N
N

N

HAL

open science

Trustable components: Yet another mutation-based
approach

Benoit Baudry, Hanh Vu Le, Jean-Marc Jézéquel, Yves Le Traon

» To cite this version:

Benoit Baudry, Hanh Vu Le, Jean-Marc Jézéquel, Yves Le Traon. Trustable components: Yet another
mutation-based approach. Proceedings of the 1st Symposium on Mutation Testing (Mutation’2000),

Oct 2000, San Jose CA, United States. hal-00777468

HAL Id: hal-00777468
https://inria.hal.science/hal-00777468

Submitted on 24 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-00777468
https://hal.archives-ouvertes.fr

Trustable Components: Yet Another M utation-Based Approach

Benoit Baudry, Vu Le Hanh, Jean-Marc Jézéquel and Yves Le Traon
IRISA, Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France

{Benoit.Baudry, vihanh, Jean-Marc.Jezeqiteles.Le_Traon }@irisa.fr

Abstract
This paper presents the use of mutation analysis as
the main qualification technique for:
- estimating and automatically enhancing a test set
(using genetic algorithms),
- qualifying and improving a component’ s contracts
(that is the specification facet)

- measuring the impact of contractable robust
components on global system robustness and
reliability.

The methodology is based on an integrated design
and test approach for OO software components. It is
dedicated to design-by-contract, where the spextitio
is systematically derived into executable assestion
called contracts (invariant properties, pre/postddions
of methods). The testing-for-trust approach, usihg
mutation analysis, checks the consistency between
specification, implementation and tests. It points the
tests lack of efficiency but also the lack of i of
the contracts. The feasibility of components vaiigaby
mutation analysis and its usefulness for test gestiear
are studied as well as the robustness of trustalolé
self-testable components into an infected enviranme

1. Introduction

The Object-Oriented approach offers both strong
encapsulation mechanisms and efficient operators fo
software reusability and extensibility. In a comeot
based approach usinglasign-by-contracinethodology,
the following considerations make mutation analysis
useful for several analysis levels:

- in a design-by-contract approach [5,10],
components integrate “contracts” that are
systematically derived from the specification.
Contracts behave as executable assertions that
automatically check the components consistency
(pre-postconditions, class invariants). Based on
mutation analysis, the efficiency of contracts can
thus be estimated by their capacity of rejecting
faulty implementation, and the enhancement of

contracts can be guided. Then, and also based on
a particular application of mutation analysis, the
contribution of each component to the global
system robustness and reliability can be
estimated.

- Components, to be reusable, are considered as an
“organic” set of a specification, an
implementation and embedded tests. With such
self-testable component definition, all the
difficulty consists of automatically improving
embedded tests based on the basic test cases
written by the tester/developer. Being given these
basic test cases, we consider mutants programs as
a population of preys and, conversely, a testset a
a particular predator. This analogy leads to the
application of genetic algorithms to enhance the
original population of predators using as a fitness
function the mutation score.

- Trustability [4] is finally the result of the globa
packaging of a design-by-contract approach,
component self-testability and mutation analysis
for both tests & contracts improvement and
gualification are

In this paper, we propose a testing-for-trust
methodology that helps checking the consistencthef
component’'s three facets, i.e.,, specification/
implementation and tests. The methodology is an
original adaptation from mutation analysis prineipl]:
the quality of a tests set is related to the prigorof
faulty programs it detects. Faulty programs aresgatied
by systematic fault injection in the original
implementation. In our approach, we consider that
contracts should provide most of the oracle fumstio
the question of the efficiency of contracts to dete
anomalies in the implementation or in the provider
environment is thus tackled and studied (Sectionif4)
the generation of a basic tests set is easy, inmyats
quality may require prohibitive efforts. In a logic
continuity with our mutation analysis approach &moal,
we describe how such a basic unit tests set, seartest
seed, can be automatically improved using genetic
algorithms to reach a better quality level.

Section 2 opens on methodological views and steps
for building trustable component in our approach.

Section 3 concentrates on the mutation testinggssoc
adapted to OO domain and the associated tool dedica

to the Eiffel programming language. The test qualit
estimate is presented as well as the automatic
optimization of test cases using genetic algorithms
(Section 4). Section 5 is devoted to an instructigee
study that illustrates the feasibility and the Waseof

such an approach. Section 6 presents a robustness
measure, for a software component, based on aiomntat
analysis.

