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Abstract. We describe a lattice attack on DSA-like signature schemes under the assumption that implicit infor-
mation on the ephemeral keys is known. Inspired by the implicit oracle of May and Ritzenhofen presented in the
context of RSA (PKC2009), we assume that the ephemeral keys share a certain amount of bits without knowing
the value of the shared bits. This work also extends results of Leadbitter, Page and Smart (CHES2004) which use
a very similar type of partial information leakage. By eliminating the shared blocks of bits between the ephemeral
keys, we provide lattices of small dimension (e.g. equal to the number of signatures) and thus obtain an efficient
attack. More precisely, by using the LLL algorithm, the complexity of the attack is polynomial. We show that this
method can work when ephemeral keys share certain amount of MSBs and/or LSBs, as well as contiguous blocks
of shared bits in the middle. Under the Gaussian heuristic assumption, theoretical bounds on the number of shared
bits in function of the number of signed messages are proven. Experimental results show that we are often able to
go a few bits beyond the theoretical bound. For instance, if only 2 shared LSBs on each ephemeral keys of 200
signed messages (with no knowledge about the secret key) then the attack reveals the secret key. The success rate
of this attack is about 90% when only 1 LSB is shared on each ephemeral keys associated with about 400 signed
messages.

Keywords: DLP, ECDSA, Lattice attack, Oracle, Implicit information

1 Introduction

The security of the main public-key cryptosystems is based on the difficulty of solving certain mathematical problems.
In this context, the most commonly used problems come from Number Theory, most notably the integer factorization
problem and the discrete logarithm on finite cyclic groups. For instance, an efficient factorization leads immediately to
an attack on the RSA cryptosystem. The security of RSA is then partly based on the presumed difficulty of factoring
large integers. Indeed, the most efficient published factoring algorithms have sub exponential asymptotic running
times ([Pom84,Len87,LL93]) and it is not known whether efficient factorization can be done in polynomial time on a
classical Turing machine. Another classical example is the discrete logarithm problem on a finite cyclic group, upon
which is based the security of the ElGamal encryption system, the Diffie-Hellman key exchange and the DSA-like
signature schemes. Despite the proven fact that a generic algorithm for computing discrete logarithms in any group is
necessarily an exponential algorithm ([Tes01,Sho97,Sha71,Pol78,Pol00]), once again, subexponential algorithms are
known to solve some instances of the discrete logarithm problem, i.e. on well-defined classes of groups. For instance,
discrete logarithms can be computed in subexponential time on the multiplicative group of finite fields ([AD93]) or on
some hyperelliptic curves ([ADH94,ADH99]). Conversely, there is no known subexponential algorithm to solve the
discrete logarithm problem on the group of rational points of a well-chosen elliptic curve.

? This work was partly supported by the Commission of the European Communities through the ICT program under contract
ICT-2007-216676 (ECRYPT-II) and by the French ANR under the Computer Algebra and Cryptography (CAC) project (ANR-
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Instead of trying to solve directly a hard mathematical problem, we can rather look at which information should be
added in order to solve this problem in polynomial time. With this objective in mind, Rivest and Shamir introduced in
[RS86] the notion of oracle to formalize this approach and showed that a RSA modulus N = pq of bit size n (with p and
q balanced prime factors of n) can be factored in polynomial time as soon as the n/3 most significant bits (MSB) from
one of the factors are known. This result was next improved with the so-called Coppersmith’s method based on lattice
basis reduction as introduced in [Cop96], and which reduced the number of needed bits known to only one-half of the
MSB of one of the factors. Beyond the theoretical interest, this additional information can be provided for instance
with the help of side-channel analysis and the discovery of some leaks of secret information in some cryptographic
systems, and brought to the attacker under the form of an oracle.

In this article, we focus on the Digital Signature Algorithm (DSA) [FIP94] of which the security is based on the
difficulty of computing discrete logarithms. The Elliptic Curve Digital Signature Algorithm (ECDSA) [JMV01] is
the elliptic curve variant of DSA. The ElGamal [ElG85] and the Schnorr [Sch90] digital signature schemes are also
variants of DSA but are rarely used in practice. Anyway, we note that all results presented in this article could be
applied to any of these variants. Without redefining the DSA-like schemes (see section 2 for details), we only recall
that each user is associated with a pair of private key/public key, such that the private key is the discrete logarithm in
a given group of the public key. The user private key and a randomly generated number, called the ephemeral key, are
required to compute the signature of a message. The ephemeral key must remain secret and is to be renewed for any
new message to be signed.

