Creative telescoping for rational functions using the Griffiths-Dwork method

Alin Bostan, Pierre Lairez, Bruno Salvy

To cite this version:

Alin Bostan, Pierre Lairez, Bruno Salvy. Creative telescoping for rational functions using the GriffithsDwork method. 2013. hal-00777675v1

HAL Id: hal-00777675
 https://inria.hal.science/hal-00777675v1

Preprint submitted on 17 Jan 2013 (v1), last revised 20 Apr 2013 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Creative Telescoping for Rational Functions using the Griffiths-Dwork method*

Alin Bostan
Inria (France)
alin.bostan@inria.fr

Pierre Lairez
Inria (France)
pierre.lairez@inria.fr

Bruno Salvy
Inria (France)
bruno.salvy@inria.fr

Abstract

Creative telescoping algorithms compute linear differential equations satisfied by multiple integrals with parameters. We describe a precise and elementary algorithmic version of the Griffiths-Dwork method for the creative telescoping of rational functions. This leads to bounds on the order and degree of the coefficients of the differential equation, and to the first complexity result which is simply exponential in the number of variables. One of the important features of the algorithm is that it does not need to compute certificates. The approach is vindicated by a prototype implementation.

Categories and Subject Descriptors:

I.1.2 [Computing Methodologies]: Symbolic and Algebraic Manipulations - Algebraic Algorithms
General Terms: Algorithms, Theory.
Keywords: Integration, creative telescoping, algorithms, complexity, Picard-Fuchs equation.

1. INTRODUCTION

In computer algebra, creative telescoping is an approach introduced by Zeilberger to address definite summation and integration of a large class of functions and sequences $[28,29$, $27]$. Its vast scope includes the computation of differential equations for multiple integrals with parameters of rational or algebraic functions. Within this class, creative telescoping is similar to well-studied older approaches whose key notion is the Picard-Fuchs differential equation, see e.g. [23].

We study the multivariate rational case: Given a rational function $F\left(t, x_{1}, \ldots, x_{n}\right)$, we aim at finding n other rational functions $A_{i}\left(t, x_{1}, \ldots, x_{n}\right)$ and a differential operator with polynomial coefficients $\sum_{j=0}^{r} c_{j}(t) \partial_{t}^{j}$, denoted T, such that

$$
\begin{equation*}
T(F) \stackrel{\text { def }}{=} \sum_{j=0}^{r} c_{j}(t) \partial_{t}^{j} F=\sum_{i=1}^{n} \partial_{i} A_{i}, \tag{1}
\end{equation*}
$$

[^0]Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...\$10.00.
where ∂_{t}^{j} denotes $\frac{\partial^{j}}{\partial t^{j}}$ and ∂_{i} denotes $\frac{\partial}{\partial x_{i}}$. The integer r is the order of T and $\max _{j} \operatorname{deg} c_{j}$ is its degree.
Throughout the article, the constant field k of F is assumed to be of characteristic zero. Under suitable hypotheses, the operator T is a differential equation satisfied by integrals $\int F \mathrm{~d} x$ over a domain γ, without boundaries, where F has no pole. A misbehavior can happen when the certificate has poles outside those of F : it may not be possible to integrate term by term the right-hand side of Eq. (1), see §4.1. The certificate is called regular when it does not contain poles other than those of F. For integration, there is no need to compute the actual certificate provided that it is regular.
Several methods are known that can find a telescoper and the corresponding certificate $[17,26,7,15]$. However, the practical cost of using these methods in multivariate problems remains high and a better understanding of the size or complexity of the objects of creative telescoping is clearly needed. The present work is part of the on-going effort in this direction $[2,3,4]$. The study of the rational case is motivated both by its fundamental nature and by its applications to the computation of diagonals in combinatorics, number theory and physics $[17,6,20]$. The rational case with n variables also includes the algebraic case with $n-1$ variables [4].

Previous works. An obviously related problem is, given a rational function $F\left(x_{1}, \ldots, x_{n}\right)$, to decide whether there exist rational functions A_{1}, \ldots, A_{n} such that F equals $\sum_{i=1}^{n} \frac{\partial A_{i}}{\partial x_{i}}$. When $n=1$, the latter question is easily solved by Hermite reduction. This is the basis of an algorithm for creative telescoping [3] that we outline in §2.1.
Picard [25, chap. 7] gave methods when $n=2$ from which he deduced that a telescoping equation can always be found in that case [24]. This too, has led to an algorithm [4]. The Griffiths-Dwork method [8, §3; 9, §8; 12] solves the problem for a general n, in the setting of de Rham cohomology and under a regularity assumption. The method can be viewed as a generalization of Hermite reduction. Independently, Christol used a similar method to prove that diagonals of rational functions, under a regularity hypothesis, are differentially finite [5]; then he noticed that a deformation technique, for which he credits Dwork, can handle singular cases [6]. The Griffiths-Dwork method is also used in point counting applications $[1,11]$ and the study of mirror maps [20].
In terms of complexity, not much is known. If a rational function $F\left(t, x_{1}, \ldots, x_{n}\right)$ has degree d, a study of Lipshitz's argument [17] shows that there exists a telescoper of order and degree $d^{O(n)}$ with a regular certificate of size $d^{O\left(n^{2}\right)}$.

Most algorithms [17, 28, 26, 7, 2, 15] cannot avoid the computation of the certificate, which impacts their complexity. The complexity of Lipshitz's algorithm is $d^{O\left(n^{2}\right)}$ operations in k; the complexity of no other algorithm is known. Pancratz [22] developed an approach similar to ours, under a restrictive hypothesis, much stronger than Griffiths' regularity assumption. He proceeds to a complexity analysis of his algorithm but in terms of operations in $k(t)$ rather than in the base field k. Algorithms based on non-commutative Gröbner bases and elimination $[28,26]$ or based on the search of rational solutions to differential equations [7] resist to complexity analysis. The method of Apagodu and Zeilberger [2] requires a generic exponent and specialization seems problematic.
For the restricted class of diagonals of rational functions, there is a heuristic based on series expansion and differential approximation [14]; it does not need to compute a certificate. However, even using the bounds in $d^{O(n)}$, its direct implementation has a complexity of $d^{O\left(n^{2}\right)}$ operations in k.

Contributions. Our main result, obtained with the GriffithsDwork method and a deformation technique, is the existence of a telescoper with regular certificate of order at most d^{n} and degree $d^{O(n)}$ that can be computed in $d^{O(n)}$ arithmetic operations in k. For generic rational functions, the telescoper computed is the minimal order telescoper with regular certificate. Theorems 6,10 and 11 state precise estimates. To the best of our knowledge, the bounds on the order and degree are better than what was known and it is the first time that a complexity simply exponential in n is reached. Note that we do not know whether a rational function admits a telescoper whose certificate has size polynomial in d^{n}, but our algorithm does not need to compute the certificate. A prototype implementation shows that this algorithm can lead to a spectacular improvement over previous methods, though the domain of improvement is not satisfactory yet.

Acknowledgement. We are deeply grateful to Gilles Christol for many rewarding discussions.

2. OVERVIEW OF THE METHOD

In this section we introduce the basics of the Griffiths-Dwork method. In dimension 1 , this method coincides with classical Hermite reduction which we first recall.

2.1 Dimension one: Hermite reduction

Let F be a rational function in x, over a field L, written as a / f^{ℓ}, with a and f two polynomials, the latter being square-free, i.e. the polynomials $\partial_{x} f$ and f are coprime. In particular a equals $u f+v \partial_{x} f$ for some polynomials u and v. Then, if $\ell>1$, the function F rewrites

$$
F=\frac{u+\frac{1}{\ell-1} \partial_{x} v}{f^{\ell-1}}+\partial_{x}\left(\frac{-v}{(\ell-1) f^{\ell-1}}\right)
$$

Iterating this reduction step ℓ times gives F as $\frac{U}{f}+\partial_{x} \frac{V}{f^{\ell-1}}$ for some polynomials U and V. Next, Euclidean division allows to write U as $r+s f$, with r of degree less than the degree of f, yielding the additive decomposition

$$
F=\frac{r}{f}+\partial_{x}\left(\frac{V}{f^{\ell-1}}+\int s\right) .
$$

The rational function r / f is the reduced form of F and is
denoted $[F]$. This reduced form features important properties:
(Linearity) f being fixed, $[F]$ depends linearly on F;
(Soundness) if $[F]$ is zero, then F is a derivative w.r.t. x;
(Confinement) $[F]$ lies in a finite-dimensional vector space over L depending only on f (with dimension $\operatorname{deg}_{x} f$);
(Normalization) if F is a derivative w.r.t. x, then $[F]$ is zero.
These properties are enough to compute a telescoper: Assume now that L is $k(t)$ for a field k. If for some elements of L, say a_{0}, \ldots, a_{p}, the reduced form $\left[\sum_{i} a_{i} \partial_{t}^{i} F\right]$ vanishes then the operator $\sum_{i} a_{i} \partial_{t}^{i}$ is a telescoper, thanks to the soundness property. Thanks to the linearity property, this is equivalent to the vanishing of $\sum_{i} a_{i}\left[\partial_{t}^{i} F\right]$. Thanks to the confinement property, it is always possible to find such a relation. Thanks to the normalization property, every telescoper arises this way. In particular, so does the telescoper of minimal order.

