
HAL Id: hal-00777468
https://inria.hal.science/hal-00777468

Submitted on 24 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Trustable components: Yet another mutation-based
approach

Benoit Baudry, Hanh Vu Le, Jean-Marc Jézéquel, Yves Le Traon

To cite this version:
Benoit Baudry, Hanh Vu Le, Jean-Marc Jézéquel, Yves Le Traon. Trustable components: Yet another
mutation-based approach. Proceedings of the 1st Symposium on Mutation Testing (Mutation’2000),
Oct 2000, San Jose CA, United States. �hal-00777468�

https://inria.hal.science/hal-00777468
https://hal.archives-ouvertes.fr

Trustable Components: Yet Another Mutation-Based Approach

Benoit Baudry, Vu Le Hanh, Jean-Marc Jézéquel and Yves Le Traon
IRISA, Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France

{Benoit.Baudry, vlhanh, Jean-Marc.Jezequel, Yves.Le_Traon }@irisa.fr

Abstract
This paper presents the use of mutation analysis as

the main qualification technique for:
- estimating and automatically enhancing a test set

(using genetic algorithms),
- qualifying and improving a component’ s contracts

(that is the specification facet)
- measuring the impact of contractable robust

components on global system robustness and
reliability.
The methodology is based on an integrated design

and test approach for OO software components. It is
dedicated to design-by-contract, where the specification
is systematically derived into executable assertions
called contracts (invariant properties, pre/postconditions
of methods). The testing-for-trust approach, using the
mutation analysis, checks the consistency between
specification, implementation and tests. It points out the
tests lack of efficiency but also the lack of precision of
the contracts. The feasibility of components validation by
mutation analysis and its usefulness for test generation
are studied as well as the robustness of trustable and
self-testable components into an infected environment.

1. Introduction

The Object-Oriented approach offers both strong
encapsulation mechanisms and efficient operators for
software reusability and extensibility. In a component-
based approach using a design-by-contract methodology,
the following considerations make mutation analysis
useful for several analysis levels:

- in a design-by-contract approach [5,10],
components integrate “contracts” that are
systematically derived from the specification.
Contracts behave as executable assertions that
automatically check the components consistency
(pre-postconditions, class invariants). Based on
mutation analysis, the efficiency of contracts can
thus be estimated by their capacity of rejecting
faulty implementation, and the enhancement of

contracts can be guided. Then, and also based on
a particular application of mutation analysis, the
contribution of each component to the global
system robustness and reliability can be
estimated.

- Components, to be reusable, are considered as an
“organic” set of a specification, an
implementation and embedded tests. With such
self-testable component definition, all the
difficulty consists of automatically improving
embedded tests based on the basic test cases
written by the tester/developer. Being given these
basic test cases, we consider mutants programs as
a population of preys and, conversely, a test set as
a particular predator. This analogy leads to the
application of genetic algorithms to enhance the
original population of predators using as a fitness
function the mutation score.

- Trustability [4] is finally the result of the global
packaging of a design-by-contract approach,
component self-testability and mutation analysis
for both tests & contracts improvement and
qualification are

In this paper, we propose a testing-for-trust
methodology that helps checking the consistency of the
component’ s three facets, i.e., specification/
implementation and tests. The methodology is an
original adaptation from mutation analysis principle [1]:
the quality of a tests set is related to the proportion of
faulty programs it detects. Faulty programs are generated
by systematic fault injection in the original
implementation. In our approach, we consider that
contracts should provide most of the oracle functions:
the question of the efficiency of contracts to detect
anomalies in the implementation or in the provider
environment is thus tackled and studied (Section 4). If
the generation of a basic tests set is easy, improving its
quality may require prohibitive efforts. In a logical
continuity with our mutation analysis approach and tool,
we describe how such a basic unit tests set, seen as a test
seed, can be automatically improved using genetic
algorithms to reach a better quality level.

Section 2 opens on methodological views and steps
for building trustable component in our approach.

Section 3 concentrates on the mutation testing process
adapted to OO domain and the associated tool dedicated
to the Eiffel programming language. The test quality
estimate is presented as well as the automatic
optimization of test cases using genetic algorithms
(Section 4). Section 5 is devoted to an instructive case
study that illustrates the feasibility and the benefits of
such an approach. Section 6 presents a robustness
measure, for a software component, based on a mutation
analysis.