The first proposal of using an oracle on DSA comes from Howgrave-Graham and Smart in [HGS01] using the LLL
lattice reduction algorithm ([LLL82]) to take benefit from the knowledge of a small number of bits in many ephemeral
keys. For instance, they show experimentally that if only 8 bits out of 160 bits are known from each ephemeral keys for
30 signed messages, then the secret key is known in less than 10 seconds. However, these results were only heuristics,
even though confirmed by experimentation. Nguyen and Shparlinski then presented in [NS02] the first polynomial
time algorithm that provably recovers the secret DSA key if about log1/2(q) LSB (or MSB) of each ephemeral key are
known (q denoting the order of the chosen group, see section 2) for a polynomially bounded number of corresponding
signed messages. They also show that the case of arbitrary consecutive bits requires much more known bits (about
twice as much). Finally, in addition of proving the heuristic attack of [HGS01], Nguyen and Shparlinski ([NS02]) also
improved the experimental results of [HGS01] by showing that only 3 known bits of each ephemeral key for 100 signed
messages are enough to make the attack feasible. The previous attack is adapted to the case of ECDSA [NS03] and
other DSA-like signature schemes like the Nyberg-Rueppel variants of DSA [MNS01]. It is also necessary to mention
another analysis that shows the threats associated with the use of private keys generated from an imperfect source of
randomness. The attack of Bellare, Goldwasser and Micciancio [BGM97] shows that DSA is totally insecure if private
keys are produced by weak pseudo-random number generator such as the Knuth’s linear congruential generator. When
private keys are smaller than a certain bound, Poulakis proposed in [Pou09] an attack on (EC)DSA using the LLL
algorithm and an algorithm to compute the integral points of a class of conics.

Note that unlike the case of RSA, where the oracle gives a way to directly compute the factors of the modulus, all
these methods against the DSA-Like cryptosystems bypass the problem of computing discrete logarithm, but rather
take advantage of the particular form of the modular equality defining the signature (see (1) in section 2).

At PKC 2009 [MR09], May and Ritzenhofen, in the context of factorization, highly restricted the power of the
oracle. They did not assume that the oracle explicitly outputs bits but rather provides only implicit information. This
unusual oracle applied against the cryptosystem RSA was formalized as follows: given an RSA modulus N1 = p1q1
as input, the oracle outputs a different RSA modulus N2 = p2q2 such that the factors of N2 shared a certain amount of
bits with the factors of the modulus N1. The implicit nature of the information given by the oracle is due to the fact that
the value of the shared bits remains unknown as long as the modulus N1 or N2 are not factored. Surprisingly, May and
Ritzenhofen give an efficient lattice-based algorithm that provably factors N1 and N2 in quadratic time provided that
factors of the two moduli shared enough of their least significant bits (LSB). They also showed that this algorithm ex-
tends to an algorithm with more than one oracle query, which improves upon the required number of shared LSB. This
cryptanalysis with the help of an implicit oracle was next extended to the case of shared MSB (and both LSB/MSB)
in [FMR10,SM09] and the bound on the required number of shared bits was also improved.

In the case of DSA, an attack using implicit information of a totally different kind was already proposed by
Leadbitter, Page and Smart in [LPS04] and made effective in [Tak06a,Tak06b]. From a theoretical point of view, this
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attack can also be formalized by queries to an oracle which returns a message signed with an ephemeral key of the form
k = y+2wy+22wx, i.e. such that the w first bits of k are equal to the w next bits. Experiments show that the repetition
of a 4-bits window in the ephemeral keys of 20 signatures is enough to recover the secret key. This attack is motivated
by side-channel analysis. According to the authors, recovering some relation amongst the bits of the secret keys (called
“second order leakage”) is much more probable than determining the values of such bits because of implementation
protections against side-channel analysis. They also described many realistic scenarii where this type of leakage could
occur.