2.2 Higher dimension: Griffiths-Dwork reduction

Let F be a rational function in n variables x_{1}, \ldots, x_{n}, written as a / f^{ℓ}, with f a square-free polynomial. If $\ell>1$ and if a lies in the ideal generated by f and its derivatives $\partial_{i} f$, then we can write a as $u f+\sum_{i} v_{i} \partial_{i} f$, for some polynomials u, v_{1}, \ldots, v_{n}, and F rewrites

$$
F=\frac{u+\frac{1}{\ell-1} \sum_{i=1}^{n} \partial_{i} v_{i}}{f^{\ell-1}}+\sum_{i=1}^{n} \partial_{i}\left(\frac{-v_{i}}{(\ell-1) f^{\ell-1}}\right) .
$$

Provided that this ideal contains all polynomials, any F can be reduced to a function with simple poles by iteration of this identity. The soundness and linearity properties are naturally satisfied, but extending further the reduction to obtain at least the confinement property is not straightforward and requires stronger assumptions [21]. A difficulty with this approach is that the degrees of the cofactors v_{i} at each reduction step are poorly controlled: we lack the Euclidean division step and we reduce poles at finite distance at the cost of making worse the pole at infinity. This difficulty is overcome by working in the projective space. The translation between affine and projective is discussed more precisely in Section 7.
Now, assume that a and f are homogeneous polynomials in $L[\mathbf{x}]=L\left[x_{0}, \ldots, x_{n}\right]$, with f of degree d. A central role is played by $\operatorname{Jac} f$, the Jacobian ideal of f, the ideal generated by the partial derivatives $\partial_{0} f, \ldots, \partial_{n} f$. Note that since f is homogeneous, Euler's relation, which asserts that f equals $\frac{1}{d} \sum_{i=0}^{n} x_{i} \partial_{i} f$ implies that $f \in \operatorname{Jac} f$.
We now decompose a as $r+\sum_{i} v_{i} \partial_{i} f$. In contrast with the affine case, each nonzero v_{i} can be chosen homogeneous of degree precisely $\operatorname{deg} a-\operatorname{deg} \partial_{i} f$. If $\ell>1$, we obtain

$$
\begin{equation*}
F=\frac{r}{f^{\ell}}+\underbrace{\frac{\frac{1}{\ell-1} \sum_{i=0}^{n} \partial_{i} v_{i}}{f^{\ell-1}}}_{F_{1}}+\sum_{i=0}^{n} \partial_{i}\left(\frac{-v_{i}}{(\ell-1) f^{\ell-1}}\right) \tag{2}
\end{equation*}
$$

If r is not zero, the order of the pole need not decrease, contrary to the affine case, but r is reduced to a normal form modulo Jac f; this will help us obtain the confinement property, see Proposition 2. The reduction process proceeds recursively on F_{1}, which has pole order $\ell-1$, and stops when $\ell=1$. This procedure is summarized in Algorithm 1.

Input $\quad F=a / f^{\ell}$ a rational function in x_{0}, \ldots, x_{n}
Output $[F]$ such that there exist A_{0}, \ldots, A_{n} rational functions such that $F=[F]+\sum_{i} \partial_{i} A_{i}$

Precompute a Gröbner basis G for $\left(\partial_{0} f, \ldots, \partial_{n} f\right)$
procedure $\operatorname{REDUCE}\left(a / f^{\ell}\right)$ if $\ell=1$ then return a / f^{ℓ}
Decompose a as $r+\sum_{i} v_{i} \partial_{i} f$ using G
$F_{1} \leftarrow \frac{1}{\ell-1} \sum_{i} \frac{\partial_{i} v_{i}}{f^{\ell-1}}$
return $\frac{r}{f^{\ell}}+\operatorname{REDUCE}\left(F_{1}\right)$

Algorithm 1. Griffiths-Dwork reduction

3. PROPERTIES OF THE GRIFFITHSDWORK REDUCTION

Let f in $L[\mathbf{x}]$ be a homogeneous polynomial of degree d, where L is a field of characteristic zero. It is clear that the reduction procedure satisfies the soundness and the linearity properties. Analogues of confinement and normalization hold under the following regularity hypothesis:

$$
\begin{equation*}
L[\mathbf{x}] / J a c f \text { is finite-dimensional over } L \tag{H}
\end{equation*}
$$

Geometrically, this hypothesis means that the hypersurface defined by f in \mathbb{P}^{n} is smooth. In particular f is irreducible.

The ring of rational functions in $L(\mathbf{x})$ whose denominator is a power of f is denoted $L\left[\mathbf{x}, \frac{1}{f}\right]$. Let $L\left[\mathbf{x}, \frac{1}{f}\right]_{p}$ denote the subspace of homogeneous functions of degree p, i.e. of F in $L\left[\mathbf{x}, \frac{1}{f}\right]$ such that $F(\lambda \mathbf{x})$ equals $\lambda^{p} F(\mathbf{x})$. Note that each derivation ∂_{i} induces a map from $L\left[\mathbf{x}, \frac{1}{f}\right]_{p}$ to $L\left[\mathbf{x}, \frac{1}{f}\right]_{p-1}$. Let D_{f} denote the subspace of $L\left[\mathbf{x}, \frac{1}{f}\right]$ of rational functions $\sum_{i} \partial_{i} A_{i}$ for some A_{i} in $L\left[\mathbf{x}, \frac{1}{f}\right]_{-n}$. A major character of this study is the quotient space $L\left[\mathbf{x}, \frac{1}{f}\right]_{-n-1} / D_{f}$, denoted H_{f}^{pr}.

The reduced form of F in $L\left[\mathbf{x}, \frac{1}{f}\right]_{-n-1}$ is denoted $[F]$. It is by definition the output of the algorithm REDUCE. It depends on a choice of a Gröbner basis of $\operatorname{Jac} f$, but its vanishing does not, see Theorem 1.

The choice of the space $L\left[\mathbf{x}, \frac{1}{f}\right]_{-n-1}$ and the degree $-n-1$ may seem arbitrary. It is motivated by it being isomorphic to the space of regular differential n-forms on $\mathbb{P}^{n} \backslash V(f)$. The evaluation of x_{0} to 1 is the restriction map to $\mathbb{A}^{n} \backslash V(f)$. The space H_{f}^{pr} is the nth de Rham cohomology space of the algebraic variety $\mathbb{P}^{n} \backslash V(f)$ over $k(t)$.

Theorem 1 (Griffiths [12, §4]). If f satisfies $H y$ pothesis (H), then for all F in $L\left[\mathbf{x}, \frac{1}{f}\right]_{-n-1}$, the reduced form $[F]$ vanishes if and only if F is in D_{f}.

Theorem 1 gives access to the dimension of H_{f}^{pr}. Let A be the finite dimensional vector space $L[\mathbf{x}] / \operatorname{Jac} f$. For a positive integer ℓ, let A_{ℓ} denote the linear subspace of A generated by homogeneous polynomials of degree $\ell d-(n+1)$. Let B denote $\oplus_{\ell} A_{\ell}$. Finally, for $\ell>0$ let $\left(g_{\ell, i}\right)_{1 \leqslant i \leqslant n_{\ell}}$ be a basis of A_{ℓ}, with $n_{\ell}=\operatorname{dim}_{L} A_{\ell}$.

Proposition 2. Under Hypothesis (H), the family of rational functions $\left(g_{\ell, i} / f^{\ell}\right)_{0<\ell, i \leqslant n_{\ell}}$ induces a basis of H_{f}^{pr}.