2. Test quality for trustable components

The methodology is based on an integrated design and
test approach for OO software components, particularly
adapted to a design-by-contract approach, where the
specification is systematically derived into executable
assertions (invariant properties, pre/postconditions of
methods). Classes that serve for illustrating the approach
are considered as basic unit components: a component
can also be any class package that implements a set of
well-defined functionality. Test suites are defined as
being an “organic” part of software OO component.
Indeed, a component is composed of its specification
(documentation, methods signature, invariant properties,
pre/ postconditions), one implementation and the test
cases needed for testing it. This view of an OO
component is illustrated under the triangle representation
(cf. Figure 1). To a component specified functionality is
added a new feature that enables it to test itself: the
component is made self-testable. Self-testable
components have the ability to launch their own unit
tests as detailed in [6].

From a methodological point of view, we argue that
the trust we have in a component depends on the
consistency between the specification (refined in
executable contracts), the implementation and the test
cases. The confrontation between these three facets leads
to the improvement of each one. Before definitely
embedding a test suite, the efficiency of test cases must
be checked and estimated against implementation and
specification, especially contracts. Tests are build from
the specification of the component; they are a reflection
of its precision. They are composed of two independent
conceptual parts: test cases and oracles. Test cases
execute the functions of the component. Embedded
oracles – predicates for the fault detection decision – can
either be provided by assertions included into the test
cases or by executable contracts. In a design-by-contract
approach, our experience is that most of the decisions are
provided by contracts derived from the specification.
The fact components’ contracts are inefficient to detect a
fault exercised by the test cases reveals a lack of

precision in the specification. The specification should
be refined and new contracts added. The trust in the
component is thus related to the test cases efficiency and
the contracts “completeness”. We can trust the
implementation since we have tested it with a good test
cases set, and we trust the specification because it is
precise enough to derive efficient contracts as oracle
functions.

Specification

Implementation

V & V: checking
Implementation
against
Specification (oracle)

(e.g., embedded tests)

Measure of Trust
based on

Consistency

Contract between the client
and the component

Fig. 1. Trust based on triangle consistency

The question is thus to be able to measure this
consistency. This quality estimate quantifies the trust one
can have in a component. The chosen quality criteria
proposed here is the proportion of injected faults the
self-test detects when faults are systematically injected
into the component implementation. This estimate is, in
fact, derived from the mutation testing technique, which
is adapted for OO classes. The main classical limitation
for mutation analysis is the combinatorial expense.

The global component design-for-trust process
consists of 6 steps that are presented in figure 2.
1. At first, the programmer writes an initial selftest

that reaches a given initial Mutation Score (MS).
2. This step aims at automatically enhancing the initial

selftest. We propose to use genetic algorithms for
that purpose, but any other technique could be used.
The used oracle function is the comparison between
the testing object states.

3. During the third step, the user has to check if the
tests do not detect errors in the initial program. If
errors are found, he must debug them.

4. The fourth step consists in measuring the contracts
quality thanks to mutation testing. We use the
embedded contracts as an oracle function here.

5. Then a non-automated step consists of improving
contracts to reach an expected quality

6. At last, the process constructs a global oracle
function. To do this, it executes all the tests on the
initial class, and the object’ s state after execution is
the oracle value.

initial testsgeneration
and bugs correction

 (tester ’ s work).

 automatic
optimization of

the initial tests set

equivalent mutants
suppression

remaining bugs
correction

measure contracts
efficiency

Contracts
improvement

Oracle function
reconstruction

1 2 3 4 5 6

contracts

testimpl.

contracts

testimpl. MS= trust

contracts

testimpl.
MS= trust

MS= trust

contracts

testimpl.

contracts

testimpl.

contracts

test
impl.

Automated process

MS= trust

Fig. 2.The global testing-for-trust process

3. Mutation testing technique for OO
domain

Mutation testing is a testing technique that was first
designed to create effective test data, with an important
fault revealing power [11]. It has been originally
proposed in 1978 [1] , and consists in creating a set of
faulty versions or mutants of a program with the ultimate
goal of designing a tests set that distinguishes the
program from all its mutants. In practice, faults are
modeled by a set of mutation operators where each
operator represents a class of software faults. To create a
mutant, it is sufficient to apply its associated operator to
the original program.