Inner product Canonical Weighted Euclidean

Lattice spanned by the basis M (6) of section 4.1

linearly dependent rows vectors
of the matrix (8) obtained by re-
moving the second column of
M

the basis M (6) of sec-
tion 4.1

linearly dependent rows
vectors of the matrix (8)
obtained by removing the
second column of M

constraints on the
secret key a

a ≤ 2N−δ or exhaustive search
on the δ msb (section 4.2.1)

No constraint (a can be up to N
bits)

a≤ 2N−δ or exhaustive
search on the δ msb
(section 4.2.1)

No constraint (a can be
up to N bits)

Bounds on the
number of shared
bits δ function
of the number of
messages n

δ ≥ 2N+(n−1)
n+1 +

c−log2(
n+1

n )
2

(Theorem 1)
δ ≥ 2N+(n−2)

n +
c−log2(

n
n−1 )

2
(Theorem 2)

δ ≥ N+(n−1)
n +

c(n+1)
2n

(Theorem 3a)
δ ≥ N+(n−2)

n−1 + cn
2(n−1)

(Theorem 3b)

Table 1. Summary of our results

Our contribution is to define an attack on DSA-like schemes using implicit information, like in [LPS04], but with
an oracle very similar to the one introduced by May and Ritzenhofen ([MR09]). More precisely, we assume that on
input of a signed message (m1,s1) an oracle outputs different signed message (m2,s2) signed with the same secret
key and such that the ephemeral keys k1 and k2 (used to signed the messages m1 and m2 respectively) share a certain
amount δ of bits. This oracle only gives implicit information about the bits of the ephemeral keys because the value
of the shared bits remains unknown as long as the ephemeral keys stay unknown (or equivalently as long as the secret
key stays unknown). In other words, we only know that there are equalities between δ bits of the unknown ephemeral
keys used to sign the given messages. We show that this implicit information should be extracted by constructing a
lattice which contains a very short vector such that its components yield the secret key. The attack succeeds when this
vector is found by the LLL lattice reduction algorithm ([LLL82]), that is when it is small enough. This happens when
the ephemeral keys share enough bits δ . This method also works for an arbitrary number n of oracle’s queries, each
new piece of information decreasing the number of required shared bits.

As usual in lattice basis reduction problems, we have to use the Gaussian heuristic to find a condition on the
number of shared bits δ in function of the number of messages n for this vector to be the shortest of the lattice. This
condition can be improved by the use of a weighted Euclidean inner product instead of the canonical inner product
during the reduction algorithm. A variant of this lattice is also proposed so that the complexity of the attack becomes
independent of the secret key size and is polynomial time in n (assuming that the bound on δ is verified). In this case,
the lattice is spanned by a set of linearly dependent vectors and the condition on δ is slightly deteriorated. A summary
of our method and the proposed improvements can be found in table 1.

As an example of our results, the theorem 3 proves that under the Gaussian heuristic assumption, only 4 LSBs
shared on each ephemeral keys of 100 signed messages are enough to make a never-failing attack and that with only 3
LSBs shared, the method needs about 200 signed messages. The result of experiments confirms these theoretical values
with a computation time less than 5s, and they even show that the number of messages can be most of the time reduced
to an amount comparable to the one which is described in [NS02] despite of the weakness of the oracle. However,
these experiments also showed that the success rate of this attack is about 90% when only 1 LSB is shared on each
ephemeral key of about 400 signed messages. Interestingly enough, this improves the experimental results of [NS02]
where the best experiment corresponds to 3 LSB known (even though LSB are not even known in our contribution).
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Throughout this paper, we use common results on euclidean lattice summarized in Appendix A. Section 2 recall
the (EC)DSA signature algorithm. Section 3 provides a concrete scenario to justify the existence of this implicit
information. In section 4, we present our method by beginning with the case of shared MSB and LSB (subsection 4.1).
Essential improvements are proposed in subsection 4.2. In subsection 4.3, we present our method when they are many
blocks of shared bits. Finally, we present the result of our experiments in section 5.

