Analyzing Recommender System's Performance Fluctuations across Users

Charif Haydar 1 Azim Roussanaly 1 Anne Boyer 1
1 KIWI - Knowledge Information and Web Intelligence
LORIA - AIS - Department of Complex Systems, Artificial Intelligence & Robotics
Abstract : Recommender systems (RS) are designed to assist users by recommending them items they should appreciate. User based RS ex- ploit users behavior to generate recommendations. As a matter of fact, RS performance fluctuates across users. We are interested in analyzing the characteristics and behavior that make a user receives more accu- rate/inaccurate recommendations than another. We use a hybrid model of collaborative filtering and trust-aware rec- ommenders. This model exploits user's preferences (represented by both item ratings and trusting other users) to generate its recommendations. Intuitively, the performance of this model is influenced by the number of preferences the user expresses. In this work we focus on other character- istics of user's preferences than the number. Concerning item ratings, we touch on the rated items popularity, and the difference between the at- tributed rate and the item's average rate. Concerning trust relationships, we touch on the reputation of the trusted users.
Type de document :
Communication dans un congrès
Gerald Quirchmayr; Josef Basl; Ilsun You; Lida Xu; Edgar Weippl. International Cross-Domain Conference and Workshop on Availability, Reliability, and Security (CD-ARES), Aug 2012, Prague, Czech Republic. Springer, Lecture Notes in Computer Science, LNCS-7465, pp.390-402, 2012, Multidisciplinary Research and Practice for Information Systems. 〈http://link.springer.com/content/pdf/10.1007%2F978-3-642-32498-7_29〉. 〈10.1007/978-3-642-32498-7_29〉
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00776932
Contributeur : Azim Roussanaly <>
Soumis le : jeudi 17 janvier 2013 - 10:20:52
Dernière modification le : mardi 24 avril 2018 - 13:30:00
Document(s) archivé(s) le : jeudi 18 avril 2013 - 03:59:27

Fichier

Charif_CD_ARES12.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Charif Haydar, Azim Roussanaly, Anne Boyer. Analyzing Recommender System's Performance Fluctuations across Users. Gerald Quirchmayr; Josef Basl; Ilsun You; Lida Xu; Edgar Weippl. International Cross-Domain Conference and Workshop on Availability, Reliability, and Security (CD-ARES), Aug 2012, Prague, Czech Republic. Springer, Lecture Notes in Computer Science, LNCS-7465, pp.390-402, 2012, Multidisciplinary Research and Practice for Information Systems. 〈http://link.springer.com/content/pdf/10.1007%2F978-3-642-32498-7_29〉. 〈10.1007/978-3-642-32498-7_29〉. 〈hal-00776932〉

Partager

Métriques

Consultations de la notice

333

Téléchargements de fichiers

264