A tests set is relatively adequate if it distinguishes the
original program from all its non-equivalent mutants.
Otherwise, a mutation score (MS) is associated to the
test set to measure its effectiveness in terms of
percentage of the revealed non-equivalent mutants. It is
to be noted that a mutant is considered equivalent to the
original program if there is no input data on which the
mutant and the original program produce a different
output. A benefit of the mutation score is that even if no
error is found, it still measures how well the software
has been tested giving the user information about the
program test quality. It can be viewed as a kind of
reliability assessment for the tested software.

A mutation analysis seems well adapted to the
Object-Oriented domain for the following reasons:
- methods body of a well designed OO component

are generally shorter than for a procedural
implementation, most of the control predicates
being dispatched on the system dependencies:
combinatorial explosion of a mutation analysis is
thus limited;

- in OO paradigm, the executed program is an object
with a state (attributes values and recursively states
of the referenced objects): in classical mutation
analysis, the oracle is obtained by comparison
between the explicit outputs of the original program

and the mutant. In the case of OO programming, an
oracle can easily be built by comparing the states of
the initial program with the state of the mutant one
(a deep comparison of the object states). In fact, to
avoid the problem of stateless programs (or if the
injected fault does not affect the state of the object
under test) the object states that will be compared
are the testing programs themselves: the testing
program is an object, where all queries method calls
on the class under test are caught by attributes of the
testing class. With this solution an efficient oracle
function compares testing objects attributes. This
integrated mechanism significantly enlarge the
spectrum of programs concerned by a mutation
analysis (no specific instrumentation of the source
code is needed)

In this paper, we are looking for a subset of mutation
operators

- general enough to be applied to various OO
languages (Java, C++, Eiffel etc)

- implying a limited computational expense,
- ensuring at least control-flow coverage of methods.
Our current choice of mutation operators is the

following:
EHF: Causes an exception when executed
AOR: Replaces occurrences of "+" by "-" and vice-

versa.
LOR: Each occurrence of one of the logical operators

(and, or, nand, nor, xor) is replaced by each of the
other operators; in addition, the expression is
replaced by TRUE and FALSE.

ROR: Each occurrence of one of the relational
operators (<, >, <=, >=, =, /=) is replaced by each
one of the other operators.

NOR: Replaces each statement by the Null statement.
VCP: Constants and variables values are slightly

modified to emulate domain perturbation testing.
Each constant or variable of arithmetic type is both
incremented by one and decremented by one. Each
boolean is replaced by its complement.

The operators introduced for the object-oriented
domain are the following:

- MCP (Methods Call Replacement): Methods calls
are replaced by a call to another method with the
same signature.

- RFI (Referencing Fault Insertion): Stuck-at void
the reference of an object after its creation.
Suppress a clone or copy instruction. Insert a clone
instruction for each reference assignment. Operator
RFI introduces object aliasing and object reference
faults, specific to object-oriented programming.

3.1. Test selection process

The whole process for generating unit test cases
includes the generation of mutants and the application of
test cases against each mutant. The decision can be
either the difference between the initial
implementation’ s output and the mutant’ s output, or the
contracts and embedded oracle function. The diagnosis
on alive mutants consists in determining the reason of
non detection: it may be due to the tests but also to
incomplete specification (and particularly if contracts are
used as oracle functions). It has to be noted that when
the set of test cases is selected, the mutation score is
fixed as well as the test quality of the component.
Moreover, except for diagnosis, the process is
completely automated.

The mutation analysis tool developed, called mutants

slayer or µSlayer, is suitable for the Eiffel language.
This tool injects faults in a class under test (or a set of
classes), executes selftests on each mutant program and
delivers a diagnosis to determine which mutants were
killed by tests. All the process is incremental (we do not
start again the execution of already killed mutants for
example) and is parameterized: the user for example
selects the number and types of mutation he wants to

apply at any step. The µSlayer tool is available from
http://www.irisa.fr/pampa/.

3.2. Component and system test quality

The test quality of a component is simply obtained by
computing the mutation score for the unit testing test
suite executed with the self-test method.

The system test quality is defined as follows:
• let S be a system composed of n components

denoted Ci, i ∈ [1..n],
• let di be the number of dead mutants after

applying the unit test sequence to Ci, and mi the
total number of mutants.