2 DSA-Style Signature Scheme

The Digital Signature Algorithm was adopted in 1993 by the U.S. government’s National Institute of Standards and
Technology (NIST) to become the Digital Signature Standard (DSS) [FIP09]. It is much more used than ElGamal
[ElG85] and Schnorr [Sch90] digital signature schemes which are variants of DSA. Thus, we focus on DSA although
our attack is transferable to others.

The (EC)DSA algorithm ([FIP09,JMV01]) is defined over a finite abelian group G of prime order q. The group G
is chosen as a subgroup of F× (resp. E(F)) for DSA (resp. ECDSA) where F is a finite field (resp. E(F) the group
of rational points of an elliptic curve defined over F). For security reason, the size of q is chosen to be at least 160
bits. More precisely, the last revision of the standard ([FIP09,JMV01]) specifies that the parameter q must verify
2N−1 < q < 2N where N ∈ {160,224,256}. The private key is an integer a ∈ {1, . . . ,q− 1} and the public key is the
group element A = ga where g is a publicly known generator of G. Let the function f : G−→ Fq be defined by

f :
{

x ∈ G⊂ F×p 7−→ x mod q for DSA
(x,y) ∈ G⊂ E(Zp) 7−→ x mod q for ECDSA

The signer chooses an hash function h mapping messages to G. To sign a message m, he chooses a random number
k ∈ {1, . . . ,q−1} called the ephemeral key and computes (here we present the computation in the case of DSA only)

r = f (gk) and s = k−1(h(m)+ar) mod q (1)

The signature on the message m is then the pair (r,s). The verification of the signature is performed by checking

f (gs−1h(m) mod q As−1r mod q) = f (gs−1(h(m)+ar) mod q) = f (gk) = r

3 Possible application scenario

As stated in [LPS04] in reference to side-channel analysis, ”the assumption that an attacker may be able to determine
a specific set of bits from the ephemeral secrets is less probable than when the original attacks were first published.
It is far more probable that second order, seemingly innocuous information can still be recovered and used by the
attacker, even if a defense against the first order leakage is implemented”. Indeed, there are always many situations
where implicit information can be found despite the implementation of typically recommended countermeasures. In
this paper, as in [LPS04], the attacker is only assumed to be able to determine relations of equality between bits of the
ephemeral keys. In addition to the three scenarii given as examples in [LPS04] where implicit information is collected
by a power analysis or a timing attack (involving a fixed table implementation of elliptic curve point multiplication,
address-bit DPA and cache analysis), we suggest other scenarii which are specifically relevant to our model.

Using invasive attacks, an attacker could lock some bits of the register or memory containing the ephemeral key.
This kind of attack largely depends on the implementation and requires a good knowledge of the target, which pre-
supposes at least a partial reverse engineering of the chip. Lasers are then used to cut some wires or to modify the
chip (see Skorobogatov thesis [Sko05]). More generally, a lot of fault attacks assume that some bits of the memory are
flipped to zero (as in [NNTW05]). But it seems more general to assume that the attacked bits take an indeterminate
value.

In addition to weak and wrong implementations (e.g. [GJQ97]), we could also think to destructive applications with
a malicious manipulation of random generators for instance. This application could be possible on both embedded
systems and software implementation, for instance with physical disturbances, invasive attacks or with malicious
softwares. Moreover, the presence of a random number generator testing suite ([Bro11,RSN+10]) does not seem to be
an effective countermeasure (see experimental results in section 5.3).
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4 Embedding into a Lattice Problem

In this section, we study the security of (EC)DSA given a set of messages signed with the same secret key, and such
that the secret ephemeral keys share a certain amount of bits. We recall that the values of these common bits are
unknown to us. Thus, the information about the unknown ephemeral keys are implicitly given by the set of signed
messages. In other words, we only know that there are some relations amongst the bits of the ephemeral keys used to
sign the messages. To ease the exposition of this method, the bit length of the modulus q is noted by N (i.e. we have
2N−1 < q < 2N).

We will show how the secret key can be revealed by lattice basis reduction provided that there are enough messages
or relations between the bits of the ephemeral keys. These constraints are estimated by relating our method to the
Gaussian heuristic (see theorem 6 of Appendix A). Since all the complexities given in this paper depend on the
complexity of computing a shortest vector in a given lattice, we set the following notation.