2. Test quality for trustable components

The methodology is based on an integrated design an
test approach for OO software components, partigula
adapted to a design-by-contract approach, where the
specification is systematically derived into exedlg
assertions (invariant properties, pre/postcondstiaf
methods). Classes that serve for illustrating fhyer@ach
are considered as basic unit components: a componen
can also be any class package that implements af set
well-defined functionality. Test suites are definad
being an “organic” part of software OO component.
Indeed, a component is composed of its specifioatio
(documentation, methods signature, invariant progser
pre/ postconditions), one implementation and th& te
cases needed for testing it. This view of an OO
component is illustrated under the triangle repreg®n
(cf. Figure 1). To a component specified functidgek
added a new feature that enables it to test itsled:
component is made self-testable Self-testable
components have the ability to launch their ownt uni
tests as detailed in [6].

From a methodological point of view, we argue that
the trust we have in a component depends on the
consistency between the specification (refined in
executable contracts), the implementation and #s¢ t
cases. The confrontation between these three feaets
to the improvement of each one. Before definitely
embedding a test suite, the efficiency of test €amast
be checked and estimated against implementation and
specification, especially contracts. Tests aredbfribm
the specification of the component; they are aeotitbn
of its precision. They are composed of two independ
conceptual parts: test cases and oracles. Tesk case
execute the functions of the component. Embedded
oracles — predicates for the fault detection denisi can
either be provided by assertions included into tewt
cases or by executable contracts. In a design-biramt
approach, our experience is thadstof the decisions are
provided by contracts derived from the specifiqatio
The fact components’ contracts are inefficienetea a
fault exercised by the test cases reveals a lack of

precision in the specification. The specificatidrogd
be refined and new contracts added. The trust én th
component is thus related to the test cases eftigiand
the contracts “completeness”. We can trust the
implementation since we have tested it with a gtesd
cases set, and we trust the specification because i
precise enough to derive efficient contracts a<lera
functions.

Specification
Contract between the client
and the component

V &V: checking

Implementation

against

Specification (oracle)
(e.g., embedded tests)

Fig. 1. Trust based on triangle consistency

The question is thus to be able to measure this
consistency. This quality estimate quantifies thsttone
can have in a component. The chosen quality aiteri
proposed here is the proportion of injected fatitts
self-test detects when faults are systematicaljgcted
into the component implementation. This estimatenis
fact, derived from the mutation testing techniquiich
is adapted for OO classes. The main classicaldiioit
for mutation analysis is the combinatorial expense.

The global component design-for-trust process

consists of 6 steps that are presented in figure 2.

1. At first, the programmer writes an initial selftest
that reaches a given initial Mutation Score (MS).

2. This step aims at automatically enhancing theahiti
selftest. We propose to use genetic algorithms for
that purpose, but any other technique could be.used
The used oracle function is the comparison between
the testing object states.

3. During the third step, the user has to check if the
tests do not detect errors in the initial program.
errors are found, he must debug them.

4. The fourth step consists in measuring the contracts
quality thanks to mutation testing. We use the
embedded contracts as an oracle function here.

5. Then a non-automated step consists of improving
contracts to reach an expected quality

6. At last, the process constructs a global oracle
function. To do this, it executes all the teststlom
initial class, and the object’ s state after exacus
the oracle value.

Automated process

. equivalentmutants
automatic

initial testsgeneration . i
X S Contracts Oracle function
and bugs correction—» optimization of » suppression p Mmeasure comracts_’ . reconstruction
) . remaining bugs efficiency improvement
(tester ' swork). the initial tests set :
correction
contracts contracts
contracts contracts contracts contracts
MS= trust i‘ f MS= trust 8
impl test impl. ; - test impl impl. test impl. test
) test impl. MS= trust tes pl test MS= trust

Fig. 2.The global testing-for-trust process

3. Mutation testing technique for OO
domain

Mutation testing is a testing technique that wast fi
designed to create effective test data, with aronanmt
fault revealing power [11]. It has been originally
proposed in 1978 [1] , and consists in creatingtac$
faulty versions omutantsof a program with the ultimate
goal of designing a tests set that distinguishes th
program from all its mutants. In practice, faulte a
modeled by a set ofmutation operatorswhere each
operator represents a class of software faultxréate a
mutant, it is sufficient to apply its associateckigtor to
the original program.

