Canonized Rewriting and Ground AC Completion Modulo Shostak Theories

Sylvain Conchon 1, 2 Evelyne Contejean 1, 2 Mohamed Iguernelala 1, 2
2 PROVAL - Proof of Programs
UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR
Abstract : AC-completion efficiently handles equality modulo associative and commutative function symbols. When the input is ground, the procedure terminates and provides a decision algorithm for the word problem. In this paper, we present a modular extension of ground ACcompletion for deciding formulas in the combination of the theory of equality with user-defined AC symbols, uninterpreted symbols and an arbitrary signature disjoint Shostak theory X. Our algorithm, called AC(X), is obtained by augmenting in a modular way ground AC-completion with the canonizer and solver present for the theory X. This integration rests on canonized rewriting, a new relation reminiscent to normalized rewriting, which integrates canonizers in rewriting steps. AC(X) is proved sound, complete and terminating, and is implemented to extend the core of the Alt-Ergo theorem prover.
Type de document :
Communication dans un congrès
TACAS - Tools and Algorithms for the Construction and Analysis of Systems, 2011, Saarbrücken, Germany. 2011
Liste complète des métadonnées

https://hal.inria.fr/hal-00777663
Contributeur : Claude Marché <>
Soumis le : jeudi 17 janvier 2013 - 17:20:41
Dernière modification le : jeudi 9 février 2017 - 15:51:59

Fichier

conchon11tacas.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00777663, version 1

Citation

Sylvain Conchon, Evelyne Contejean, Mohamed Iguernelala. Canonized Rewriting and Ground AC Completion Modulo Shostak Theories. TACAS - Tools and Algorithms for the Construction and Analysis of Systems, 2011, Saarbrücken, Germany. 2011. <hal-00777663>

Partager

Métriques

Consultations de
la notice

166

Téléchargements du document

148