The test quality (TQ), i. e. the mutation score MS,
and the System Test Quality (STQ) are defined as
follows :

i

i

m

d
),(=ii TCTQ

∑

∑

=

== n

i

n

iSSTQ

1
i

1
i

m

d
)(

These quality parameters are associated to each
component and the global system test quality is
computed and updated depending on the number of
components actually integrated to the system.

In this paper, such a test quality estimate is
considered as the main estimate of component’ s
trustability.

4. Test cases generation : genetic
algorithms for test generation

In this section we present the results obtained after
using a genetic algorithm as a way to automatically
improve the basic test cases set in order to reach a better
Test Quality level with limited effort. We begin with a
population of mutant programs to be killed and a test
cases pool. We randomly combine those test cases (or
“gene pool”) to build an initial population of test sets
which are the predators of the mutant population. From
this initial population, how can we mutate the
“predators” test cases and cross them over in order to
improve their ability to kill mutants programs? One of
the major difficulties in genetic algorithms is the
definition of a fitness function. In our case, this difficulty
does not exist: the mutation score is the function that
estimates the efficiency of a test case.

Genetic algorithms [2] have been first developed by
John Holland [3], whose goal was to rigorously explain
natural systems and then design artificial systems based
on natural mechanisms. So, genetic algorithms are
optimization algorithms based on natural genetics and
selection mechanisms. In nature, creatures which best fit
their environment (which are able to avoid predators,
which can handle coldness…) reproduce and, due to
crossover and mutation, the next generation will fit
better. This is just how a genetic algorithm works: it uses
an objective criterion to select the fittest individuals in
one population, it copies them and creates new
individuals with pieces of the old ones.

For test optimization, the problem is modeled as
follows:

Test: 1 test = 1 gene
Gene: G = [an initialization sequence, several

method calls] = [I , S]
Individual: An individual is defined as a finite

set of genes = {G1,…,Gm}
 The function we want to maximize is the one we use as

the fitness function; in our problem, it is the mutation
score.

Here are the three operators that manipulate the
individuals and genes in our problem:

- Reproduction: selection of individuals that will
participate to the next generation guided by the
individuals’ mutation score.

- Crossover: we select at random an integer i
between 1 and individual’ s size, then from two
individuals A and B, we can create two new
individuals A’ and B’ . A’ is made of the i first
genes of A and the m-i last genes of B, and B’ is
made of the i first genes of B and (m-i) last genes
of B.

- Mutation: we use two mutation operators. The first
one changes the method call parameters values in
one or several genes. This mutation operator is
important, for example if there is an if-then-else
structure in a method, we need one value to test the
if-branch and another one to test the else-branch, in
this case it is interesting to try different parameters
for the call. Moreover, in practice, we can use
µSlayer’ s Variable and Constant Perturbation
operator to implement this operator.
The second mutation operator makes a new gene

with two genes either by adding, at the end of a
gene, the method calls of the other gene, or by
switching the genes initialization sequences.

The genetic algorithm is applied until the Quality Test
(i. e. the mutation score of the whole set of individuals)
level is no more improved.

5. Case study

In this case study, the class package of the Pylon
library (http://www.eiffel-
forum.org/archive/arnaud/pylon.htm) relating to the
management of time was made self-testable. These
classes are complex enough to illustrate the approach
and obtain interesting results. The main class of this
package is called p_date_time.e.

This study proceeds in two stages to help isolating the
efforts of test data generation compared to those of
oracle production. In real practice, the contracts - that
should be effective as embedded oracle functions - can
be improved in a continuous process: in this study, we
voluntarily separate test generation stage from contract
improvement one to compare the respective efforts. The
last stage only aims to test the capacity of contracts to
detect faults coming from provider classes. We call that
capacity the "robustness" of the component against an
infected environment.

The aims of this case study were:
1. estimating the test generation with genetic

algorithms for reaching 100% mutation
score,

2. appraising the initial efficiency of contracts
and improve them using this approach,

3. estimating the robustness of a component
embedded selftest to detect faults due to
external infected provider classes.

