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Abstract—In this article, we justify the use of parametric
planar Pythagorean Hodograph spline curves in path planning.
The elegant properties of such splines enable us to design an
efficient interpolator algorithm, more precise than the classical
Taylor interpolators and faster than an interpolator based on arc
length computations.

Index Terms—Path planning, Pythagorean-hodograph, Splines.

I. INTRODUCTION

Designing a good geometric support from given points is
a fundamental issue in path planning for industrial machines
(Machine-tool, manipulator, robot...). Traditionnally, the
methods used consist in minimizing the Lp norm of the
second derivative of polynomial slines which interpolate
the given points, for p ∈ N∗ (See for example [1] for the
general method and [9] for its application). In this article,
we are interested in a subclass of polynomial splines called
Pythagorean Hodograph splines.

Pythagorean Hodograph curves (PH curves), introduced in
1990 in [2] are characterized by the special property that the
derivative of their arc length is a polynomial (or rational)
function of the curve parameter. This property enables to
compute exactly useful quantities such as curvature, bending
energy or arc length. For simple polynomial curve, we can
not, in general, calculate these quantities and so, we apply
some quadrature rules. By a good choice of the quadrature
rule, we can reach a satisfying precision but it may be highly
time consuming.

It is not difficult to design a geometric support which
interpolates data points using PH curves. We can apply for
example L1C

1 method from [1] which gives some derivative
values at each data point and reconstruct a solution as PH
quintic spline by C1 Hermite interpolation (See [3]). But C1

continuity is not sufficient for path planning of mechanical
system if trajectory following performances are of interest.
Indeed, curvature discontinuities, which are not physically
followed, excite the structure and can significantly deteriorate
the accuracy. Thus, we use the G2 interpolation scheme
introduced by Jaklič et al. in [7]. By this method, we can
only treat, for the moment, convex data but it uses low degree
spline (cubic). The existence of solution is guaranteed and the
iterative method to construct the solution converges rapidly.

Some articles (See for example [4], [5], [11]) deal with
the use of PH curves in CNC. In these articles, authors

only treat the case of a single PH curve and designed an
interpolator based on arc length computation in order to
follow the parametric geometric support. We will compare
the performances in running time and accuracy of such an
interpolator for both PH and classical polynomial curve cases.
Then, We will extend this procedure on a PH spline.

This paper is organized as follows. Section II gives some
basic information about Pythagorean Hodograph cubic curves.
In section III, we present briefly the interpolation scheme that
we will use in our experiment. Section IV is dedicated to
the PH interpolator, its application and a comparison with
other interpolators. Some conclusions will be drawn in the
last section.

II. PYTHAGOREAN HODOGRAPH CUBIC CURVES

A polynomial Pythagorean hodograph curve r(τ) =
(x(τ), y(τ)), τ ∈ [0, 1] is defined by the property that its
hodograph r′(τ) = (x′(τ), y′(τ)) satisfies the Pythagorean
condition :

x′2(τ) + y′2(τ) = σ2(τ), (1)

for some polynomial σ(τ). This remarkable property enables
to compute exactly some useful quantities like arc length,
curvature or bending energy. To define curves satisfying (1),
we use two polynomials, u(τ) and v(τ) such that :

x′(τ) = u2(τ)− v2(τ),

y′(τ) = 2u(τ)v(τ),

σ(τ) = u2(τ) + v2(τ).

For PH cubics, we shall choose u(τ) and v(τ) linear functions
expressed in the Bernstein basis :

u(τ) = u0B
1
0(τ) + u1B

1
1(τ),

v(τ) = v0B
1
0(τ) + v1B

1
1(τ).

(2)

In order to define regular curves, we may assume (u1−u0)2 +
(v1 − v0)2 6= 0 and u0v1 − u1v0 6= 0. By integrating the
hodograph, we obtain the formulation of Bézier control points
of a PH cubic curve.

Q1 = Q0 +
1

3
(u2

0 − v2
0 , 2u0v0) ,

Q2 = Q1 +
1

3
(u0u1 − v0v1, u0v1 + u1v0) ,

Q3 = Q2 +
1

3
(u2

1 − v2
1 , 2u1v1).

(3)



We have a sufficient and necessary geometric condition on
the control polygon, illustrated in Fig. 1, for a parametric
cubic curve to be a PH cubic. The following theorem will be
very useful in the spline interpolation scheme we will use in
section III.