Proof. Suppose there exists a linear dependency relation between the $g_{\ell i} / f^{\ell}$ modulo D_{f}, that is $\sum_{\ell, i} u_{\ell, i} g_{\ell, i} / f^{\ell}$, denoted F, lies in D_{f} for some elements $u_{\ell, i}$ of L, not all zero. Let ℓ_{0} be the maximum ℓ such that $u_{\ell i}$ is not zero for at least
one i. By Theorem $1,[F]=0$ so that $\sum_{\ell, i} u_{\ell, i} g_{\ell, i} f^{\ell_{0}-\ell}$, the numerator of F, lies in $\operatorname{Jac} f$. Since f itself is in $\operatorname{Jac} f$, the $\operatorname{sum} \sum_{i} u_{\ell_{0}, i} g_{\ell_{0}, i}$ is in $\operatorname{Jac} f$, which contradicts the fact that the $g_{\ell_{0}, i}$ are a basis of $A_{\ell_{0}}$. Thus the $g_{\ell, i} / f^{\ell}$ form a free family.

To prove that this family generates H_{f}^{pr}, we first notice that the family of all the fractions $[F]$, for F in $L\left[\mathbf{x}, \frac{1}{f}\right]_{-n-1}$, generates H_{f}^{pr} since $[F]$ equals F modulo D_{f}. Now we assume for a moment that each $g_{\ell, i}$ is reduced with respect to a Gröbner basis G of $\operatorname{Jac} f$. Then each polynomial of $L[\mathbf{x}]$ of degree $\ell d-n-1$ which is reduced with respect to G is a linear combination of the $g_{\ell, i}$. Thus for all $F=a / f^{\ell}$ in $L\left[\mathbf{x}, \frac{1}{f}\right]_{-n-1}$, the reduction $[F]$ is in the span of all the $g_{\ell, i} / f^{\ell}$. This makes the $g_{\ell, i} / f^{\ell}$ a system of generators of H_{f}^{pr} and by the previous paragraph a basis of it. Thus H_{f}^{pr} has the same dimension as B and any free family of H_{f}^{pr} of cardinal $\operatorname{dim}_{L} B$ is a basis of H_{f}^{pr}. In particular, the $g_{\ell, i} / f^{\ell}$ form a basis even if the $g_{\ell, i}$ are not reduced with respect to G.

Corollary 3. Under Hypothesis (H), H H_{f}^{pr} has dimension

$$
\frac{1}{d}\left((d-1)^{n+1}+(-1)^{n+1}(d-1)\right) \quad\left(\leqslant d^{n}\right)
$$

Proof. It has the dimension of B, see [19, thm. 8.4] for its computation. The inequality is clear.

4. CREATIVE TELESCOPING

We now introduce an algorithm, based on the GriffithsDwork reduction, that computes a telescoper of a rational function under Hypothesis (H).

In Eq. (1), the telescoper T is said to have a regular certificate if the irreducible factors of the denominators of the A_{i} 's, as rational function over $k(t)$, divide the denominator of F; in other words, the A_{i} 's have no pole outside those of F, over $k(t)$. Algorithm 2, described in $\S 4.2$, returns the telescoper of minimal order having regular certificate. For the application of creative telescoping to integration, this class of telescoper is more interesting than the general one; that is the object of $\S 4.1$.

4.1 Telescopers with regular certificate

Back to the affine case, let $F\left(t, x_{1}, \ldots, x_{n}\right)$ be a rational function over \mathbb{C} and γ be a n-cycle in \mathbb{C}^{n} over which F has no pole for a generic t in \mathbb{C}. A common use of creative telescoping is the computation of a differential equation satisfied by the one-parameter integral $I(t)=\int_{\gamma} F \mathrm{~d} \mathbf{x}$. As mentioned in the introduction, it is not always possible to deduce from the telescoping equation (1) that $T(I)$ vanishes. It may happen that the polar locus of the certificate meets γ for all $t \in \mathbb{C}$, and so $\int_{\gamma} \partial_{i} A_{i} \mathrm{~d} \mathbf{x}$ may not be zero. An example of this phenomenon is given by Picard [23] for a bivariate algebraic function and translated here into a rational example, using the method in [4, Lemma 4]:

$$
\begin{align*}
& \frac{x-y}{z^{2}-P_{t}(x) P_{t}(y)}=\partial_{x} \frac{2 P_{t}(x)}{(x-y)\left(z^{2}-P_{t}(x) P_{t}(y)\right)}+ \\
& \quad \partial_{y} \frac{2 P_{t}(y)}{(x-y)\left(z^{2}-P_{t}(x) P_{t}(y)\right)}+\partial_{z} \frac{3\left(x^{2}+y^{2}\right) z}{(x-y)\left(z^{2}-P_{t}(x) P_{t}(y)\right)} \tag{3}
\end{align*}
$$

where $P_{t}(u)=u^{3}+t$. Note the factor $x-y$ in the denominator of the certificate. Let F denote the left-hand side.
$\overline{\text { Input }} \quad F=a / f^{\ell}$ a rational function in $L\left[\mathbf{x}, \frac{1}{f}\right]_{-n-1}$, with f satisfying (H)
Output $T\left(t, \partial_{t}\right)$ an operator such that $T(F)=\sum_{i} \partial_{i} A_{i}$ for some rational functions A_{i}

```
procedure Telesc \((F)\)
        \(G_{0} \leftarrow \operatorname{Reduce}(F)\)
        \(i \leftarrow 0\)
        loop
            if \(\operatorname{rank}_{L}\left(G_{0}, \ldots, G_{i}\right)<i+1\) then
            solve \(\sum_{k=0}^{i-1} a_{k} G_{k}=G_{i}\) w.r.t. \(a_{0}, \ldots, a_{i-1}\) in \(L\)
            return \(\partial_{t}^{i}-\sum_{k} a_{k} \partial_{t}^{k}\)
        else
            \(G_{i+1} \leftarrow \operatorname{ReducE}\left(\partial_{t} G_{i}\right)\)
            \(i \leftarrow i+1\)
```

 Algorithm 2. Creative telescoping, regular case
 In this case, the operator 1 is a telescoper of F, however there exists a 3 -cycle γ on which F has no pole and such that $\int_{\gamma} F \mathrm{~d} \mathbf{x}$ is not zero. It is impossible to find a regular certificate for the telescoper 1.

Nevertheless, a differential equation for $I(t)$ can be obtained in two ways. First, one can carefully study the integral $\sum_{i} \int_{\gamma} \partial_{i} A_{i} \mathrm{dx}$ and compute a differential equation for it. Usually this includes the analysis of the poles of the A_{i} 's, and the search of a telescoper for some rational function with one variable less. The second way is to find a telescoper for F such that the certificate does not contains new poles, a telescoper with regular certificate. Contrary to the telescoper (3), the operator ∂_{t} is a telescoper with regular certificate:

$$
\partial_{t} F=\partial_{x}\left(\frac{x}{3 t} F\right)+\partial_{y}\left(\frac{y}{3 t} F\right)+\partial_{z}\left(\frac{z}{t} F\right) .
$$

This proves that $\partial_{t} I=0$. More generally we have:
Proposition 4. If $T \in \mathbb{C}(t)\left\langle\partial_{t}\right\rangle$ is a telescoper of F with regular certificate, then $T(I)$ is zero.

In this case, the certificate itself is not needed to prove the conclusion, its existence and regularity are sufficient. The Griffiths-Dwork method always produces a telescoper with regular certificate, see Eq. (2).

4.2 Algorithm

In this section L is $k(t)$ for some field k and f is a homogeneous polynomial over L of degree d satisfying Hypothesis (H). For F a rational function in $L\left[\mathbf{x}, \frac{1}{f}\right]_{-n-1}$ we want to find a nonzero operator T in $L\left\langle\partial_{t}\right\rangle$ such that $T(F)$ lies in D_{f}. Algorithm 2 describes the procedure Telesc that outputs such a telescoper.

Proposition 5. Algorithm 2 terminates and outputs the minimal telescoper with regular certificate of F.
Proof. The sequence $\left(G_{k}\right)$ is defined by $G_{0}=[F]$ and the recurrence relation $G_{k+1}=\left[\partial_{t} G_{k}\right]$. We show by induction that for all k the fraction G_{k} equals $\left[\partial_{t}^{k} F\right]$. It is clear for $k=0$. Assume that G_{k} equals $\left[\partial_{t}^{k} F\right]$. By the soundness of the reduction the operator $G_{k}-\partial_{t}^{k} F$ is in D_{f}. And then so is $\partial_{t} G_{k}-\partial_{t}^{k+1} F$ since ∂_{t} commutes with the ∂_{i} 's. By Theorem 1 and linearity, this implies that $\left[\partial_{t} G_{k}\right]$ equals $\left[\partial_{t}^{k+1} F\right]$.