The last point aims at estimating whether a self-
testable system, with high quality tests, is robust enough
to detect new external faults due to integration or
evolution. Indeed, each component’ s selftest checks its
own correctness but also some of its neighboring
provider’ s components. These crosschecking tests
between dependent components increase the probability
to detect faults in the global system. So the intuition is
that 100 tests method calls per class in a 100 classes
system make a high fault revealing power test of 10 000
tests for the whole system. The question is thus to
estimate whether a selftest has or not a good probability
to detect a fault due to one of its infected provider.

The analysis focuses on three classes: p_date_time.e,
p_date.e and p_time.e.

For the classes that are studied here, this first stage of
generation allowed to eliminate approximately 60 to
70% of the generated mutants. It corresponds to the test
seed that can be used for automatic improvement
through genetic algorithm optimization (see Section
III.3). Figure 3 presents the curves of the mutation score
growth as a function of the number of generated
predators (one plot represents a generation step). To
avoid the combinatorial expense, we limit the new
mutated generation to the predators that have the best
own mutation score (good candidates). The new
generation of predators was thus target-guided (depends
on the alive mutants) and controlled by the fitness
function. Results are encouraging even if the CPU time
remains important (2 days of execution time for the three
components to reach more than 90 percent mutation
score on a Pentium II). The main interest is that the test
improvement process is automated.

Table 1. Main results

p_date p_time p_date_time

generated mutants 673 275 199
equivalents

mutants
49 18 15

% mutants killed
(initial contracts)

10,3% 17,9% 8,%

% mutants killed
after contracts
improvement

69,4% 91,4% 70,1%

Then, the mutation score has been improved by
analyzing the mutants one by one: equivalent mutants
were suppressed and specific test cases were written for
alive mutants to reach 100% mutation score. Concerning
the improvement of contracts, the results on the initial
quality of contracts used as oracles are given in Table 1.
The table recapitulates the initial efficiency of contracts
and then the final level they reached after improvement.

Table 2. p_date_time robustness in an infected environment

Infected component P_date p_time

Total number of methods 19 12
Number of used/infected

methods
14 11

generated mutants 350 161
equivalents 33 8

killed mutants 195 114
% killed mutants 61% 74%

60

80

100

50 100 150 200
#test cases "predators"

m
u

ta
ti

o
n

 s
co

re

p_time

p_date_time

p_date

0

Fig.3. Genetic algorithm results for test optimization

The addition of new contracts thus improves
significantly their capacity to detect internal faults (from
10 to 70 % for p_date, from 18 to 91 for p_time and from
9 to 70 for p_date_time). The fact that all faults are not
detected by the improved contracts reveals the limit of
contracts as oracle functions. The contracts associated
with these methods are unable to detect faults disturbing
the global state of a component. For example, a prune
method of a stack cannot have trivial local contracts
checking whether the element removed had been
previously inserted by a put. In that case, a class invariant
would be adapted to detect such faults.

Concerning the robustness of a component against an
infected component, p_date.e and p_time.e have been
infected and p_date_time client class selftest launched.
Table 2 gives the percentage of mutants detected by the
client class selftest p_date_time. It gives an index of the
robustness of p_date_time against its infected providers.
The numbers of methods used by p_date_time, and thus
infected by our mutation tool, are given as well as number
of generated mutants for each provider class. The results
show however that 60-80% of faults related to the external
environment is locally detected by the selftest of a
component.

6. Reliability and Robustness of a designed
by contract system

Based on mutation analysis, we propose a first
approximation of the initial failure rate that could be used
in a reliability model for initializing some of the initial
constant parameters [8,9]. We do not look for a new
reliability model but the argumentation aims at bridging
the gap between testing and initial reliability/robustness of
a system in a design-by-contracts approach, with self-
testable components.

Embedded contracts, as executable assertions derived
from a specification, provide a mechanism to detect faults
before they provoke a failure. We analyze the initial
reliability of a system, tested using mutation analysis, and
the robustness reached by a system using contractable
components versus no contractable ones.

Let Ci, i ∈ [1..n] be the n components of a system.

Let 0
iF , the initial failure rate (after validation steps),

i.e., the probability that a failure occurs in the component
in the next statement execution. The initial reliability

0
iR of the component is thus: 00 1 ii FR −=
In a mutation analysis approach, the test cases have

been executed against all the mutant programs. Recall that
we consider a component as an organic set of a
specification (contracts), an implementation and the
embedded test sets. A component has a good behavior if

its tests are able to detect failure coming from the
implementation. So, the number of killed mutants
represents a number of successful behavior of the
component, since the known injected faults have been
successfully detected by the selftest. To measure the
initial reliability, the assumption is the following: we
assume that if a new test case is executed, then a failure
will certainly occur. With such an assumption if the
number of statements executed before the faulty code is

infected is iNstat , then the initial failure probability is

i
i NstatF 10 = .

In this paper, we estimate iNstat by multiplying the

number of statements executed in the correct program by
the number of killed mutants. It provides a satisfying
approximation of the number of executed statements. So

we have: iii KtsmukilledNstat ×≅ tan_# , where K is

the number of statements executed by the test set on the
program.

The global initial reliability of a system composed of n
components can thus be estimated in two ways depending
on fault independence assumption. First, we can
approximate the reliability by considering that failure
events occurring in the system are independent. With such

a (pessimistic) assumption, the initial reliability 0R of a

system is equal to : ∏
=

=
n

i
iRR

1

00 .

Another consideration would lead to a more realistic
model, by considering that one statement will be executed
at a time (indeed this no more true for parallel and
distributed software). Under that optimistic assumption,
we have the following initial reliability and failure rate:

∑∑
==

−=−=−=
n

i i

n

i
i

F
Nstat

FR

1
0

1

00

1

1
1

1
11

Both models provide boundaries of the initial reliability
and failure rates.

Independently of the way these factors are measured,
the robustness iRob of a component Ci is defined here as

the probability that a fault is detected, assuming that this
fault would provoke a failure if not detected by a contract
or an equivalent mechanism. Conversely, the “weakness”

iWeak of the component is equal to the probability that the

fault is not detected. This probability corresponds to the
percentage of faults detected by contracts. Indeed, if the
component has been designed by contracts, then the
detected fault can be retrieved, and a mechanism (such as
exception handling and processing) will prevent a failure
to occur. In the case of a component Ci with no contracts,
its robustness is equal to 0: 01 =−= ii WeakRob .

A component isolated from the system has a basic
robustness corresponding to the strength of its embedded
contracts. A component plugged into a system has
robustness enhanced by the fact that its clients will add
their contracts to the fault detection. The notion of Test
Dependency is thus introduced for determining the
relation between a component and its client and heirs in a
system.

Test dependency : A component class Ci is test-
dependent from Cj if it uses some objects from
Cj or inherits from Cj. This dependency relation
is noted:

Ci RTD Cj

If Ci RTD Cj, then the probability that Ci contracts detect

a fault due to Cj is noted i
jDet . To estimate this

probability, one can use the proportion of mutants
detected by Ci while Cj is infected. Even though the test
dependency relation is transitive, we only consider faults
that are detected by a components directly dependent from
the faulty one.

The robustness)_1(_ ii intoSWeakintoSRob −= of

the component into the system S –and so enhanced by the
client components contracts- is thus :

iTDk C R C /)),1((1_ ∏ −⋅−=
k

k
iii kDetWeakintoSRob

 Finally, the robustness ⋅Rob of the system is thus
equal to:

∑
=

×−=−=
n

i
iWeak_intoSre(i)Prob_failuWeakRob

1

11

where re(i)Prob_failu is the probability the failure comes

from the component Ci knowing that a failure certainly
occurs. This probability is approximated by the
component’ s complexity.

To conclude, considering that a fault detected by a
contract allows the service continuity, the initial reliability
of the system is also enhanced as follows:

RobFRWeakFFR newnew ⋅+=⋅−=−= 00000)(11 .

Fixing the values
The parameters of this model of robustness and initial

reliability are easily fixed using mutation analysis.
00 1 ii FR −= with

i
i NstatF 10 =

=−= ii WeakRob 1 percentage of mutants detected by

contracts.
j

iDet = percentage of mutants in Cj detected by Ci
contracts.

nre(i)Prob_failu /1=

Illustration

To estimate (roughly) the gain in robustness of a
system, we consider the SMDS system composed of 37
components, already studied in [7] for optimizing
integration testing. Here, we apply our robustness
estimator for this system. The detailed model is not
needed to understand the application to robustness. We fix
the values as follows to appraise the global improvement
in robustness of the system due to a systematic use of
contracts:

=−= ii WeakRob 1 0.85, j
iDet =0.7 and

nre(i)Prob_failu /1= = 1/37.

As a mean estimator, we consider that a test case is
composed of mean 100 tests and that 200 mutants are
generated for each of the component. A test
approximately executes 10 statements.

The initial failure rate of the system composed of 37

components is thus equal to 70 1035.1 −⋅=F .

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,2 0,4 0,6 0,8 1

components robustness

sy
st

em
 r

o
b

u
st

n
es

s

0,7

0,5

0,3

0

robustness curve

Fig. 4. System Robustness depends on
Components Robustness

Figure 4 first shows four evolutions of the SMDS
system robustness depending on the components
robustness. The four curves correspond to four different

j
iDet values. This figure shows that contracts, by

enhancing a component’ s robustness and by enhancing the
j

iDet value, improve the global system’ s robustness.

Since it is obvious that a relationship exists between
j

iDet and the robustness, the figure 4 also displays the

“robustness curve”. To draw this curve, we have

considered that j
iDet is related to the robustness by a

linear function such as: RobKDet j
i ⋅= . Here we have

taken K equal to 0.8. So this curve really corresponds to
the real global robustness evolution: during the
development phase, the programmer will start with basic
weak contracts and then enhance them. So during this

period, the robustness of components and jiDet will grow

together and so will the system’ s robustness.

7. Conclusion

The feasibility of components validation by mutation
analysis and its utility to test generation have been studied
as well has the robustness of trustable and self-testable
components into an infected environment. The approach
presented in this paper aims at providing a consistent
framework for building trust into components. By
measuring the quality of test cases (the revealing power of
the test cases [12]) we seek to build trust in a component
passing those test cases. The analysis also shows that a
design-by-contract approach associated to the notion of
embedded selftest significantly improves the robustness,
and indirectly the reliability, of a final-product.

References

[1] R. DeMillo, R. Lipton, and F. Sayward, “Hints on Test
Data Selection : Help For The Practicing Programmer”,
IEEE Computer, Vol. 11, pp. 34-41, 1978.

[2] D. E. Goldberg, “Genetic Algorithms in Search,
Optimization and Machine Learning”, Addison Wesley,
1989. ISBN 0-201-15767-5.

[3] J. H. Holland, “Robust algorithms for adaptation set in
general formal framework”, Proceedings of the 1970 IEEE
symposium on adaptive processes (9th) decision and
control, 5.1 –5.5, December 1970.

[4] William E. Howden and Yudong Huang, “Software
Trustability”, In proc. of the IEEE Symposium on
Adaptive processes- Decision and Control, XVII, 5.1-5.5,
1970.

[5] J-M. Jézéquel, M. Train and C. Mingins, “Design-Patterns
and Contract” Addison-Wesley, 0ctober 1999. ISBN 0-
201-30959-9.

[6] Yves Le Traon, Daniel Deveaux and Jean-Marc Jézéquel,
“Self-testable components: from pragmatic tests to a
design-for-testability methodology”, In proc. of TOOLS-
Europe’ 99, TOOLS, Nancy (France), pp. 96-107, June
1999.

[7] Yves Le Traon, Thierry Jéron, Jean-Marc Jézéquel and
Pierre Morel, “Efficient OO Integration and Regression
Testing”, IEEE Transactions on Reliability, March 2000.

[8] M. Lyu, “Handbook of Software Reliability Engineering”,
McGraw Hill and IEEE Computer Society Press, 1996,
ISBN 0-07-0349400-8.

[9] J. D. Musa, A. Iannino, K. Okumoto, “Software
Reliability: Measurement, Prediction, Application”,
McGraw Hill, 1987, ISBN 0-07-044093-X.

[10] B. Meyer, “Applying design by contract”, IEEE Computer,
Vol. 25, No. 10, pp. 40-52, October 1992.

[11] J. Offutt, J. Pan, K. Tewary and T. Zhang, “An
experimental evaluation of data flow and mutation
testing”, Software Practice and Experience, Vol. 26, No. 2,
pp. 165-176, February 1996.

[12] J. Voas, “PIE: A Dynamic Failure-Based Technique”,
IEEE Transactions on Software Engineering, Vol.18, pp.
717-727, 1992.

