operations� These goals are in line with
making UMLAUT a powerful tool for manipulating UML models� A close look
at the functional programming paradigm provides an interesting perspective to
our problems�

In the context of the theory of lists��	� it has been shown that any operation
can be expressed as the algebraic composition of a small number of polymorphic
operations like map� �lter and reduce� This idea has been exploited in the object
oriented context by Pacherie in his thesis���	� He propose to reify each of map�
�lter and reduce in the construction of a toolbox of algebraic operators for an
object oriented framework for parallel computation���	� We propose to extend
these ideas to handle the object�oriented structures described by the UML meta�
model�

In our transformation framework� the fundamental abstraction is a function
mapping� We conceptualize a function fun as

fun � a� b

which evaluates an object of type a to yield a result of type b� We can
generically compose di�erent functions as long as their type signatures match�
I�e� given f � a � b and g � c � d� we can compose g and f as in g � f as long
as the type of b matches the type of c� This lets us generically build complex
transformation operations out of simpler primitives� It is independent of the
details of what the operator does� or how it does it� The result is a framework
of programming where a programmer deals only with the input parameter� the
algorithm of the operation� and its result�

In the transformation of UML models� we will often consider collections
of model elements� It would be practical to be able to apply the functional
operators described previously on di�erent types of collections while preserving
the �black box�ness� of the function� The approach we take is to use the map
operator� It is a polymorphic operator that applies a function onto each element
of a list and returns a list of result elements� The de�nitions of map is

map � �a� b�� ��a�� �b��
where �a� denotes a sequence of elements of type a� and �a � b� represents

a function from a to b� Thus� we can view the application of map on a function
yields a new function that works on sequences instead of singular entities� i�e�
if f � �a � b� then map f � ��a� � �b��� This abstraction works for any given
function and preserves the generic composability described earlier for functions�
Given these advantages� we implemented ourmap abstraction as in �gure �� The
blocks each represent a speci�c functional abstraction� Applying map on f
i�e�
f is an argument to the function map� yields a new composite function map f �
as per de�nition of map above� The result is the polymorphic abstraction of
�apply f to every element in the list�� And it can be applied for any f and any
list of elements of conforming types�

�

map:(a->b)->([a]->[b]) map f: [a]->[b]f:a->b

Figure �� Map implementation

Similarly� we implement �lter and reduce according to their de�nitions�
filter � �a� boolean�� ��a�� �a��
reduce � �a� a� a�� ��a�� a�

Filter allows us to select elements based on a criterion and reduce helps us
validate our model after transformation by collapsing the sequence into a single
result�

��� Transformation Semantics

The transformation of a UML model can be summarized to consist of�

�� Addition of new elements to an existing model

�� Removal of model elements from an existing model

�� Modi�cation of properties on an existing model element�

�� and
�� are operations that modify the spanning tree structure of the UML
model� As our iterator employs �lazy� traversal over this same structure� its
modi�cation during traversal presents a problem of ensuring �robust iteration��
The use of �lazy� traversal is a trade�o� between traversal eciency and com�
plexity�

��� however� is an operation that yields no result� Its sole purpose is to pro�
duce an in�place update of model elements� Such an operation is widely known
as �side�e�ect� in functional programming and we model operators belonging to
this category using a Void return type� This hinders careless composition with
a side�e�ect function� In summary� these two issues provide a strong motivation
for further research on our transformation framework to derive a set of formal
semantics for UML transformation operations�

� Simulation and Validation of a UML model

	�� A Distributed Multimedia Application Example

CLIENT
PLAYER

+ play()
+ stop()

<<Interface>>

Figure �� UML model of a media player

The example model is a video�on�demand application� shown in �gure ��
CLIENT and PLAYER are remotely located and interact via a network�

�

CLIENT

PLAYER

+ play()
+ stop()

<<Interface>>

PLAYER_IMPL

+ play()
+ stop()
+ receive()

COMMAND

+ execute()

(from VALOOD)

PORT
(from VALOOD)

+upper_layer

+fifo
PLAYER_PLAY_COMMAND

PLAYER_STOP_COMMAND

PLAYER_COMMAND

PLAYER_PROXY

+ play()
+ stop()

PORT
(from VALOOD)

+peer

ACTIVABLE

+ labels()
+ guards()
+ action()