A tests set is relatively adequate if it distingnais the
original program from all its non-equivalent mutant
Otherwise, amutation score (MS)s associated to the
test set to measure its effectiveness in terms of
percentage of the revealed non-equivalent muténis.
to be noted that a mutant is consideeedivalentto the
original program if there is no input data on whitie
mutant and the original program produce a different
output. A benefit of the mutation score is thatreifeno
error is found, it still measures how well the wsafte
has been tested giving the user information abbet t
program test quality. It can be viewed as a kind of
reliability assessment for the tested software.

A mutation analysis seems well adapted to the
Object-Oriented domain for the following reasons:

- methods body of a well designed OO component
are generally shorter than for a procedural
implementation, most of the control predicates
being dispatched on the system dependencies:
combinatorial explosion of a mutation analysis is
thus limited;

- in OO paradigm, the executed program is an object
with a state (attributes values and recursiveliesta
of the referenced objects): in classical mutation
analysis, the oracle is obtained by comparison
between the explicit outputs of the original progra

and the mutant. In the case of OO programming, an
oracle can easily be built by comparing the stafes
the initial program with the state of the mutaneon
(a deep comparison of the object states). In fact,
avoid the problem of stateless programs (or if the
injected fault does not affect the state of theeobj
under test) the object states that will be compared
are the testing programs themselves: the testing
program is an object, where all queries methods call
on the class under test are caught by attributéseof
testing class. With this solution an efficient deac
function compares testing objects attributes. This
integrated mechanism significantly enlarge the
spectrum of programs concerned by a mutation
analysis (no specific instrumentation of the source
code is needed)

In this paper, we are looking for a subset of maoitat
operators
- general enough to be applied to various OO
languages (Java, C++, Eiffel etc)
- implying a limited computational expense,
- ensuring at least control-flow coverage of methods.

Our current choice of mutation operators is the

following:

EHF: Causes an exception when executed

AOR: Replaces occurrences of "+" by "-" and vice-
versa.

LOR: Each occurrence of one of the logical opegator
(and, or, nand nor, xor) is replaced by each of the
other operators; in addition, the expression is
replaced by TRUE and FALSE.

ROR: Each occurrence of one of the relational
operators (<, >, <=, >=, =, /=) is replaced by each
one of the other operators.

NOR: Replaces each statement byNod statement.

VCP: Constants and variables values are slightly
modified to emulate domain perturbation testing.
Each constant or variable of arithmetic type ishbot
incremented by one and decremented by one. Each
booleanis replaced by its complement.

The operators introduced for the object-oriented
domain are the following:

- MCP (Methods Call Replacement): Methods calls
are replaced by a call to another method with the
same signature.

- RFI (Referencing Fault Insertion): Stuck-at void
the reference of an object after its creation.
Suppress a clone or copy instruction. Insert aeclon
instruction for each reference assignment. Operator
RFI introduces object aliasing and object reference
faults, specific to object-oriented programming.

3.1. Test selection process

The whole process for generating unit test cases
includes the generation of mutants and the appdicatf
test cases against each mutant. The decision can be
either the difference between the initial
implementation’ s output and the mutant’ s outpuheor
contracts and embedded oracle function. The didggnos
on alive mutants consists in determining the reason
non detection: it may be due to the tests but #iso
incomplete specification (and particularly if cattts are
used as oracle functions). It has to be noted whwegn
the set of test cases is selected, the mutatiore 960
fixed as well as the test quality of the component.
Moreover, except for diagnosis, the process is
completely automated.

The mutation analysis tool developed, called mgtant

slayer or[Slayer, is suitable for the Eiffel language.
This tool injects faults in a class under test gaset of
classes), executes selftests on each mutant progmnam
delivers a diagnosis to determine which mutantsewer
killed by tests. All the process is incremental (@znot
start again the execution of already killed mutéfots
example) and is parameterized: the user for example
selects the number and types of mutation he wants t

apply at any step. ThfSlayer tool is available from
http://www.irisa.fr/pampa/

3.2. Component and system test quality

The test quality of a component is simply obtaibgd
computing the mutation score for the unit testiegtt
suite executed with the self-test method.