Notation 1 The time complexity of computing a shortest vector of a d-dimensional lattice L of Zn will be denoted
by C (d,B), where B = logmaxi(‖bi‖). Notice that computing a shortest vector of any lattice is a NP-hard problem
([Ajt98]) called the Shortest Vector Problem (SVP).

For certain families of lattices (i.e. under certain conditions on lattices), the shortest vector can be computed with the
LLL Algorithm. In this case, we have that C (d,B) = O(d5(d +B)B), i.e. polynomial time in d and B ([NS05], see
Appendix A). In this paper, we seek to always stay in this situation.

We first present the case when most significant bits (MSB) and/or less significant bits (LSB) are shared and next
the case when blocks of bits are shared.

4.1 Shared MSB and LSB

We first assume that we have n messages mi (i = 1, . . . ,n) with the associated signatures (ri,si) such that all the
corresponding ephemeral keys ki share a total of δ bits between the MSB and LSB independently of i (see Figure 1).
Thus, they are of the form

ki = k+2t k̃i +2t ′k′ for all i = 1, . . . ,n (2)

where
0≤ k < 2t , 0≤ k′ < 2N−t ′ , δ = N− t ′+ t and 0≤ k̃i < 2N−δ

with k and k′ common for all the ki (i.e. independent of i).

ki= k k̃i k′

N−δ

0 t t ′ N

Fig. 1. Ephemeral keys

Note that all the values of ki, k, k̃i and k′ are unknown. In the n equations (1) defining the signature
m1 +ar1− s1k1 ≡ 0 (mod q)
m2 +ar2− s2k2 ≡ 0 (mod q)

...
...

...
...

mn +arn− snkn ≡ 0 (mod q)

(3)
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we substitute the ki by (2) and eliminate the common variables k and k′. Then we have
(s−1

1 m1− s−1
2 m2) + a(s−1

1 r1− s−1
2 r2)−2t(k̃1− k̃2) ≡ 0 (mod q)

(s−1
1 m1− s−1

3 m3) + a(s−1
1 r1− s−1

3 r3)−2t(k̃1− k̃3) ≡ 0 (mod q)
...

...
...

...
(s−1

1 m1− s−1
n mn) + a(s−1

1 r1− s−1
n rn)−2t(k̃1− k̃n) ≡ 0 (mod q)

(4)

Let αi, βi, κi ∈ Z be such that 
αi := 2−t(s−1

1 m1− s−1
i mi) mod q

βi := 2−t(s−1
1 r1− s−1

i ri) mod q
κi := k̃1− k̃i

then (4) becomes 
α2 +aβ2−κ2 ≡ 0 (mod q)
α3 +aβ3−κ3 ≡ 0 (mod q)

...
...

...
...

αn +aβn−κn ≡ 0 (mod q)

(5)

where a and κi are unknown, βi and αi are known. The set of solutions

L = {(x0,x1, . . . ,xn) ∈ Zn+1|x0αi + x1βi− xi ≡ 0 (mod q) for all i = 2, . . . ,n}

forms an (n+1)-dimensional lattice spanned by the row vectors of the following basis matrix

M =


1 0 α2 . . . αn
0 1 β2 . . . βn
0 0 q . . . 0
...

...
...

. . .
...

0 0 0 . . . q

 (6)

Note that v0 = (1,a,κ2,κ3, . . . ,κn) is an element of the lattice L. Indeed by (5), there are λ2, . . . ,λn ∈ Z such that

(1,a,λ2, . . . ,λn) ·M = v0 (7)

If we were able to find this vector v0 in L, then we could recover the secret key a. Thus, we would like to give some
conditions so that the vector v0 be a short vector in L, and therefore may be obtained by lattice basis reduction.

However, it is easy to see that the norm of v0 is lower bounded by the secret key a, which can be an integer of
roughly N bits. The second component of v0 is then much bigger than the next ones which are (N− δ )-bits integers.
Actually, v0 has no reason to be a short vector of L while a is so high. Therefore we will first assume that the secret
key a is smaller than 2N−δ , before adapting the lattice to be able to find the secret keys up to N-bit size.

This temporary assumption makes v0 short in the lattice L, but we are still unable to prove that it is the shortest
vector of L. Therefore, the Gaussian heuristic (see Appendix A), which is usually applied in this situation, gives us
a way to estimate the required number δ of shared bits in function of the number of available messages so that v0 is
likely to be the shortest vector of L.

Assumption 1 The Gaussian heuristic (theorem 6 of Appendix A) holds with the lattice L. Thus, if v0 is shorter than

the Gaussian heuristic λ1(L)≈
√

d
2πe Vol(L)

1
d then it is a shortest vector of L.

Experiments of the section 5 confirm this assumption which seems to be true in practice with the lattices used in
our method.
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Theorem 1. Let n messages mi (i = 1, . . . ,n) with the associated signatures (ri,si) such that the ephemeral keys ki
share a total of δ bits between the MSB and LSB. Under assumption 1 and, under the assumption that the secret key a
is smaller than 2N−δ , then a can be computed in time C (n+1, 1

2 log2(n−1)+N) as soon as

δ ≥ 2N +(n−1)
n+1

+
1+ log2(πe)− log2(

n+1
n )

2

Proof. First of all, we find an upper-bound for the norm of v0. Under our assumptions, each coefficient of v0 is an
integer of about (N−δ ) bits (except the first one which is equal to 1). Thus, we have the following inequality:

‖v0‖2 ≤
n

∑
i=1

22(N−δ ) = 22(N−δ )+log2 n

On the other hand, thanks to the upper-triangular shape of the matrix M, the volume of L is easily computed as
Vol(L) = q(n−1) > 2(N−1)(n−1). We now seek the condition on δ and n under which the norm of v0 is smaller than the
Gaussian heuristic:

22(N−δ )+log2(n) ≤ n+1
2πe

22(N−1) n−1
n+1

which is equivalent to

δ ≥ 2N +(n−1)
n+1

+
1+ log2(πe)− log2(

n+1
n )

2
ut

4.2 Proposal for improvements

Until now, we made the assumption that a ≤ 2N−δ to simplify the presentation. Actually, this assumption is rarely
verified by the secret key, so we have to adapt the previous attack to be able to find the secret key up to N-bit long. We
suggest three ways, which may be concurrent to each other, to reach this goal.

4.2.1 Exhaustive search: If δ is reasonably small then the method comes down to the previous one with an ex-
haustive search on the δ -most significant bits of a. Indeed, we have a = ã+ 2N−δ a′ with ã < 2N−δ and a′ < 2δ .
An exhaustive search is then made on a′ with the previous lattice L in which we set αi = 2−t(s−1

1 m1 − s−1
i mi) +

a′2−t(s−1
1 r1− s−1

i ri). The bound given by the theorem 1 remains true with this method.

4.2.2 Remove the second column: There is an other way to make the previous attack independent of the size of
the secret key, but this trick needs a slight modification of the LLL Reduction Algorithm ([Poh87]). Let the lattice L′

spanned by the row vectors of the following matrix

M′ =


1 α2 . . . αn
0 β2 . . . βn
0 q . . . 0
...

...
. . .

...
0 0 . . . q

 , n > 2 (8)

The matrix M′ is the matrix M without the second column. As previously, we have that v′0 = (1,κ2,κ3, . . . ,κn) is an
element of the lattice L′. Indeed, there are λ2, . . . ,λn ∈ Z such that

(1,a,λ2, . . . ,λn) ·M′ = v′0 (9)

However, the row vectors of this matrix M′ are not linearly independent. Thus, they do not form a basis of the lattice
L′ and the original LLL algorithm can not be applied directly. In this case, we use the MLLL algorithm ([Poh87])
which is a variant of LLL in which the input vectors can be linearly dependent, and has the same complexity as the
LLL algorithm.
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Remark 1. Note that the secret key must be read in the transformation vector (1,a,λ2, . . . ,λn) and not in the reduced
basis. We could also have removed the first column, but experiments show that the required number of messages is
greater in this case.

The lattice L′ used in this case is different from the lattice L of theorem 1. The bound and the volume must be
updated.

Lemma 1. The volume of the lattice L′ defined by the matrix M′ given as (8) is equal to qn−2.

Proof. The sublattice S of L′ spanned by the row vectors of the following matrix
1 α2 . . . αn
0 q . . . 0
...

...
. . .

...
0 0 . . . q


is a n-dimensional lattice. The dimension of the lattice L′ defined by the matrix M′ given as (8) is equal to the dimension
of its sublattice S, therefore S is a full-rank sublattice of L′ (see [NV09]). We consider a lattice as a group and we have
the classical relation between volume and index: Vol(S) = Vol(L′)[L′ : S]. Now, it is easy to see that Vol(S) = qn−1 and
[L′ : S] = q, from which we get Vol(L′) = qn−2. ut

The following theorem is directly derived from this lemma.

Theorem 2. Let n messages mi (i = 1, . . . ,n, n > 2) with associated signatures (ri,si) such that the ephemeral keys
ki share a total of δ bits between the MSB and LSB (see Figure 1). Under the assumption 1, the secret key a can be
computed in time C (n, 1

2 log2(n−1)+N) as soon as

δ ≥ 2N +(n−2)
n

+
1+ log2(πe)− log2(

n
n−1 )

2

The required number of shared bits δ is slightly larger with the lattice L′ defined by the matrix M′ given as (8) than
the one given in the theorem 1. Experiments confirm this fact but the success rate is now independent of the secret key
size (see section 5).

Remark 2. As a referee pointed out to us, this result may be reworded by CVP instead of SVP. This will be detailed in
an extended version of this paper.

4.2.3 Weighted Euclidean inner product: In order to obtain the v0 vector (7) (or similarly the v′0 vector (9)) within
a LLL-reduced basis, we can also use a weighted Euclidean inner product, to take advantage of the knowledge of the
components size of the targeted vector. For example, we can take the following inner product of two vectors

〈(x0, . . . ,xn),(y0, . . . ,yn)〉 :=
n

∑
i=0

xiyi22(N−dlog2(v0,i)e)

during the LLL algorithm. In practice, this trick drastically reduces the required number of shared bits δ (see section 5).

Remark 3. Weights can be used without needing to change the norm. Indeed, it is equivalent to multiplying all columns
of the lattice by the corresponding weight.

As previously, a bound can be obtained with Gaussian Heuristic.

Theorem 3. Let n messages mi (i = 1, . . . ,n, n > 2) with associated signatures (ri,si) such that the ephemeral keys ki
share a total of δ bits between the MSB and LSB. Under the assumption 1, the secret key a can be computed

8



a. with the exhaustive search method in time δC (n+1, 1
2 log2(n)+δN) as soon as

δ ≥ N +(n−1)
n

+
(n+1)(1+ log2(πe))

2n
(10)

b. with the lattice L′ (8) in time C (n, 1
2 log2(n−1)+δN) as soon as

δ ≥ N +(n−2)
n−1

+
n(1+ log2(πe))

2(n−1)
(11)

Proof. Let an integer k≥ N−δ . We use a weighted Euclidean inner product such that each component of the targeted
vector v0 have the same size k (i.e. the i-th weight is equal to k−dlog2(v0,i)e).

a. With the exhaustive search method, a close approximation of the vector v0 (7) is computed. Its norm is given by
‖v0‖2 = ∑

n+1
i=1 v2

0,i2
2(k−dlog2(v0,i)e) ≤ ∑

n+1
i=1 22k = 22k+log2(n+1) and the volume of the lattice (6) is

Vol(L) = 2k2k−(N−δ )(q2k−(N−δ ))(n−1) ≥ 2k(n+1)+n(δ−1)−N+1.

Using the Gaussian heuristic assumption, we have 22k+log2(n+1)≤ n+1
2πe (2

k(n+1)+n(δ−1)−N+1)
2

n+1 which is equivalent
to (10).

b. We apply the same method with the n-dimensional lattice L′ (8) and the seek vector v′0 (9). We obtain ‖v′0‖2 =

∑
n
i=1 v′20,i2

2(k−dlog2(v
′
0,i)e) ≤ ∑

n
i=1 22k = 22k+log2(n) and Vol(L′) = 2k(q2k−(N−δ ))(n−1)

q ≥ 2n(k−1)+δ (n−1)−N+2. The Gaus-

sian heuristic assumption gives 22k+log2(n) ≤ n
2πe (2

n(k−1)+δ (n−1)−N+2)
2
n which is equivalent to (11).