Theorem 1: Let r(τ) be a parametric planar cubic curve
with Bézier control points Q0, Q1, Q2, Q3. Let Li =
QiQi+1, i ∈ {0, 1, 2} be the lengths of the control polygon
edges and θ1, θ2 be the control polygon angles at the interior
vertices Q1 and Q2. Then r(τ) is a PH cubic if and only if :

L1 =
√

L0L2, and, θ1 = θ2. (4)

The proof of this theorem can be found in [6] section 18.3.

Fig. 1. A PH cubic curve and its control polygon.

III. PH G2 SPLINE INTERPOLATION

The problem is to interpolate P0, P1, . . . , Pn in R2

by a G2 PH cubic spline with end conditions d0 and dn,
respectively the tangent vectors at P0 and Pn. We will
use L1C

1 interpolation, which have good shape-preserving
properties, to compute d0 and dn. We give the main result of
the article of Jaklič et al. [7].

Theorem 2: Let P0, P1, . . . , Pn a set of convex data and
d0, dn the tangent vectors at P0 and Pn. The interpolation
problem of finding a G2 PH cubic spline passing through the
Pi with respect of d0 and dn has an admissible (without loops
or cusps) solution if and only if the angles

ϕ0 = ∠(d1,∆P1),

ϕl = ∠(∆Pl−1,∆Pl), l = 1, 2, . . . , n− 1,

ϕn = ∠(∆Pn−1, dn),

satisfy ϕi+ϕi−1 < M with M = 4π/3 for i = 1, 2, . . . , n−1.
If M = Kπ with,

K = 1 +
1

π
arccos

(√
3

3

)
≈ 1.304087 < 4/3,

then the solution is unique.

The system of non-linear equations, directly obtained by
explicitation of (4) on each segment is solved by an itera-
tive method. To understand the algorithm, we may consider
the G1 Hermite interpolation problem with PH cubic. Let

d0, P0, P1, d1 a convex G1 Hermite data. P0 and P1 are two
points in the plane, d0 and d1 the associated tangent vectors.
We are looking for λ0, λ1 > 0 such that :

Q0 = P0,

Q1 = P0 + λ0d0,

Q2 = P1 − λ1d1,

Q3 = P1,

(5)

are the control points of a PH cubic. The authors determine a
unique admissible solution :

λ0 = Λ0(d0,∆P0, d1), λ1 = Λ1(d0,∆P0, d1),

under the assumption that the angles ϕ0 = ∠(d0,∆P0) and
ϕ1 = ∠(d1,∆P0) satisfy the condition :

ϕ0 + ϕ1 <
4

3
π.

The global algorithm of G2 PH cubic spline determination
can be written as follows :

Inputs : Data points P0, P1, . . . , Pn, end conditions d0, dn,
a tolerance ε .
Outputs : Tangent vectors at each data points and lengths of
the first and the third edges of each control polygon.

1) λ = (1, 1, . . . , 1) ∈ R2m, r = 0

2) Compute d[0]
l = Pl+1−Pl−1

‖Pl+1−Pl−1‖ ,
l = 1, 2, . . . ,m− 1.

3) Compute λ2l = Λ0

(
d

[r]
l ,∆Pl, d

[r]
l+1

)
,

λ2l+1 = Λ1

(
d

[r]
l ,∆Pl, d

[r]
l+1

)
,

l = 0, 1, . . . ,m− 1.
4) Compute

d
[r+1]
l = (

1

λ2
2l

(
∆Pl − λ2l+1d

[r]
l+1

)
+

1

λ2l−1

(
∆Pl−1 − λ2l−2d

[r]
l−1

))
,

l = 1, 2, . . . ,m− 1.
5) Dl =

∣∣∣∣∣∣d[r+1]
l

∣∣∣∣∣∣ , l = 0, 1, . . . ,m.
6) If ‖λold − λnew‖ < ε and ‖Dold −Dnew‖ < ε, STOP

else r = r + 1 and go back to 3.
We have applied this algorithm to interpolate the logarithmic

spiral and a circle. We note in Fig. 2 that the resulting curves
preserve well the shape of the data.

IV. PH INTERPOLATOR

A. Principle

In this part, we wish that a mechanical system follows a
geometric motion support with respect of a known feedrate.
The geometric support is designed by interpolation of some
checkpoints. We choose here a set of convex data that we
interpolate by the previous procedure. Knowing the feedrate
enables us, by integration, to define a position law (See



(a)

(b)
Fig. 2. Interpolation by G2 PH cubic spline. (a) Logarithmic spiral (b)
Circle.

Fig. 3) which means that we know, at time t0, the distance
the system must have run through. The main problem is to
determine the geometric parameter which corresponds to the
time parameter. In practice, we discretize the time interval
[0, T ] with a constant1 sampling period ∆t. We obtain the list
0 = t0 < t1 < · · · < tm = T . For each i ∈ {0, 1, . . . ,m}, we
have to find the associated geometric parameter of the curve
τi by solving the following equation :

l(ti) = s(τi),

where l and s are respectively the arc length functions of the
position law and the spline.

B. Arc length computation for a PH curve

Let r(τ) be a PH cubic defined by the coefficients
u0, u1, v0, v1 as in (2). Arc length at parameter τ ∈ [0, 1]
may be expressed in the form :

s(τ) =

3∑
k=0

sk

(
n

k

)
(1− τ)3−kτk, (6)

where

s0 = 0, sk =

k−1∑
j=0

σj , k = 1, . . . , 3

and :

σ0 = u2
0 + v2

0 , σ1 = u0u1 + v0v1, σ2 = u2
1 + v2

1 . (7)

1We can choose a variable stepsize. It will not change the performances of
the method.

Fig. 3. A simple feedrate (top) and its associated position law (bottom).

We have in particular :

s(1) =
σ0 + σ1 + σ2

3
. (8)

So contrary to ordinary polynomial curve, we have a closed
form for the arc length at parameter τ .

C. Algorithm

We now describe the algorithm we will use further both in
case of a simple polynomial spline and a PH spline.

Inputs : Data points and associated parameters, the interpo-
lating spline defined by some coefficients, the position law, a
time list.
Output : A list of geometric parameters.

1) Compute lk = l(tk), k = 0, 1, . . .m.
2) Compute Sj , j = 0, 1, . . . , n the arc lengths of the PH

cubic spline at each νj .
3) τ0 = ν1; r0 = 1.
4) Compute rk, k = 1, 2, . . . , n the number of the spline

piece where τk must be.
5) If rk = rk−1, solve :

lk − lk−1 = srk

(
τk − νrk

νrk+1 − νrk

)
− srk

(
τk−1 − νrk
νrk+1 − νrk

)
,

τk−1 ≤ τk ≤ νrk+1.



6) If rk 6= rk−1, solve :

lk − Srk = srk

(
τk − νrk

νrk+1 − νrk

)
,

νrk ≤ τk ≤ νrk+1.

Here, sj(.) is the arc length function of the jth piece of the
spline. The equations to solve in case of PH cubic spline are
also cubics. So, we can solve them exactly by Cardano method.
In practice, for a given precision ε = 10−13, we use the
Newton-Raphson algorithm which leads to the solution with
machine precision in two or three iterations. For polynomial
spline, using this algorithm leads to use a quadrature formula.
We will see that in applications, it is more time consuming.

V. NUMERICAL EXPERIMENTS

A. Travelling a single PH curve

Let us give a PH curve and a feedrate as shown in Fig. 4.
This feedrate has been generated with the limited jerk strategy
described in [10]. We will apply the algorithm presented in
section IV-C for this curve using the Pythagorean property (1)
and in a second experiment, seeing it as a classical polynomial
curve and using a quadrature rule. In both case, we choose a
sampling period of 10−3s.

Fig. 4. A single PH curve to travel (Top, left). The desired feedrate (Top,
right) and jerk (Bottom).

An error analysis for the PH case is shown in Fig. 5.
Final position error is about 10−13m and speed error globally
oscillates between 10−11 and 10−13 m.s−1. It occurs very
small oscillations on the feedrate.

We now consider that we do not have a PH curve but only a
general polynomial one. We obtain similar accuracy as shown
in Fig. 6. The major difference is the running time. For this
example, treating about 1500 points of discretization takes near
to 85 seconds in the polynomial case and only 6 in the PH
case.

In order to prove this observation on running time, we
launch several experiments with different sampling periods.
The results are summarized in Table I and Fig. 7. We notice
a quasi-linearity property with approximated constant 0.0038

Fig. 5. Semilogarithmic errors for position and speed in the single PH case.

Fig. 6. Semilogarithmic errors for position and speed in the single polynomial
case.

in PH case and 0.0546 in polynomial case. So, for the given
precision ε, it takes approximatively 14.4 more time to run
the interpolator with polynomial splines than PH splines. In
polynomial case, running time will be too high when we will
have to treat an entire spline and not just a single part. That
seems to be the reason that such an interpolator is not used and



that interpolators based on Taylor expansions, less accurate but
less time consuming, are prefered.

Sampling Number CPU Time, CPU Time,
period of points PH polynomial
10−1s 30 0.1100 s 1.5620 s
8.10−2s 34 0.1410 s 1.7960 s
6.10−2s 40 0.1560 s 2.1250 s
4.10−2s 53 0.2040 s 2.8120 s
2.10−2s 91 0.3430 s 4.8600 s
10−2s 169 0.6250 s 9.1100 s
8.10−3s 209 0.7810 s 11.2650 s
6.10−3s 274 1.0000 s 14.6880 s
4.10−3s 403 1.5320 s 21.7040 s
2.10−3s 794 3.0310 s 42.6720 s
10−3s 1576 6.1090 s 84.6720 s
8.10−4s 1966 7.2030 s 105.7340 s
6.10−4s 2619 9.8590 s 141.0320 s
4.10−4s 3920 13.9530 s 210.8900 s
2.10−4s 7828 29.2030 s 422.6090 s
10−4s 15643 59.3120 s 853.7970 s

TABLE I
CPU TIMES OF THE INTERPOLATOR IN SINGLE PH AND SINGLE

POLYNOMIAL CASES FOR SOME SAMPLING PERIODS.

(a)

(b)
Fig. 7. CPU time in function of the number of discretization points, (a) in
the PH case, (b) in the polynomial case.

B. Travelling a PH spline

We are now interested in following a real PH G2 spline
with a desired feedrate as shown in Fig. 8. Again, this
feedrate has been generated with the strategy described in
[10].

(a)

(b)
Fig. 8. (a) PH cubic spline to travel. (b) The desired feedrate.

Once again, we present error graphs in Fig. 9. We clearly
distinguish the pieces of the spline in these graphs. When
we change of spline piece, the previous error is corrected by
starting on the new piece by its extremity and not by the last
computed point. This produces limited jumps for the speed
error which are not important.

Fig. 9. Semilogarithmic errors for position and speed in the PH spline case.



We compare the efficiency of the algorithm with an interpo-
lator based on a first order Taylor expansion. The parameters
τi, i = 0, 1, . . . ,m (with m = 7959 in our example) are given
by the approximation :

τi+1 = τi +
Vi∣∣∣∣∣∣dΓ(τ)

dτ

∣∣∣∣∣∣
τ=τi

Ts, (9)

where Vi is the desired speed at time ti, Γ the spline obtained
by the L2

1C
2 method (see [1]) and Ts the sampling period.

With this interpolator, we evidence in Fig. 10 an average
position error of 0.3 mm and a final position error of 5
microns. Error graphs presented in Fig. 11 show the accuracy
default of the method.

Fig. 10. Global result and final error position for the first order Taylor
interpolator.

CONCLUSION

In this article, we have justified the use of Pythagorean
hodograph splines in path planning. The associated PH
interpolator based on exact arc length calculation shows
similar accuracy than a similar one for simple polynomial
splines but it is almost fifteen times faster. Moreover, it
is much more precise than a Taylor interpolator. Thus, PH
splines seems to be a good solution for real time and accuracy
issues.

Future work will concentrate on application of this work for
real path and on designing a G2 PH interpolation scheme for
non convex data.

Fig. 11. Semilogarithmic errors for position and speed with the first order
Taylor interpolator.
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1C

k polynomial
spline interpolation algorithm with shape-preserving properties. Com-
puter Aided Geometric Design 28 (2011) 65 - 74.

[2] Rida T. Farouki, T. Sakkalis, Pythagorean Hodographs. IBM Journal of
Research and Development 34 (1990) 736 - 752.

[3] Rida T. Farouki, Andrew Neff, Hermite interpolation by Pythagorean
hodograph quintics. Mathematics of computation 64, n212 (1995) 73 -
83.

[4] Rida T. Farouki, Sagar Shah, Real time CNC interpolators for
Pythagorean-hodograph curves. Computer Aided Geometric Design 13
(1996) 583 - 600.

[5] Rida T. Farouki, Yi-Feng Tsai, Exact Taylor series coefficient for
variable-feedrate CNC curve interpolators. Computer Aided Geometric
Design 33 (2001) 155 - 165.

[6] Rida T. Farouki, Pythagorean-hodograph curves - Algebra and geometry
inseparable. Springer-Verlag (2008).
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