The system test quality is defined as follows:

e let S be a system composed of n components
denoted Gi O [1..n],

* let d be the number of dead mutants after
applying the unit test sequence tQ &d mthe
total number of mutants.

The test quality (TQ), i. e. the mutation score MS,

and the System Test Quality (STQ) are defined as
follows :

di
STQS) =L —
m;

TQ(ci,Tn:%

&

These quality parameters are associated to each
component and the global system test quality is
computed and updated depending on the number of
components actually integrated to the system.

In this paper, such a test quality estimate is
considered as the main estimate of component’ s
trustability.

4. Test casesgeneration : genetic
algorithmsfor test generation

In this section we present the results obtainedr aft
using a genetic algorithm as a way to automatically
improve the basic test cases set in order to radwtter
Test Quality level with limited effort. We begin thia
population of mutant programs to be killed and st te
cases pool. We randomly combine those test cases (0
“gene pool”) to build an initial population of tesets
which are the predators of the mutant populatioont
this initial population, how can we mutate the
“predators” test cases and cross them over in caler
improve their ability to kill mutants programs? Ook
the major difficulties in genetic algorithms is the
definition of a fitness function. In our case, tHifficulty
does not exist: the mutation score is the functioat
estimates the efficiency of a test case.

Genetic algorithms [2] have been first developed by
John Holland [3], whose goal was to rigorously expl
natural systems and then design artificial systbased
on natural mechanisms. So, genetic algorithms are
optimization algorithms based on natural genetiocd a
selection mechanisms. In nature, creatures whishftie
their environment (which are able to avoid predator
which can handle coldness...) reproduce and, due to
crossover and mutation, the next generation will fi
better. This is just how a genetic algorithm woiksises
an objective criterion to select the fittest indivals in
one population, it copies them and creates new
individuals with pieces of the old ones.

For test optimization, the problem is modeled as
follows:

Test:1 test = 1 gene
Gene: G = [an initialization sequence, several

method calls] =[I, S]

Individual: An individual is defined as a finite

set of genes = {G...,G,}

The function we want to maximize is the one we ase
the fitness function; in our problem, it is the mtidn
score.

Here are the three operators that manipulate the
individuals and genes in our problem:

- Reproduction: selection of individuals that will
participate to the next generation guided by the
individuals’ mutation score.

- Crossover: we select at random an integer i
between 1 and individual’ s size, then from two
individuals A and B, we can create two new
individuals A’ and B’. A’ is made of the i first
genes of A and the m-i last genes of B, and B’ is
made of the i first genes of B and (m-i) last genes
of B.

- Mutation: we use two mutation operators. The first
one changes the method call parameters values in
one or several genes. This mutation operator is
important, for example if there is an if-then-else
structure in a method, we need one value to test th
if-branch and another one to test the else-branch,
this case it is interesting to try different paraens
for the call. Moreover, in practice, we can use
uSlayer’ s Variable and Constant Perturbation
operator to implement this operator.

The second mutation operator makes a new gene
with two genes either by adding, at the end of a
gene, the method calls of the other gene, or by
switching the genes initialization sequences.

The genetic algorithm is applied until the Qualigst

(i. e. the mutation score of the whole set of iflals)

level is no more improved.

5. Casestudy

In this case study, the class package of the Pylon
library (http://wvww.eiffel-
forum.org/archive/arnaud/pylon.htm) relating to the
management of time was made self-testable. These
classes are complex enough to illustrate the approa
and obtain interesting results. The main classhig t
package is called p_date_time.e.

This study proceeds in two stages to help isolatieg
efforts of test data generation compared to thdse o
oracle production. In real practice, the contractbat
should be effective as embedded oracle functiocan-
be improved in a continuous process: in this stwdy,
voluntarily separate test generation stage frontraon
improvement one to compare the respective effaits.
last stage only aims to test the capacity of cotdréo
detect faults coming from provider classes. We tailt
capacity the f'obustness’ of the component against an
infected environment.

The aims of this case study were:

1. estimating the test generation with genetic
algorithms for reaching 100% mutation
score,

2. appraising the initial efficiency of contracts
and improve them using this approach,

3. estimating the robustness of a component
embedded selftest to detect faults due to
external infected provider classes.