At the i th step of the loop the algorithm is looking for a linear relation between $[F], \ldots,\left[\partial_{t}^{i} F\right]$. By Theorem 1, there is one if and only if there is a telescoper with regular certificate of order i. If there such a relation, it computes it and returns the corresponding telescoper. By the confinement property of Proposition 2, the algorithm terminates. By construction the telescoper admits a regular certificate, see Identity (2).

5. EFFECTIVE BOUNDS FOR CREATIVE TELESCOPING

We now review the steps of the algorithm with the aim of bounding the degrees and orders of all polynomials and operators that are constructed. This is then used in the next section to assess the complexity of this approach.
For the needs of Section 7, we track the degrees not only with respect to the parameter t but also to another free variable ε of the base field. In other words, we assume that L is $k(t, \varepsilon)$. For p a polynomial in $k[t, \varepsilon]$, the bidegree $\left(\operatorname{deg}_{t} p, \operatorname{deg}_{\varepsilon} p\right)$ of p is denoted $\delta(p)$. If $p=\sum_{I} p_{I} \mathbf{x}^{I}$ is a polynomial in t, ε and \mathbf{x}, then $\delta(p)$ denotes the supremum of the $\delta\left(p_{I}\right)$'s, component by component.

Theorem 6. Let $f \in L[x]$ be homogeneous of degree d satisfying (H). Let a / f^{ℓ} in $L\left[\mathbf{x}, \frac{1}{f}\right]_{-n-1}$ be a rational function, with a polynomial in t and ε. The minimal telescoper with regular certificate of a / f^{ℓ} has order at most d^{n} and degree

$$
\mathcal{O}\left(d^{n} \delta(a)+\left(\ell d^{2 n}+d^{3 n}\right) e^{n} \delta(f)\right),
$$

uniformly in all the parameters.
The first part of the theorem is a direct consequence of the confinement property of Corollary 3. We now study more precisely the decomposition used in Algorithm 1 in order to control the degree of the certificate and complete the proof.

The notation $a(\mathbf{n})=\mathcal{O}(b(\mathbf{n}))$, for a tuple \mathbf{n}, means that there exists a $C>0$ such that for all $\mathbf{n} \geqslant 1$, with at most a finite number of exceptions, we have $a(\mathbf{n}) \leqslant C b(\mathbf{n})$. The notation $a(\mathbf{n})=\tilde{\mathcal{O}}(b(\mathbf{n}))$ means that $a(\mathbf{n})=\mathcal{O}\left(b(\mathbf{n}) \log ^{k} b(\mathbf{n})\right)$ for some integer k. We emphasize that when there are several parameters in a \mathcal{O}, the constant is uniform in all the parameters and there is at most a finite number of exceptions.

5.1 Reduction modulo the Jacobian ideal

An important ingredient of the Griffiths-Dwork reduction is the computation of a decomposition $r+\sum_{i} u_{i} \partial_{i} f$ of a homogeneous polynomial a. This can be done by means of a Gröbner basis of $\operatorname{Jac} f$, but instead of following the steps of a Gröbner basis algorithm, we cast the computation into a linear algebra framework using Macaulay's matrices, for which Cramer's rule and Hadamard's bound can then be used. While not strictly equivalent, both methods ensure that r depends linearly on a and vanishes when a is in $\operatorname{Jac} f$.
For a positive integer q, let φ_{q} denote the linear map

$$
\varphi_{q}:\left(u_{i}\right) \in L[\mathbf{x}]_{q-d-n}^{n+1} \longrightarrow \sum u_{i} \partial_{i} f \in L[\mathbf{x}]_{q-n-1}
$$

Let Mat φ_{q} be the matrix of φ_{q} in a monomial basis. It has dimension $R_{q} \times C_{q}$, where R_{q} denotes $\binom{q-1}{n}$ and C_{q} denotes $(n+1)\binom{q-d}{n}$, and we note for future use that $C_{q} \leqslant R_{q}$
for all positive integers n and $d>2$. Up to a change of ordering of the bases of the domain and codomain, Mat φ_{q} has the form ($\left.\begin{array}{c}A \\ C\end{array} \quad \begin{array}{l}B \\ D\end{array}\right)$, where A is a square submatrix of maximal rank. Note that D is necessarily $C A^{-1} B$. Then, the endomorphism ψ_{q} defined by the matrix $\left(\begin{array}{cc}A^{-1} & 0 \\ 0 & 0\end{array}\right)$ satisfies $\varphi_{q} \psi_{q} \varphi_{q}=$ φ_{q}; it is called a split of φ_{q}. It depends on the choice of the maximal rank minor. The map id $-\varphi_{q} \psi_{q}$, denoted π_{q}, performs the reduction in degree $q-n-1$: it is idempotent; if a of degree $q-n-1$ is in $\operatorname{Jac} f$ then it equals $\varphi_{q}(b)$ for some b and thus $\pi_{q}(a)$ vanishes; and for all a in $L[\mathbf{x}]_{q-n-1}$ it gives a decomposition

$$
a=\pi_{q}(a)+\sum_{i} \psi_{q}(a)_{i} \partial_{i} f .
$$

Under Hypothesis (H), the map φ_{q} is surjective when q is at least $(n+1) d-n$. Let D denote this bound, known as Macaulay's bound [18, chap. 1; 16, corollaire, p. 169].
For q larger than D, a split of φ_{q} can be obtained from a split ψ_{D} of φ_{D} in the following way. Let S be the set of monomials in \mathbf{x} of total degree $q-D$. Choose a linear map μ from $L[\mathbf{x}]_{q-n-1}$ to $L[\mathbf{x}]_{D-n-1}^{S}$ such that each a in $L[\mathbf{x}]_{q-n-1}$ equals $\sum_{m \in S} m \mu_{m}(a)$. Then a split of φ_{d} is defined by

$$
\psi_{d}(a)=\sum_{m \in S} m \psi_{D}\left(\mu_{m}(a)\right) .
$$

Let q be a positive integer and let E_{q} be the least common multiple of the denominators of the entries of Mat ψ_{q}. The entries of Mat ψ_{q} and Mat π_{q} are rational functions of the form p / E_{q}, with p polynomial. Let δ_{E} denote the supremum of all $\delta(p)$ and all $\delta\left(E_{q}\right)$, for $q \in \mathbb{N} \backslash\{0\}$.

Proposition 7. The supremum δ_{E} is finite and bounded above by $e^{n} d^{n} \delta(f)$. Moreover, if $q>D$ then E_{q} equals E_{D}.
Proof. Assume first that $q>D$. In this case, the entries of Mat ψ_{q} are entries of Mat ψ_{D} and π_{q} is zero. Thus the inequalities will follow from the case where $q \leqslant D$. Let Mat ψ_{q} and Mat π_{q} be written respectively as N / E_{q} and P / E_{q} with N and P polynomial matrices. Let r be the rank of ψ_{q}. The maximal rank minor A in the construction of ψ_{q} has dimension r. Cramer's rule and Hadamard's bound ensure that $\delta(N)$ is at most $(r-1) \delta(f)$ and that $\delta\left(E_{q}\right)$ is at most $r \delta(f)$. Since P equals $E_{q} \operatorname{id}-\left(\operatorname{Mat} \varphi_{q}\right) N$ and $\delta\left(\operatorname{Mat} \varphi_{d}\right)$ equals $\delta(f)$, the degree $\delta(P)$ is also at most $r \delta(f)$.
Next, r is bounded by R_{q}, the row dimension of Mat ϕ_{d}. Since $q \leqslant D$, we have $R_{q} \leqslant R_{D}$ and we conclude using the following inequality, with $p \geqslant n$ an integer:

$$
\binom{p}{n} \leqslant\left(\frac{p e}{n+1}\right)^{n}
$$

Algorithm 3 is a slightly modified version of Algorithm 1 which uses the construction above. Its output is in general not equal to the output of the former version, for any monomial order, but of course it satisfies Theorem 1. In particular the output of the algorithm Telesc does not depend on the reduction method in Reduce. From now on the brackets [.] denote the output of Algorithm 3.

5.2 Degree bounds for the reduction

Proposition 8. Let $a / f^{\ell} \in L\left[\mathbf{x}, \frac{1}{f}\right]_{-n-1}$, with a a polynomial in t and ε. Then

$$
\left[\frac{a}{f^{\ell}}\right]=\frac{1}{P_{\ell}} \sum_{k=1}^{n} \frac{b_{k}}{f^{k}},
$$

Input $\quad F=a / f^{\ell}$ a rational function in x_{0}, \ldots, x_{n}, with f of degree d
Output $[F]$ such that there exist A_{0}, \ldots, A_{n} rational functions such that $F=[F]+\sum_{i} \partial_{i} A_{i}$

For all $1 \leqslant i \leqslant \ell$, precompute a split $\psi_{i d}$ of $\varphi_{i d}(\S 5.1)$
procedure $\operatorname{Reduce}\left(a / f^{\ell}\right)$
if $\ell=1$ then return a / f^{ℓ}
$F_{1} \leftarrow \frac{1}{\ell-1} \sum_{i} \frac{\partial_{i} \psi_{\ell d}(a)_{i}}{f^{\ell-1}}$
return $\frac{\pi_{\ell d}(a)}{f^{\ell}}+\operatorname{ReducE}\left(F_{1}\right)$

Algorithm 3. Griffiths-Dwork reduction, linear algebra variant
where $P_{\ell}=\prod_{i=1}^{\ell} E_{\text {id }}$ and b_{k} in $L[\mathbf{x}]_{k d-n-1}$ is a polynomial in t and ε such that $\delta\left(b_{k}\right) \leqslant \delta(a)+\ell \delta_{E}$, for $1 \leqslant k \leqslant n$.

Proof. Using Algorithm 3, we obtain

$$
\left[\frac{a}{f^{\ell}}\right]=\frac{p}{E_{\ell d} f^{\ell}}+\frac{1}{E_{\ell d}}\left[\frac{g}{f^{\ell-1}}\right],
$$

where g and p are polynomials in \mathbf{x}, t and ε, with $\delta(p)$ and $\delta(g)$ at most $\delta(a)+\delta_{E}$. Induction over ℓ yields

$$
\left[\frac{a}{f^{\ell}}\right]=\sum_{k=1}^{\ell} \frac{p_{k}}{f^{k} \prod_{j=k}^{\ell} E_{j d}}
$$

with p_{k} polynomials such that $\delta\left(p_{k}\right) \leqslant \delta(a)+(\ell-k+1) \delta_{E}$. For $k>n$, and hence $k d>D$, the map $\pi_{k d}$ is 0 and thus so is p_{k}. Thus

$$
\left[\frac{a}{f^{\ell}}\right]=\frac{1}{\prod_{j=1}^{\ell} E_{j d}} \sum_{k=1}^{\min (\ell, n)} \frac{p_{k} \prod_{j=1}^{k-1} E_{j d}}{f^{k}}
$$

This proposition applied to $\partial_{t}^{i}\left(a / f^{\ell}\right)$ asserts that

$$
\begin{equation*}
\left[\partial_{t}^{i} \frac{a}{f^{\ell}}\right]=\frac{1}{P_{\ell+i}} \sum_{k=1}^{n} \frac{b_{i, k}}{f^{k}}=\frac{1}{P_{\ell+i}} \frac{b_{i}^{\prime}}{f^{n}} \tag{4}
\end{equation*}
$$

for some polynomials $b_{i, k}$ and b_{i}^{\prime} such that

$$
\begin{align*}
\delta\left(b_{i, k}\right) & \leqslant \delta(a)+i \delta(f)+(i+\ell) \delta_{E}, \tag{5}\\
\text { and } \quad \delta\left(b_{i}^{\prime}\right) & \leqslant \delta(a)+(i+n) \delta(f)+(i+\ell) \delta_{E} . \tag{6}
\end{align*}
$$

5.3 Degree bounds for the telescoper

Proposition 9. Let $T=\sum_{i=0}^{r} c_{i} \partial_{t}^{i}$, with coefficients c_{i} in $k[t, \varepsilon]$, be the minimal telescoper with regular certificate of a / f^{ℓ}. Then

$$
\delta\left(c_{i}\right) \leqslant r \delta(a)+\left(r^{2}+r \ell\right) e^{n} d^{n} \delta(f) .
$$

Proof. The operator T is the output of $\operatorname{Telesc}\left(a / f^{\ell}\right)$. The rational functions c_{i} / c_{r} form the unique solution to the following system of inhomogeneous linear equations over L, with the Y_{i} 's as unknown variables:

$$
\sum_{i=0}^{r-1}\left[\partial_{t}^{i} \frac{a}{f^{\ell}}\right] Y_{i}=-\left[\partial_{t}^{r} \frac{a}{f^{\ell}}\right] .
$$

We write each $b_{i, k}$ in (4) as $\sum_{m \in S} b_{i, k, m} m$, where S is the set of all monomials in the variables \mathbf{x} of degree at most $n d-$ $n-1$. The previous system rewrites as

$$
\forall m \in S, \forall k \in\{1, \ldots, n\}, \quad \sum_{i=0}^{r-1} Y_{i} \frac{b_{i, k, m}}{P_{\ell+i}}=-\frac{b_{r, k, m}}{P_{\ell+r}}
$$

There is a set I of r indices $\left\{\left(k_{0}, m_{0}\right), \ldots\right\}$ such that the square system formed by the corresponding equations admits a unique solution. We apply Cramer's rule to this system. Let B be the square matrix $\left(b_{i, k_{j}, m_{j}}\right)_{i, j}$, for i and j between 0 and $r-1$. Let B_{i} be the matrix obtained by replacing the row number i of B by the vector $\left(b_{r, k_{j}, m_{j}}\right)_{j}$. We get, after simplification of the factors $P_{\ell+*}$ by multilinearity of the determinant,

$$
\begin{equation*}
\frac{c_{i}}{c_{r}}=\frac{\frac{P_{\ell+i}}{P_{\ell}} \operatorname{det} B_{i}}{\frac{P_{\ell+r}}{P_{\ell}} \operatorname{det} B} . \tag{7}
\end{equation*}
$$

Consequently, for all i, the polynomial c_{i} divides $\frac{P_{\ell+i}}{P_{\ell}} \operatorname{det} B_{i}$ and thus

$$
\delta\left(c_{i}\right) \leqslant i \delta_{E}+\sum_{j=0, j \neq i}^{r} \delta\left(b_{j}\right) .
$$

With the previous bound (5) on $\delta\left(b_{i}\right)$ we get

$$
\delta\left(c_{i}\right) \leqslant r \delta(a)+\frac{r(r+1)}{2}\left(\delta(f)+\delta_{E}\right)+r \ell \delta_{E},
$$

which gives the result with Proposition 7.

6. COMPLEXITY

We assume that L is the field $k(t)$ and we evaluate the algebraic complexity of the steps of Reduce and Telesc in terms of number of arithmetic operations in k. All the algorithms are deterministic. For univariate polynomial computations, we use the quasi-optimal algorithms in [10]. For simplicity, we assume that $d>2$ so that several simplifications occur in the inequalities since $C_{q} \leqslant R_{q}$ and $d>e \approx 2.72$.

6.1 Primitives of linear algebra

The complexity of Algorithm 2 lies in operations on matrices with polynomial coefficients. Let $A \in k[t]^{n \times m}$ have rank r and coefficients of degree at most d. One can compute r, a basis of $\operatorname{ker} A$ and a maximal rank minor in $\tilde{\mathcal{O}}\left(n m r^{\omega-2} d\right)$ operarions in k [30]. A maximal rank minor can be inverted in complexity $\tilde{\mathcal{O}}\left(r^{3} d\right)$ [13]. In particular, a matrix B such that $A B A=A$ can be computed in $\tilde{\mathcal{O}}\left(n m r^{\omega-2} d+r^{3} d\right)$ operations in k, or $\tilde{\mathcal{O}}\left(n^{2} m d\right)$, using $r \leqslant n, m$ and $\omega \leqslant 3$.
We implicitly represent a matrix A whose entries are univariate rational functions as the least common denominator g of the entries, together with the polynomial matrix $g A$.