(from VALOOD)

SIMULATOR
(from VALOOD)

Figure �� VALOODER validation framework

The aim is to transform the initial UML model in �gure � into an executable
model representing the simulator� shown in �gure �� The new model contains
abstract classes that represent rei�cation of the concepts relevant to simulation

states� messages� timers� and classes representing the simulation engine that
manipulates them� Those classes form a validation framework ���	 that is con�g�
urable as per requirements� For example� to generate the PLAYER�X�COMMAND�s
from the PLAYER class� we need to apply the following manipulations�

�� Given the sequence of all elements in our model� we isolate classes with
the �interface� stereotype�

�� Extract the operations from this class� This results in a sequence of ele�
ments representing the class� operations�

�� Apply a COMMAND class generator over each operation for each class to
produce the corresponding derived COMMAND class�

Using our operators� we will describe the transformation� T � as follow�
T��map �map makeCmdClass����map getOps���filter isIntfClass�
Note that the last step involves a nested map� This is necessary because

each class contains a set of operations� The functional abstractions from which
we base our operators allow us to realize nested iterations simply by means
of function application� The framework has virtually decoupled the concerns of
iteration� operator composition and operator algorithm� It allows each aspect to
be treated separately� giving a �exible programming structure� By composing
di�erent transformation blocks from our library of operators� we apply each
incrementally over our original model of �g� � and we arrive at the �nal model
of �gure ��

	�� Accessibility graph of a UML model

The validation techniques we want to apply to UML models are based on La�
beled Transition Systems
LTS�� The accessibility graph of a model describes

�

the evolution of a system in terms of states and transitions labeled by events

operation calls� timer expirations� message exchanges�� The accessibility graph
is seldom a �nite graph� and so is not built exhaustively� Instead� it is explored
progressively� as needed� starting from the initial state of the system
the root
of the graph�� then querying �reable transitions going out of a given state and
choosing or discarding some of them following speci�c criterion�

	�� The OPEN
CAESAR toolbox

Figure �� Interactive simulation
xsimulator�

Many tools such as model�checkers or test generators operate on the LT�
S formalism� They already have proven useful to validate LOTOS or SDL
speci�cations� Adapting them for UML would provide UML users with an in�
teresting choice of mature and robust validation tools� In this context� the
OPEN�CAESAR toolbox��	 is particularly appealing� OPEN�CAESAR is a
collection of validation tools based on a common interface o�ering services to
build the accessibility graph of a speci�cation� This interface is language in�
dependent� and several compilers are provided that compile speci�cations in

�

LOTOS or SDL and make them available to validation tools through the stan�
dard graph library interface� Thanks to this separation of concerns� existing
tools can be reused for a new language without change by implementing the
corresponding compiler�

	�	 From UML models to simulation code

The transformation framework presented in section � is at the heart of the
compiler that generates the simulation code for UML speci�cations� Basically�
the compilation consists in transforming the initial UML model into an exe�
cutable model representing the simulator� The new model contains abstract
classes that represent rei�cation of the concepts relevant to simulation
states�
messages� timers� and classes representing the simulation engine that manip�
ulates them� Those classes form a validation framework ���	 that needs to be
tailored for the particular model to be simulated� This is done by specializa�
tion of the framework�s abstract classes� Transformations inspired by classical
design�patterns ��	 are used to re�ne the original model� For instance� the State
design�pattern is used to implement objects� behavior� using specializations of
the framework�s STATE class� Similarly� messages exchanged among objects are
rei�ed as specializations of the framework�s MESSAGE class� along the lines
of the Command design�pattern�

	�� Using validation tools on a UML model

0 1

2

3

4

5

6

7

8

9

10 11

12
13

user1->load_sequence_1()

user1->play()

user1->stop()

user1->forward()

user1->rewind()

user1->show_menu()

user1->turn_off()
user1->load_sequence_1()

user1->play()

user1->stop()

user1->forward()

user1->rewind()
timeout

user1->show_menu()

user1->load_sequence_1()
user1->turn_off()

user1->play() user1->stop()

user1->forward()

user1->rewind()
timeout

user1->show_menu()

user1->turn_off()

user1->load_sequence_1()

user1->stop()

user1->play()

user1->forward()

user1->rewind()timeout

user1->show_menu()

user1->turn_off()

user1->load_sequence_1()