The last point aims at estimating whether a self-
testable system, with high quality tests, is rolmmsiugh
to detect new external faults due to integration or
evolution. Indeed, each component’ s selftest chiecks
own correctness but also some of its neighboring
provider s components. These crosschecking tests
between dependent components increase the prafpabili
to detect faults in the global system. So the fitmiis
that 100 tests method calls per class in a 100setas
system make a high fault revealing power test 0000
tests for the whole system. The question is thus to
estimate whether a selftest has or not a good pililga
to detect a fault due to one of its infected previd

The analysis focuses on three claspedate time.e,
p_date.e andp_time.e.

For the classes that are studied here, this tagesof
generation allowed to eliminate approximately 60 to
70% of the generated mutants. It corresponds taetste
seed that can be used for automatic improvement
through genetic algorithm optimization (see Section
111.3). Figure 3 presents the curves of the mutatoore
growth as a function of the number of generated
predators (one plot represents a generation siiep).
avoid the combinatorial expense, we limit the new
mutated generation to the predators that have ds¢ b
own mutation score (good candidates). The new
generation of predators was thus target-guidedefuisp
on the alive mutants) and controlled by the fithess
function. Results are encouraging even if the Ciptg t
remains important (2 days of execution time forttivee
components to reach more than 90 percent mutation
score on a Pentium Il). The main interest is thattest
improvement process is automated.

Table 1. Main results

[p date] p timed p date time
1

generated mutaffls 673 275 199
equivalents ‘ 49 18 15
mutants

% mutants killed I‘ 10,3%

(initial contracts)

% mutants killed‘

17,9% 8,%

69,4% | 91,4% 70,1%
after contracts
improvement

Then, the mutation score has been improved by
analyzing the mutants one by one: equivalent mstant
were suppressed and specific test cases werenvft
alive mutants to reach 100% mutation score. Cofngrn
the improvement of contracts, the results on thigain

quality of contracts used as oracles are givenaibld 1.

The table recapitulates the initial efficiency antracts

and then the final level they reached after impnoeet.

Table 2. p_date_time robustness in an infected environment

Infected component
Total number of methods

Number of used/infected
methods

generated mutants

equivalents

killed mutants

% killed mutants

mutation score

P date p_time
19 12

14 11

350 161

33 8
195 114

61% 74%

- -p_time

—=a—p_date time

100

I 1

150 200

#test cases "predators”

Fig.3. Genetic algorithm results for test optimization

The addition of new contracts thus improves
significantly their capacity to detect internal ksufrom
10 to 70 % for p_date, from 18 to 91 for p_time &
9 to 70 for p_date_time). The fact that all fawdte not
detected by the improved contracts reveals thet lohi
contracts as oracle functions. The contracts ast&uti
with these methods are unable to detect faultsinthisty
the global state of a component. For exampl@rune
method of a stack cannot have trivial local corigac
checking whether the element
previously inserted by a put. In that case, a diagsriant
would be adapted to detect such faults.

removed had been

6. Reliability and Robustness of a designed
by contract system

Based on mutation analysis, we propose a first
approximation of the initial failure rate that cdlle used
in a reliability model for initializing some of thimitial
constant parameters [8,9]. We do not look for a new
reliability model but the argumentation aims atdbing
the gap between testing and initial reliabilityfistness of
a system in a design-by-contracts approach, with se
testable components.

Embedded contracts, as executable assertions derive
from a specification, provide a mechanism to defiakts
before they provoke a failure. We analyze the ahiti

Concerning the robustness of a component against arreliability of a system, tested using mutation gsisl, and

infected componentp_date.e and p_time.e have been
infected andp_date time client class selftest launched.
Table 2 gives the percentage of mutants detectethdoy
client class selftegt_date time. It gives an index of the
robustness op_date time against its infected providers.
The numbers of methods used fydate time, and thus
infected by our mutation tool, are given as welhamber
of generated mutants for each provider cld$ge results
show however that 60-80% of faults related to tkteraal
environment is locally detected by the selftest aof
component.

the robustness reached by a system using contlactab
components versus no contractable ones.
Let G, i O [1..n] be the n components of a system.

Let Fio, the initial failure rate (after validation steps)

i.e., the probability that a failure occurs in t@mponent
in the next statement execution. The initial religb
R of the component is thuR® =1- F,°

In a mutation analysis approach, the test cases hav
been executed against all the mutant programs.lRbat
we consider a component as an organic set of a
specification (contracts), an implementation anc th
embedded test sets. A component has a good behgvior

its tests are able to detect failure coming frone th
implementation. So,

A component isolated from the system has a basic

the number of Kkilled mutants robustness corresponding to the strength of itseelohdsd

represents a number of successful behavior of thecontracts. A component plugged into a system has
component, since the known injected faults havenbee robustness enhanced by the fact that its clienisagd

successfully detected by the selftest. To meashee t
initial reliability, the assumption is the followgn we
assume that if a new test case is executed, tHaituee
will certainly occur. With such an assumption ifeth
number of statements executed before the faultg é¢ed

infected is Nstat , then the initial failure probability is

0 _
o= }{\lstat '

In this paper, we estimatélstat by multiplying the
number of statements executed in the correct pnodna

the number of killed mutants. It provides a satigfy
approximation of the number of executed statemesus.

we have: Nstat C#killed _mutants, xK;, where K is

the number of statements executed by the testrséteo
program.

The global initial reliability of a system composefin
components can thus be estimated in two ways dépend
on fault independence assumption. First,
approximate the reliability by considering that|deé
events occurring in the system are independent ¥ith

a (pessimistic) assumption, the initial reliabilig” of a

n
system is equal toR® = M R .
i=1

Another consideration would lead to a more realisti
model, by considering that one statement will becexed
at a time (indeed this no more true for paralletl an
distributed software). Under that optimistic asstiorg
we have the following initial reliability and faile rate:

RO=1-F0=1-— 1 =g 1
S 1

n
> Nstat > =5
= = F

Both models provide boundaries of the initial reilidy
and failure rates.

Independently of the way these factors are measured

the robustnesskoh of a component Os defined here as

the probability that a fault is detected, assuntheg this
fault would provoke a failure if not detected bgantract
or an equivalent mechanism. Conversely, the “wes&ne
Weak of the component is equal to the probability tihat t
fault is not detected. This probability corresponashe
percentage of faults detected by contracts. Indédte

component has been designed by contracts, then the

detected fault can be retrieved, and a mechanisaoh (gs
exception handling and processing) will preventitufe

to occur. In the case of a componeni@h no contracts,
its robustness is equal to BRolh =1-Weak =0.

we can

their contracts to the fault detection. The notanTest
Dependency is thus introduced for determining the
relation between a component and its client ancshieia
system.

Test dependency : A component class,Gs test-
dependenfrom C if it uses some objects from
C, or inherits from ¢ This dependency relation
is noted:

CR,GC
If C, R;, C, then the probability that, Contracts detect
a fault due to Cis noted Det'j. To estimate this

probability, one can use the proportion of mutants
detected by Cwhile C is infected. Even though the test
dependency relation Is transitive, we only consideits
that are detected by a components directly depéficen
the faulty one.

The robustnesBob_intoS (=1-Weak_intoS) of
the component into the system S —and so enhancétkby
client components contracts- is thus :

Rob_into$ =1-(Weak]] (L-Def)), k/G Ry C,
k

Finally, the robustnessRoblof the system is thus
equal to:

n
Rob=1-Weak=1- z Prob_failure(i) xWeak_into$
1=1

where Prob_failure(i) is the probability the failure comes
from the component knowing that a failure certainly
occurs. This probability is approximated by the
component’ s complexity.

To conclude, considering that a fault detected by a
contract allows the service continuity, the initialiability
of the system is also enhanced as follows:

Rr?ew =1- I:noew =1-(F 0 Wealk = R° + F° [Rob.