6.2 Precomputation

Algorithm 2 needs the splits $\psi_{i d}$ for i from 1 to the larger of $n+1$ and ℓ. Following $\S 5.1$, it is enough to compute $\psi_{i d}$ for i between 1 and $n+1$, each for a cost of $\tilde{\mathcal{O}}\left(R_{i d} C_{i d}^{2} \delta(f)\right)$ operations in k, and then $\psi_{i d}$ can be obtained with no further arithmetic operation for $i>n+1$. Thus the precomputation needs $\tilde{\mathcal{O}}\left(e^{3 n} d^{3 n} \delta(f)\right)$ operations in k.

6.3 Reduction

Let $\rho(\ell, \delta(a))$ be the complexity of the linear algebra based variant of the algorithm Reduce with input a rational function a / f^{ℓ}. The procedure first computes $\psi_{\ell d}(a)$. Since $\psi_{\ell d}$ is precomputed, it is only the product of a matrix of dimensions $C_{\ell d}$ by $R_{\ell d}$ with the vector of coefficients of a in a monomial basis. The elements of the matrix have degree at most δ_{E} and the elements of the vector have degree at most $\delta(a)$. Thus the product has complexity $\tilde{\mathcal{O}}\left(R_{\ell d} C_{\ell d}(\delta(a)+\right.$ $\left.\delta_{E}\right)$). Secondly, the procedure computes r as $\pi_{\ell d}(a)$ knowing $\psi_{\ell d}(a)$; this has the same complexity. Thirdly, it computes F_{1}, computation whose complexity is dominated by the first step. And lastly it computes $\operatorname{Reduce}\left(F_{1}\right)$, which has complexity bounded by $\rho\left(\ell-1, \delta(a)+\delta_{E}\right)$. Unrolling the recurrence leads to

$$
\rho(\ell, \delta(a))=\tilde{\mathcal{O}}\left(\ell\left(\frac{e d \ell}{n+1}\right)^{2 n}\left(\delta(a)+\ell \delta_{E}\right)\right) .
$$

6.4 Main loop

The computation of G_{0} has complexity $\rho(\ell, \delta(a))$. Next, G_{i} has shape given by (4), and is differentiated before being reduced, so that the cost of the computation of G_{i+1} is at most $\rho\left(n+1, \delta(a)+(i+2 n) \delta(f)+(i+\ell) \delta_{E}\right)$. Summing up, the computation of G_{0}, \ldots, G_{r} has a complexity

$$
\begin{equation*}
\rho(\ell, \delta(a))+\tilde{\mathcal{O}}\left((e d)^{2 n} r\left(\delta(a)+r \delta(f)+(r+\ell) \delta_{E}\right)\right) . \tag{8}
\end{equation*}
$$

During the i th step, the procedure computes the rank of $i+1$ vectors with $\mathcal{O}\left(e^{n} d^{n}\right)$ coefficients of degree $\delta\left(b_{i}^{\prime}\right)$ and computes a linear dependence relation if there is one. This is done in complexity $\tilde{\mathcal{O}}\left(i^{\omega-1} e^{n} d^{n} \delta\left(b_{i}^{\prime}\right)\right)$. This step is quite expensive and doing it for all i up to r would ruin the complexity. It is sufficient to perform this computation only when i is a power of 2 so that the maximal i which is used is smaller than $2 r$. When the rank of the family is not full, we deduce from it the exact order r and perform the computation in that order. Indeed, the rank over L of G_{0}, \ldots, G_{i} is the least of r and i. This way, finding the rank and solving has cost $\tilde{\mathcal{O}}\left(r^{\omega-1} e^{n} d^{n}\left(\delta\left(b_{r}^{\prime}\right)+\delta\left(b_{2 r}^{\prime}\right)\right)\right)$. In view of (6) and since $r \leqslant d^{n}$ and $\omega \leqslant 3$, the complexity of that step is bounded by (8). Adding the cost of the precomputation and using the bounds of the previous section leads to the following complexity estimate.

Theorem 10. Under Hypothesis (H) and assuming that $d>2$, Algorithm Telesc run with input a/f takes

$$
\tilde{\mathcal{O}}\left(\left(d^{5 n}+d^{4 n} \ell+d^{3 n} \ell^{2}\left(\frac{\ell}{n}\right)^{2 n}\right) e^{3 n} \delta\right)
$$

arithmetic operations in k, where δ is the larger of $\delta(a)$ and $\delta(f)$, uniformly in all the parameters. Asymptotically with ℓ and n fixed, this is $\tilde{\mathcal{O}}\left(d^{5 n} \delta\right)$.

Note that while this may seem a huge complexity, it is not so bad when compared to the size of the output, which seems to be, empirically, comparable to $d^{3 n} \delta$, with n fixed and $\ell=1$. Note also that for $n=1$, the complexity improves over that of the algorithm based on Hermite's reduction studied in [3], thanks to our avoiding too many rank computations.

7. AFFINE SINGULAR CASE

Let L denote the field $k(t)$. Let $F_{\text {aff }}$ be a rational function in $L\left(x_{1}, \ldots, x_{n}\right)$, written as $a / f_{\text {aff }}$. We do not assume that $F_{\text {aff }}$ is homogeneous, nor that $f_{\text {aff }}$ satisfies a regularity property. Let $d_{\text {aff }}$ be the total degree of $f_{\text {aff }}$ w.r.t. \mathbf{x}.

degree of f	3	4	5	6	
order of telesc.	2	6	12	20	
degree of telesc. $\delta=1$	$32 \quad$ (68) 0.4s	153 (891) 46s	480 (5598) 2h	1175 (23180)	150 h
- , , $\delta=2$	66 (136) 0.6s	336 (1782) 140s	1092 (11196) 7h	? (46360)	\varnothing
$-\quad, \delta=3$	100 (204) 0.9s	519 (2673) 270s	1704 (16794) 13h	? (69540)	\varnothing

Table 1. Empirical order and degree of the minimal telescoper with regular certificate of a random rational function a / f^{2} in $\mathbb{Q}\left(t, x_{0}, x_{1}, x_{2}\right)$, with f and a homogeneous in \mathbf{x} satisfying $\operatorname{deg}_{\mathbf{x}} a+3=2 \operatorname{deg}_{\mathbf{x}} f$ and $\delta(a)$ and $\delta(f)$ equal to δ; together with a proved upper bound (with a version without simplification of Theorem 9) and mean computation time (CPU time).

In this section we show a deformation technique that regularizes singular cases. In particular, it makes it possible to transfer the previous results to the general case and obtain the following bounds.

THEOREM 11. The function $F_{\text {aff }}$ admits a telescoper, with regular certificate, of order at most d^{n} and degree

$$
\mathcal{O}\left(d_{\mathrm{pr}}^{n} \delta(a)+d_{\mathrm{pr}}^{3 n} e^{n} \delta\left(f_{\mathrm{aff}}\right)\right)
$$

where d_{pr} is $\max \left(d_{\mathrm{aff}}, \operatorname{deg}_{\mathbf{x}} a+n+1\right)$. This telescoper can be computed in complexity $\tilde{\mathcal{O}}\left(e^{3 n} d_{\mathrm{pr}}^{8 n} \delta\right)$, with δ the larger of $\delta(a)$ and $\delta\left(f_{\text {aff }}\right)$.

The algorithm is again based on linear algebra. It is not difficult to see that the bit complexity too is polynomial in d_{pr}^{n}.

7.1 Homogenization and deformation

The regularization proceeds in two steps. First, let F_{pr} be the homogenization of $F_{\text {aff }}$ in degree $-n-1$, that is

$$
F_{\mathrm{pr}}=x_{0}^{-n-1} F_{\mathrm{aff}}\left(\frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right),
$$

which we write b / f_{pr} for some homogeneous polynomials b and f_{pr}. Let d_{pr} denote the degree of f_{pr}; it is given by Theorem 11. The degrees of b and $f_{\text {pr }}$ satisfy the hypothesis of Theorem 6, by construction, but in general f_{pr} does not satisfy Hypothesis (H). (Although it does generically, as long as d_{pr} equals d_{aff}.) We consider a new indeterminate ε, the polynomial $f_{\text {reg }}$ defined by

$$
f_{\mathrm{reg}}=f_{\mathrm{pr}}+\varepsilon \sum_{i=0}^{n} x_{i}^{d}
$$

and the rational function $F_{\text {reg }}$ defined by $b / f_{\text {reg }}$.
Lemma 12. The polynomial $f_{\text {reg }}$ satisfies Hypothesis (H) over $L(\varepsilon)$, that is $L(\varepsilon)[\mathbf{x}] / \mathrm{Jac} f_{\text {reg }}$ has finite dimension.

Proof. It is true for $\varepsilon=\infty$, so it is generically true.
Now, Theorem 6 gives bounds on the order and degree of a telescoper of $F_{\text {reg }}$, which is in $L(\varepsilon)\left[\mathbf{x}, \frac{1}{f_{\text {reg }}}\right]_{-n-1}$. The end of the proof of Theorem 11 follows from the following.

Proposition 13. If T in $L[\varepsilon]\left\langle\partial_{t}\right\rangle$ is a telescoper of $F_{\text {reg }}$ with regular certificate, then so is $T_{\mid \varepsilon=0}$ for F_{aff}.

Proof. By assumption, $T\left(F_{\mathrm{reg}}\right)$ equals $\sum_{i=0}^{n} \partial_{i} g_{i} / f_{\mathrm{reg}}^{p}$ for some integer p and polynomials g_{i} in $L(\varepsilon)[\mathbf{x}]$. Each $g_{i} / f_{\text {reg }}^{p}$ can be expanded in Laurent series in ε as $\sum_{j \geqslant N} h_{i j} \varepsilon^{j}$ for some possibly negative integer N and rational functions $h_{i j}$ in $L\left[\mathbf{x}, \frac{1}{f_{\mathrm{pr}}}\right]_{-n}$. Similarly, we can write the operator $T\left(F_{\mathrm{reg}}\right)$
as $T_{\mid \varepsilon=0}\left(F_{\mathrm{pr}}\right)+\varepsilon \sum_{j \geqslant 0} b_{j} \varepsilon^{j}$ for some rational functions b_{j} in $L\left[\mathbf{x}, \frac{1}{f_{\mathrm{pr}}}\right]$. Since the derivations ∂_{i} commute with ε, it is clear that $T_{\mid \varepsilon=0}\left(F_{\mathrm{pr}}\right)$ equals $\sum_{i=0}^{n} \partial_{i} h_{i 0}$. Next, in this equality, x_{0} can be evaluated to 1 to give

$$
T_{\mid \varepsilon=0}\left(F_{\mathrm{aff}}\right)=\left.\left(\partial_{0} h_{00}\right)\right|_{x_{0}=1}+\sum_{i=1}^{n} \partial_{i}\left(\left.h_{i 0}\right|_{x_{0}=1}\right)
$$

Euler's relation for h_{00} gives (with the index 00 dropped)

$$
\left.\left(\partial_{0} h\right)\right|_{x_{0}=1}=-\sum_{i=1}^{n} \partial_{i}\left(\left.x_{i} h\right|_{x_{0}=1}\right)
$$

proving that $\left.\left(\partial_{0} h\right)\right|_{x_{0}=1}$ is in $D_{f_{\text {aff }}}$. Thus, so is $T_{\mid \varepsilon=0}\left(F_{\text {aff }}\right)$ and the proof is complete.

Nevertheless, a telescoper obtained this way does not need to be minimal, even starting from a minimal one for the perturbed function $F_{\text {reg. }}$. This is unfortunate because in presence of singularities the dimension of H_{f}^{pr} can collapse when compared to the generic order given by Corollary 3. Note also that in the proof of the previous Proposition, the integer N can be bounded in $d^{O(n)}$ which implies a bound on the size of the certificate in $d^{O\left(n^{2}\right)}$ similar to Lipshitz's [17].

7.2 Algorithm and complexity

The algorithm is based on Proposition 13. We use an evaluationinterpolation scheme to control the complexity. Let the operator T in $k(t, \varepsilon)\left\langle\partial_{t}\right\rangle$ be the minimal telescoper of $F_{\text {reg }}$, written as $\partial_{t}^{r}+\sum_{k=0}^{r-1} \frac{c_{k}}{c_{r}} \partial_{t}^{k}$. It is the output of Telesc applied to $F_{\text {reg. }}$. We aim at computing $\left(\varepsilon^{\alpha} T\right)_{\mid \varepsilon=0}$, where α is such that this evaluation is finite and not zero.

Proposition 13, slightly adapted, shows that $T_{\mid \varepsilon=u}$ is a telescoper with regular certificate of $F_{\text {reg }}^{\mid \varepsilon=u}$ whenever $c_{r}(t, u)$ is not zero, even if $f_{\text {reg }}^{\mid \varepsilon=u}$ does not satisfy (H). When it does, the specialization gives the minimal one:

Lemma 14. If $f_{\text {reg }}^{\mid \varepsilon=u}$ satisfies hypothesis (H) and if u does not cancel c_{r}, then $T_{\mid \varepsilon=u}$ is the minimal telescoper with regular certificate of $F_{\mathrm{reg}}^{\mid \varepsilon=u}$.

Proof. We use the notation of Section 5, replacing f by $f_{\text {reg }}$ and L by $L(\varepsilon)$. The operator T is the output of Algorithm 2 applied to $F_{\text {reg. }}$. Since $f_{\text {reg }}^{\mid \varepsilon=u}$ satisfies (H), for all d the matrix Mat φ_{d}, with coefficients in $L[\varepsilon]$, has the same rank as its specialization with $\varepsilon=u[18, \S 58]$. Thus, to compute the splits ψ_{d} we can choose maximal rank minors of Mat φ_{d} that are also maximal rank minors of the specialization. When doing so, the reduction [.] commutes with the evaluation $\left.\cdot\right|_{\varepsilon=u}$. In particular, the polynomials E_{q} do not vanish for $\varepsilon=u$.

In the proof of Prop. 9, Eq. (7) shows that c_{r}, the leading coefficient of T, divides $P_{\ell+r}$ det B. The polynomial $P_{\ell+r}$ is a product of several E_{d} 's, in particular $\left.P_{\ell+r}\right|_{\varepsilon=u}$ is not zero. Since $\left.c_{r}\right|_{\varepsilon=u} \neq 0$, the determinant of $\left.B\right|_{\varepsilon=u}$ is not zero either. Looking at the definition of B in the proof of Proposition 9, this implies that the $\left[\partial_{t}^{i} F_{\mathrm{reg}}\right]_{\mid \varepsilon=u}$, for i between 0 and $r-1$ are free over $L(\varepsilon)$. In particular, a telescoper with regular certificate of $F_{\text {reg }}^{\varepsilon=u}$ has order at least r. Since $T_{\mid \varepsilon=u}$ is a telescoper of order is r, it is the minimal one.

We now present the algorithm. Let N be $e^{n}\left(d^{3 n}+d^{2 n}+\right.$ $\left.d^{n}\right)$. By Proposition 9, the polynomials c_{k} have degree at most N in ε, and at most $N \delta$ in t. Choose U a set of $4 N+1$ elements of k. Determine U^{\prime} the set of elements u of U such that $f_{\mathrm{reg}}^{\mid \varepsilon=u}$ satisfies (H). This step has complexity $\tilde{\mathcal{O}}\left((e d)^{n \omega} \delta|U|\right)$: The polynomial $f_{\text {reg }}^{\mid \varepsilon=u}$ satisfies (H) if and only if $\left.\left(\operatorname{Mat} \varphi_{D}\right)\right|_{\varepsilon=u}$ is full rank. In particular, if $f_{\text {reg }}^{\mid \varepsilon=u}$ does not satisfy (H), then $\left.E_{D}\right|_{\varepsilon=u}$ vanishes. The polynomial E_{D} has degree at most $e^{n} d^{n}$ in ε, by Proposition 7, so $U \backslash U^{\prime}$ has at most $e^{n} d^{n}$ elements. For each u in U^{\prime}, compute $\operatorname{Telesc}\left(f_{\text {reg }}^{\mid \varepsilon=u}\right)$ with leading coefficient normalized to 1 , denoted T_{u}. This step has complexity $\tilde{\mathcal{O}}\left(d^{5 n} e^{3 n} \delta\left|U^{\prime}\right|\right)$, by Theorem 10. Determine the subset $U^{\prime \prime}$ of U^{\prime} where the order of T_{u} is maximal. By Lemma 14, the complement $U^{\prime} \backslash U^{\prime \prime}$ is formed by u such that $c_{r}(t, u)=0$. It has at most N elements since c_{r} has degree at most N in ε. For all u in $U^{\prime \prime}$ the operators T_{u} and $T_{\mid \varepsilon=u}$ coincide. Thus $U^{\prime \prime}$ has at most $2 N+1$ elements.
The r rational functions $\frac{c_{k}(t, 0)}{c_{r}(t, 0)}$ can be computed using Lemma 15 in total complexity $\tilde{\mathcal{O}}\left(N^{2} r \delta\right)$. If $c_{r}(t, 0)$ is zero, we look for the positive integer α such that the functions $\varepsilon^{\alpha} \frac{c_{k}(t, \varepsilon)}{c_{r}(t, \varepsilon)}$ are finite for $\varepsilon=0$ but not zero for at least one k. The integer α is at most N and thus can be found with a binary search, using at most $\log _{2} N+1$ times Lemma 15 .

Lemma 15. Let R in $k(x, y)$ be written P / Q, with P and Q polynomials of degree less than d_{x} in x and d_{y} in y. Given evaluations $R(x, v)$, for $2 d_{y}+1$ elements v of k, the function $R(x, 0)$ (or ∞ if $Q(x, 0)$ vanishes) can be computed using $\tilde{\mathcal{O}}\left(d_{x} d_{y}\right)$ arithmetic operations in k.

Proof. Let V the set of evaluation points. Choose a set U of $2 d_{x}+1$ points of k. Compute $R(u, v)$ for $u \in U$ and $v \in V$ in $\tilde{\mathcal{O}}\left(d_{x} d_{y}\right)$ operations. Note that there is no need to check that the elements of U are not poles of the $R(x, v)$: univariate rational reconstruction can handle that. Use univariate rational reconstruction to compute $R(u, y)$, for $u \in$ U, in complexity $\tilde{\mathcal{O}}\left(d_{y}|U|\right)$ operations. Reconstruct $R(x, 0)$ in complexity $\tilde{\mathcal{O}}\left(d_{x}\right)$ from the evaluations $R(u, 0)$.

8. EXPERIMENTS

A basic implementation of the algorithm Telesc has been written in Maple 16. As it uses only Maple primitives to compute with polynomial matrices, it is certainly too basic to reflect the complexity given in Theorem 10.
Table 1 presents empirical results for some generic rational functions, with $n=2$. The bound on the order are generically exact as expected; however the bound on the degree are not very sharp. For $n=1$ and $\delta(a)$ fixed, a careful study [3] proves that the degree of the minimal telescoper is $\mathcal{O}\left(d^{2} \delta\right)$, which is smaller than the $\mathcal{O}\left(d^{3} \delta\right)$ given by Theorem 6. Analogy, as well as numerical evidence and theoretical clues, lead
us to think that for general n, the asymptotic behavior can be improved from $\mathcal{O}\left(d^{3 n} \delta\right)$ to $\mathcal{O}\left(d^{2 n} \delta\right)$.

The relative cost of each step of Algorithm 2 in the computation of telescopers of Table 1, on the example of the telescoper of degree 12 and degree 1092 of a generic function a / f^{2} as described in Table 1, that is computed in about 7 hours breaks down as follows: The computation of splits of Macaulay matrices takes about 1% of the time, the reduction steps about 40%, and the final solving about 60% of the time. More efficient matrix multiplication and system resolution over univariate polynomials could improve speed dramatically. We have not been able to compute more than the first column of Table 1 with methods and programs in [15,4].
On the other hand, the regularity hypothesis (H) is restrictive in applications: Even though generic polynomials satisfy this hypothesis, examples with physical or combinatorial meaning usually do not. The method shown in Section 7 is only of a theoretical interest. By contrast, the algorithm for the regular case is very efficient in practice.

9. REFERENCES

[1] T. G. Abbott, K. S. Kedlaya, and D. Roe. Bounding Picard numbers of surfaces using p-adic cohomology. In AGCT 2005, volume 21 of Sémin. Congr., pages 125-159. SMF, Paris, 2010.
[2] M. Apagodu and D. Zeilberger. Multi-variable Zeilberger and Almkvist-Zeilberger algorithms and the sharpening of WilfZeilberger theory. Adv. in Appl. Math., 37(2):139-152, 2006.
[3] A. Bostan, S. Chen, F. Chyzak, and Z. Li. Complexity of creative telescoping for bivariate rational functions. In $I S S A C^{\prime} 10$, pages 203-210. ACM, 2010.
[4] S. Chen, M. Kauers, and M. F. Singer. Telescopers for rational and algebraic functions via residues. In $I S S A C^{\prime} 12$, pages 130-137. ACM, 2012.
[5] G. Christol. Diagonales de fractions rationnelles et equations différentielles. In Groupe de travail d'analyse ultramétrique, 1982/83, volume 12, issue 2, exp. 18, pages 1-10. Paris, 1984.
[6] G. Christol. Diagonales de fractions rationnelles et équations de Picard-Fuchs. In Groupe de travail d'analyse ultramétrique, 1984/85, volume 12, issue 1, exp. 13, pages 1-12. Paris, 1985.
[7] F. Chyzak. An extension of Zeilberger's fast algorithm to general holonomic functions. Disc. Math., 217(1-3):115-134, 2000.
[8] B. Dwork. On the zeta function of a hypersurface. IHES Publ. Math., (12):5-68, 1962.
[9] B. Dwork. On the zeta function of a hypersurface. II. Ann. of Math. (2), 80:227-299, 1964.
[10] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, Cambridge, second edition, 2003.
[11] R. Gerkmann. Relative rigid cohomology and deformation of hypersurfaces. Int. Math. Res. Pap., (1):Art. 3, 1-67, 2007.
[12] P. A. Griffiths. On the periods of certain rational integrals. I, II. Ann. of Math, 90(3):460-495, 496-541, 1969.
[13] C.-P. Jeannerod and G. Villard. Essentially optimal computation of the inverse of generic polynomial matrices. J. Complexity, 21(1):72-86, 2005.
[14] M. Kauers and D. Zeilberger. The computational challenge of enumerating high-dimensional rook walks. Adv. in Appl. Math., 47(4):813-819, 2011.
[15] C. Koutschan. A fast approach to creative telescoping. Math. Comput. Sci., 4(2-3):259-266, 2010.
[16] D. Lazard. Algèbre linéaire sur $K\left[X_{1}, \cdots, X_{n}\right]$, et élimination. Bull. Soc. Math. France, 105(2):165-190, 1977.
[17] L. Lipshitz. The diagonal of a D-finite power series is D-finite. J. Algebra, 113(2):373-378, 1988.
[18] F. S. Macaulay. The algebraic theory of modular systems, volume XXXI of Cambridge Mathematical Library. Cambridge University Press, 1994. Revised reprint of the 1916 original.
[19] P. Monsky. p-adic analysis and zeta functions, volume 4 of Lectures in Mathematics, Department of Mathematics, Kyoto University. Kinokuniya Book-Store Co. Ltd., Tokyo, 1970.
[20] D. R. Morrison. Picard-Fuchs equations and mirror maps for hypersurfaces. In Essays on mirror manifolds, pages 241-264. Int. Press, Hong Kong, 1992.
[21] H. Movasati. Multiple integrals and modular differential equations. IMPA Mathematical Publications. Instituto Nacional
de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2011.
[22] S. Pancratz. Computing Gauss-Manin connections for families of projectives hypersurfaces. A thesis submitted for the Transfer of Status, Michaelmas, 2009.
[23] É. Picard. Quelques remarques sur les intégrales doubles de seconde espèce dans la théorie des surfaces algébriques. C. R. Acad. Sci. Paris, 129:539-540, 1899.
[24] É. Picard. Sur les périodes des intégrales doubles et sur une classe d'équations différentielles linéaires. C. R. Acad. Sci. Paris, 134:69-71, 1902.
[25] É. Picard and G. Simart. Théorie des fonctions algébriques de deux variables indépendantes, volume II. Gauthier-Villars et fils, 1906.
[26] N. Takayama. An algorithm of constructing the integral of a module - an infinite dimensional analog of Gröbner basis. In ISSAC'90, pages 206-211. ACM, 1990.
[27] H. S. Wilf and D. Zeilberger. An algorithmic proof theory for hypergeometric (ordinary and " q ") multisum/integral identities. Invent. Math., 108(3):575-633, 1992.
[28] D. Zeilberger. A holonomic systems approach to special functions identities. J. Comput. Appl. Math., 32(3):321-368, 1990.
[29] D. Zeilberger. The method of creative telescoping. J. Symb. Comp., 11(3):195-204, 1991.
[30] W. Zhou. Fast Order Basis and Kernel Basis Computation and Related Problems. PhD thesis, Univ. of Waterloo, 2013.

[^0]: ${ }^{*}$ This work has been supported in part by the Microsoft Research - Inria Joint Centre.