user1->play()

user1->stop()

user1->rewind()
user1->forward()

timeout

user1->forward()

user1->show_menu()

user1->rewind()

user1->turn_off()

user1->load_sequence_1()

user1->play()

user1->stop()

user1->forward()

user1->rewind()

user1->turn_off()

user1->show_menu()

user1->load_sequence_1()

user1->show_menu()

user1->play()

user1->turn_off()

user1->stop()

user1->load_sequence_1()

user1->forward()

user1->play()

user1->rewind()

user1->stop()

timeout

user1->forward()

user1->show_menu()

user1->rewind()

user1->turn_off()

user1->show_menu()

user1->show_menu()

user1->play()

user1->load_sequence_1()

user1->turn_off()

user1->turn_off()

user1->stop()

user1->load_sequence_1()

user1->load_sequence_1()

user1->play()

user1->forward()

user1->show_menu()

user1->stop()user1->rewind()

user1->turn_off()

user1->forward()
timeout

user1->load_sequence_1()

user1->rewind()

user1->show_menu()

user1->play()

timeout

user1->turn_off()

user1->stop()

user1->show_menu()

user1->load_sequence_1()

user1->forward()

user1->turn_off()

user1->play()

user1->rewind()

user1->load_sequence_1()

user1->stop()

user1->play()

user1->stop()

user1->forward()

user1->rewind()
timeout

user1->show_menu()

user1->turn_off()

Figure �� Accessibility graph of a simple UML speci�cation

��

Once the original model is immerged in the validation framework� UM�
LAUT�s code generators provide an executable simulator conform to OPEN�CAESAR�s
graph library interface� OPEN�CAESAR�s tools are then available to exercise
the UML speci�cation� Figure � shows OPEN�CAESAR�s interactive simula�
tion tools� in which the user can click on �reable transitions to drive the system�

Figure � has been obtained by OPEN�CAESAR�s �generator� tool which
builds the complete accessibility graph of a �nite LTS� The UML speci�cation
represents a video�on�demand application
here with a single user watching a
�lm that contains only a few frames� so that the graph is not too big��

	�� Future improvements of the UML simulator

Currently� only a subset of UML is taken into account by the simulator� A�
mong the current limitations� we shall mention that only class diagrams and
statecharts are accounted for in order to determine the behavior of the system�
Moreover� statemachines communication is limited to asynchronous messages�
Support for procedural nested �ows of control is planned for a future release�
We are actively working on extending support for the other behavioral views of
UML models
collaborations� interactions� and activity graphs��

� Related Work

Integrating the functional programming paradigm into an object�oriented con�
text has been well studied by ��	 and ���	� ��	 also presents a graphical notation
for visualizing functional composition� In particular� ���	 and ���	 show the
increased versatility of iterators implemented in a functional manner�

With respect to UML model transformations� ��	 propose the use of hyper�
genericity to describe model transformation� Hypergenericity is �the ability to
automatically re�ne or transform a model by applying an external knowledge��
This approach is supported by an object oriented interpreted language H� that
allows the manipulation of UML model at the meta�model level� The constructs
in H allow an expert to specify transformation rules that perform operations on
the meta�model elements similar those of our proposed algebraic operators does�

A good source of reference for model transformation can be found in ��	
where a set of equivalence rules for UML class diagrams and associations are
presented� These rules can be integrated for model transformers prior to code
generation because they express complex UML features using the basic core
features that can be mapped directly to object oriented language constructs�

There are also a number of papers ���	��	 that attempt to formalize some
transformation rules on UML diagrams� We believe that model transformation
in UML is a new subject of research and we believe that it is important to
develop a set of general semantics that formalizes it� We hope to continue
our work in using an applicative approach to address the formalism underlying
model transformation and the semantics of the transformation operators�

�H is a language de�ned for manipulating a metamodel in the commercial CASE tool

�Objecteering� by Softeam�

��

� Conclusion

In this paper� we have outlined the functionalities and architecture of UMLAUT�
a freely available UML Transformation Framework allowing complex manipu�
lations to be applied to a UML model� These manipulations are expressed as
algebraic compositions of rei�ed elementary transformations� They are thus
open to extensions through inheritance and aggregation� We have illustrated
the interest of our approach by showing how the model of an UML distributed
application can be automatically transformed into a labeled transition system
validated using OPEN�CAESAR� a pre�existing protocol validation tool�

A preliminary version of UMLAUT is available on the web site of the UM�
LAUT project� http���www�irisa�fr�pampa�UMLAUT� Future work will be pur�
sued in three directions�
�� to take into account UML more thoroughly�
�� to
extend the transformation framework�
�� to make the UMLAUT software pack�
age more user�friendly and easier to use with mainstream UML modeling tools�

References

��	 R� S� Bird� An introduction to the theory of lists� In M� Broy� editor� Log�
ic of Programming and Calculi of Discrete Design� pages ����� Springler�
Verlag� �����

��	 Laurent Dami� Software Composition� Towards an Integration of Func�
tional and Object�Oriented Approaches� Ph�D� thesis� University of Geneva�
�����

��	 Laurent Dami and Didier Vallet� Higher�order functional composition in
visual form� Object applications� Centre Universitaire d�Informatique� U�
niversity of Geneva� August �����

��	 Philippe Desfray� Automation of design pattern� Concepts� tools and prac�
tices� In Pierre�Alain Muller and Jean B�zivin� editors� Proceedings of UM�
L��� International Workshop	 Mulhouse	 France	 June
 � �	 ����� pages
�������� ESSAIM� Mulhouse� France� �����

��	 Andy Evans� Reasoning with the Uni�ed Modeling Language� In
Proc Workshop on Industrial�Strength Formal Speci�cation Techniques
�WIFT����� �����

��	 J�C� Fernandez� H� Garavel� A� Kerbrat� L� Mounier� R� Mateescu� and
Sighineanu M� Cadp� a protocol validation and veri�cation toolbox� In
Computer Aided Veri�cation� �����

��	 Erich Gamma� Richard Helm� Ralph Johnson� and John Vlissides� Design
Patterns� Elements of Reusable Object�Oriented Software� Addison Wesley�
�����

��	 Martin Gogolla and Mark Richters� Equivalence rules for UML class dia�
grams� In Pierre�Alain Muller and Jean B�zivin� editors� Proceedings of
UML��� International Workshop	 Mulhouse	 France	 June
 � �	 �����
pages ������ ESSAIM� Mulhouse� France� �����

��

��	 Object Management Group� UML version ���� July �����

���	 Object Management Group� UML pro�le for enterprise distributed object
computing
edoc� rfp� ad���������� �����

���	 Object Management Group� UML pro�le for scheduling� performance� and
time rfp� ad���������� �����

���	 Jean�Marc J�z�quel� Alain Le Guennec� and Fran ois Pennaneac�h� Val�
idating distributed software modeled with UML� In Pierre�Alain Muller
and Jean B�zivin� editors� Proceedings of UML��� International Workshop	
Mulhouse	 France	 June
 � �	 ����� pages �������� ESSAIM� Mulhouse�
France� �����

���	 Jean�Marc J�z�quel and Jean�Lin Pacherie� Object�Oriented Application
Frameworks� chapter EPEE� A Framework for Supercomputing� John Wi�
ley ! Sons� New York� �����

���	 Thomas K"hne� Internal iteration externalized� In Rachid Guerraoui� edi�
tor� ECOOP ��� � Object�Oriented Programming �
th European Confer�
ence	 Lisbon Portugal� volume ���� of Lecture Notes in Computer Science�
pages �������� Springer�Verlag� New York� N�Y�� June �����

���	 Kevin Lano and Juan Bicarregui� Formalising the UML in structured tem�
poral theories� In Haim Kilov and Bernhard Rumpe� editors� Proceedings
Second ECOOP Workshop on Precise Behavioral Semantics �with an Em�
phasis on OO Business Speci�cations�� pages �������� Technische Univer�
sit#t M"nchen� TUM�I����� �����

���	 Konstantin Laufer� A framework for higher�order functions in C$$� In
USENIX Association� editor� Proceedings of the USENIX Conference on
Object�Oriented Technologies �COOTS�� pages �������� Berkeley� CA� US�
A� June ����� USENIX�

���	 J��L� Pacherie� Syst�me de motifs pour l�expression et la parall�lisation des
traitements d��num�rations dans un contexte de g�nie logiciel� PhD thesis�
IFSIC � Universit� de Rennes I� D�cembre �����

��

