Subspace Identification Methods for Hammerstein Systems: Rank Constraint and Dimension Problem

Abstract : This article studies the subspace identification methods (SIMs) for Hammerstein systems with major focus on a rank constraint and the related dimension problem. We analyse the effects of the rank constraint on the three steps of a unifying framework for SIMs: the rank constraint has no effect on the first two steps, but does so on the third step. If the rank constraint is ignored, as in the existing over-parametrised method (OPM) for Hammerstein system identification, the optimality of the resulting estimate can still be established. Even so, the OPM may suffer from the dimension problem resulting in a low numerical efficiency. To resolve the dimension problem, we propose a new subspace-based method, named as the least-parametrised method (LPM), for identification of Hammerstein systems with non-coupling input nonlinearities. Simulation results are provided to demonstrate the effectiveness of the LPM, and show the necessity of considering the rank constraint to improve the numerical efficiency.
Type de document :
Article dans une revue
International Journal of Control, Taylor & Francis, 2010, 83 (11), pp.2204-2216. 〈10.1080/00207179.2010.506658〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00777470
Contributeur : Qinghua Zhang <>
Soumis le : jeudi 17 janvier 2013 - 15:33:26
Dernière modification le : vendredi 25 mai 2018 - 12:02:05

Identifiants

Collections

Citation

Chunyun Yan, Jiandong Wang, Qinghua Zhang. Subspace Identification Methods for Hammerstein Systems: Rank Constraint and Dimension Problem. International Journal of Control, Taylor & Francis, 2010, 83 (11), pp.2204-2216. 〈10.1080/00207179.2010.506658〉. 〈hal-00777470〉

Partager

Métriques

Consultations de la notice

164