Fixing the values
The parameters of this model of robustness anilinit
reliability are easily fixed using mutation analysi

R =1-FCwith % = 4

Roh =1-Weak =percentage of mutants detected by
contracts.
Deg' = percentage of mutants in Qetected by C

contracts.
Prob_failue(i)=1/n

[llustration 7. Conclusion

To estimate (roughly) the gain in robustness of a The feasibility of components validation by mutatio
system, we consider the SMDS system composed of 37analysis and its utility to test generation haverbstudied
components, already studied in [7] for optimizing as well has the robustness of trustable and ssititite
integration testing. Here, we apply our robustness components into an infected environment. The amproa
estimator for this system. The detailed model ig no presented in this paper aims at providing a coesist
needed to understand the application to robustiésdix framework for building trust into components. By
the values as follows to appraise the global imgnoent measuring the quality of test cases (the reveglowger of
in robustness of the system due to a systematicotise the test cases [12]) we seek to build trust in mpanent
contracts: passing those test cases. The analysis also shavs t

Rob =1-Weak =0.85, Deqj =0.7 and design-by-contract appr'o'ach as;ociated to the maifo
Prob_failure(i) = 1/ n = 1/37. embedded selftest significantly improves the rotess,

) _ _and indirectly the reliability, of a final-product.
As a mean estimator, we consider that a test case i
composed of mean 100 tests and that 200 mutants are Refer ences
generated for each of the component. A test

approximately executes 10 statements. [1] R. DeMillo, R. Lipton, and F. Sayward, “Hints dfest
The initial failure rate of the system composed3af Data Selection : Help For The Practicing Programimer
components is thus equal f° = 1350107 . IEEE ComputerVol. 11, pp. 34-41, 1978.
[2] D. E. Goldberg, “Genetic Algorithms in Search,
Optimization and Machine Learning”, Addison Wesley,
1989. ISBN 0-201-15767-5.

15
0,9 7
0,8

§ 071 o7 [3] J. H. Holland, “Robust algorithms for adaptatisst in
g 06 05 general formal framework”, Proceedings of the 187BE
£ 054 Loos symposium on adaptive processes’) (Yecision and
g 04 —s—0

i 0,3 1 robustness curve COntrOl, 51 _55, December 1970

0,2
0,1 1

[4] Wwililam E. Howden and Yudong Huang, “Software
Trustability”, In proc. of the IEEE Symposium on
Adaptive processes- Decision and Control, XVII,-5.5,

T T
0 0,2 0,4 0,6 08 1

components robustness 1970'
: [5] J-M. Jézéquel, M. Train and C. Mingins, “DesiBatterns
Fig. 4. System Robustness depends on and Contract” Addison-Wesley, October 1999. ISBN 0-
Components Robustness 201-30959-9.

Yves Le Traon, Daniel Deveaux and Jean-Marc giézie
“Self-testable components: from pragmatic tests ato
design-for-testability methodology”, In proc. of DDS-

Figure 4 first shows four evolutions of the SMDS [6]
system robustness depending on the components

robustness. The four curves correspond to fouewdifit Europe’ 99, TOOLS, Nancy (France), pp. 96-107, June
Det' values. This figure shows that contracts, by 1999. .) .

. s . [71 Yves Le Traon, Thierry Jéron, Jean-Marc Jézécrel
enhancing a component’ s robustness and by enhaneing Pierre Morel, “Efficient OO Integration and Regriess
Det’ value, improve the global system’ s robustness. Testing”,IEEE Transactions on Reliabilitfjiarch 2000.

. oo M. Lyu, “Handbook of Software Reliability Engireng”,
S!nce it is obvious that a relationship exists lestw McGraw Hill and IEEE Computer Society Press, 1996,
Det’ and the robustness, the figure 4 also displags th ISBN 0-07-0349400-8.

J. D. Musa, A. lannino, K. Okumoto, “Software

‘robustness curve”. To draw this curve, we have Reliability: Measurement, Prediction, Application”,
considered thatDeg' is related to the robustness by a McGraw Hill, 1987, ISBN 0-07-044093-X.

: [10] B. Meyer, “Applying design by contracttEEE Computer
linear function such asDeI%J = K [Rob. Here we have Vol. 25, No. 10, pp. 40-52, October 1992.

[11] J. Offutt, J. Pan, K. Tewary and T. Zhang, “An
experimental evaluation of data flow and mutation
testing”, Software Practice and Experiendgol. 26, No. 2,

takenK equal to 0.8. So this curve really corresponds to
the real global robustness evolution: during the

development phase, the programmer will start wahib pp. 165-176, February 1996.
weak contracts and then enhance them. So durisg thi [12] J. voas, “PIE: A Dynamic Failure-Based Techmy
period, the robustness of components &et’ will grow IEEE Transactions on Software Engineerinépl.18, pp.

. 717-727, 1992.
together and so will the system’ s robustness.

