P. R. Amestoy, A. Buttari, I. S. Duff, A. Guermouche, J. Excellent et al., The multifrontal method, in Encyclopedia of Parallel Computing, MUMPS (MUltifrontal Massively Parallel Solver), in Encyclopedia of Parallel Computing, 2010.

P. R. Amestoy, T. A. Davis, and I. S. Duff, An Approximate Minimum Degree Ordering Algorithm, SIAM Journal on Matrix Analysis and Applications, vol.17, issue.4, pp.886-905, 1996.
DOI : 10.1137/S0895479894278952

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

P. R. Amestoy, I. S. Duff, J. Koster, and J. Excellent, MUMPS: A General Purpose Distributed Memory Sparse Solver, Proceedings of PARA2000, the Fifth International Workshop on Applied Parallel Computing, pp.122-131, 1947.
DOI : 10.1007/3-540-70734-4_16

URL : https://hal.archives-ouvertes.fr/hal-00856652

M. Arioli, J. Demmel, and I. S. Duff, Solving sparse linear systems with sparse backward error, SIMAX, pp.165-190, 1989.

C. Ashcraft and R. Grimes, The influence of relaxed supernode partitions on the multifrontal method, ACM Transactions on Mathematical Software, vol.15, issue.4, pp.291-309, 1989.
DOI : 10.1145/76909.76910

M. Bebendorf, Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems, Lecture Notes in Computational Science and Engineering), 2008.

S. Börm, Efficient Numerical Methods for Non-local Operators, 2010.
DOI : 10.4171/091

S. Chandrasekaran, P. Dewilde, M. Gu, and N. Somasunderam, On the Numerical Rank of the Off-Diagonal Blocks of Schur Complements of Discretized Elliptic PDEs, SIAM Journal on Matrix Analysis and Applications, vol.31, issue.5, pp.31-2261, 2010.
DOI : 10.1137/090775932

S. Chandrasekaran, M. Gu, and T. Pals, A Fast $ULV$ Decomposition Solver for Hierarchically Semiseparable Representations, SIAM Journal on Matrix Analysis and Applications, vol.28, issue.3, pp.603-622, 2006.
DOI : 10.1137/S0895479803436652

T. A. Davis, Algorithm 832, ACM Transactions on Mathematical Software, vol.30, issue.2, pp.196-199, 2004.
DOI : 10.1145/992200.992206

I. S. Duff and J. K. Reid, The multifrontal solution of indefinite sparse symmetric linear systems The multifrontal solution of indefinite sparse symmetric linear systems, ACM Trans. Math. Softw. ACM Trans. Math. Softw, vol.914, pp.302-325, 1983.

A. George, Nested Dissection of a Regular Finite Element Mesh, SIAM Journal on Numerical Analysis, vol.10, issue.2, pp.345-363, 1973.
DOI : 10.1137/0710032

A. Gillman, P. Young, and P. Martinsson, A direct solver with O(N) complexity for integral equations on one-dimensional domains, Frontiers of Mathematics in China, vol.17, issue.4, pp.217-247, 2012.
DOI : 10.1007/s11464-012-0188-3

N. I. Gould and J. A. Scott, A numerical evaluation of HSL packages for the direct solution of large sparse, symmetric linear systems of equations, ACM Transactions on Mathematical Software, vol.30, issue.3, pp.300-325, 2004.
DOI : 10.1145/1024074.1024077

L. Grasedyck, R. Kriemann, and S. L. Borne, Parallel black box H -LU preconditioning for elliptic boundary value problems, Computing and Visualization in Science, pp.273-291, 2008.

A. Gupta, F. Gustavson, M. Joshi, G. Karypis, and V. Kumar, PSPASES: An efficient and scalable parallel sparse direct solver, Kluwer International Series in Engineering and Computer Science, p.515, 1999.

A. Gupta and M. Joshi, WSMP: A high-performance shared-and distributed-memory parallel sparse linear equation solver, 2001.

W. Hackbusch, A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-matrices, Computing, pp.62-89, 1999.

D. J. Higham and N. J. Higham, Componentwise perturbation theory for linear systems with multiple right-hand sides, Linear algebra and its applications, pp.111-129, 1992.

G. Karypis and V. Kumar, MeTiS: A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices Version 4, 1998.

S. Operto, J. Virieux, P. R. Amestoy, J. Excellent, L. Giraud et al., 3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: A feasibility study, GEOPHYSICS, vol.72, issue.5, pp.72-195, 2007.
DOI : 10.1190/1.2759835

URL : https://hal.archives-ouvertes.fr/insu-00355256

F. Pellegrini, Scotch and libscotch 5.0 User's guide, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00410332

P. Raghavan, DSCPACK: Domain-separator codes for the parallel solution of sparse linear systems, 2002.

R. Schreiber, A New Implementation of Sparse Gaussian Elimination, ACM Transactions on Mathematical Software, vol.8, issue.3, pp.256-276, 1982.
DOI : 10.1145/356004.356006

R. D. Skeel, Scaling for Numerical Stability in Gaussian Elimination, Journal of the ACM, vol.26, issue.3, pp.494-526, 1979.
DOI : 10.1145/322139.322148

S. Wang, M. V. De-hoop, and J. Xia, On 3D modeling of seismic wave propagation via a structured parallel multifrontal direct Helmholtz solver, Geophysical Prospecting, vol.17, issue.5, pp.59-857, 2011.
DOI : 10.1111/j.1365-2478.2011.00982.x

S. Wang, M. V. De-hoop, J. Xia, and X. S. Li, Massively parallel structured multifrontal solver for time-harmonic elastic waves in 3D anisotropic media, Geophysical Journal International, 2012.

S. Wang, X. S. Li, J. Xia, Y. Situ, M. V. De et al., Efficient scalable algorithms for hierarchically semiseparable matrices, Submitted SIAM Journal on Scientific Computing, 2012.

J. Xia, Efficient Structured Multifrontal Factorization for General Large Sparse Matrices, SIAM Journal on Scientific Computing, vol.35, issue.2, 2012.
DOI : 10.1137/120867032

J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Superfast Multifrontal Method for Large Structured Linear Systems of Equations, Fast algorithms for hierarchically semiseparable matrices, Numerical Linear Algebra with Applications, pp.31-1382, 2009.
DOI : 10.1137/09074543X

R. N°-8199 and R. Centre-grenoble-?-rhône-alpes, Inovallée 655 avenue de l'Europe Montbonnot 38334 Saint Ismier Cedex Publisher Inria Domaine de Voluceau -Rocquencourt BP 105 -78153 Le Chesnay Cedex inria, pp.249-6399