Note that both results are independent of the variable k. ut

4.3 Blocks of shared bits

The previous attack can be generalized to the case of ephemeral keys sharing several blocks of bits. Thus, we now
assume that we have n messages mi (i = 1, . . . ,n) with associated signatures (ri,si) such that the ephemeral keys ki
share a total of δ bits dispatched between l blocks of bits. We denote by δi the number of bits of the i-th block bi
at position pi (see Figure 2). For convenience we simplify the notation as follows: let t = (t1, . . . , tl) be a l-tuple of
integers then we set 2t = (2t1 , . . . ,2tl ) Then the ephemeral key ki is of the form

ki = 2p ·b+2t ·ki for all i = 1, . . . ,n (12)

where b = (b1, . . . ,bl) is the vector of shared bits blocks, with the position vector p = (p1, . . . , pl) of the l blocks,
and ki = (ki,0, . . . ,ki,l) the vector of no shared bits blocks at positions t = (t0, . . . , tl). After stating that t0 := 0 and
pl+1 := N, it follows that for all i = 1, . . . ,n, and for all j = 1, . . . , l, we must have

t j = p j +δ j, δ = ∑
j

δ j, 0≤ b j < 2δ j and 0≤ ki, j < 2(p j+1−t j)

Note that the values of ki, ki, j and b j are all unknown. In the n signature equations (1), we substitute the ki by (12)
and we eliminate the common variable b, then we have

(s−1
1 m1− s−1

2 m2) + a(s−1
1 r1− s−1

2 r2)−∑
l
j=0 2t j(k1, j−k2, j) ≡ 0 (mod q)

(s−1
1 m1− s−1

3 m3) + a(s−1
1 r1− s−1

3 r3)−∑
l
j=0 2t j(k1, j−k3, j) ≡ 0 (mod q)

...
...

...
...

(s−1
1 m1− s−1

n mn) + a(s−1
1 r1− s−1

n rn)−∑
l
j=0 2t j(k1, j−kn, j) ≡ 0 (mod q)

(13)

Let αi, βi ∈ Z and κi, t ∈ Zl be such that
αi := (s−1

1 m1− s−1
i mi) mod q

βi := (s−1
1 r1− s−1

i ri) mod q
κi := (k1,1, . . . ,k1,l)− (ki,1, . . . ,ki,l)
t := (t1, . . . , tl)

9



ki= ki,0

δ1

b1 ki,1

δ j

b j ki, j

δl

bl ki,l

0 p1 t1 p j t j pl tl N

Fig. 2. Ephemeral keys

then (13) becomes 
α2 +aβ2−2t ·κ2 ≡ k1,0−k2,0 (mod q)
α3 +aβ3−2t ·κ3 ≡ k1,0−k3,0 (mod q)

...
...

...
...

αn +aβn−2t ·κn ≡ k1,0−kn,0 (mod q)

(14)

where a and κi are unknown, βi and αi are known. Embedding these equations into the lattice L spanned by the row
vectors of the following basis matrix

M =


Il(n−1)+2

α2 . . . αn
β2 . . . βn
2t1 I(n−1)

...
2tl I(n−1)

0 qI(n−1)


(15)

we obtain that

v0 = (1,a, k1,1−k2,1, . . . ,k1,1−kn,1︸ ︷︷ ︸ , . . .︸︷︷︸, k1,l−k2,l , . . . ,k1,l−kn,l︸ ︷︷ ︸, k1,0−k2,0, . . . ,k1,0−kn,0︸ ︷︷ ︸)
κi,1 κi, j κi,l αi +aβi−2t ′ ·κi mod q

(16)

is an element of the lattice L. If we were able to find this vector v0 in L, then we could recover the secret key a.

Example 1. For instance, if we have only one block (i.e. l = 1) of δ shared bits in the middle, then the n ephemeral
keys are of the form

ki = ki,0 +2p1b1 +2t1ki,1 for all i = 1, . . . ,n

where

δ = δ1, t1 = p1 +δ1, 0≤ ki,0 < 2p1 , 0≤ ki,1 < 2N−t1 and 0≤ b1 < 2δ1

and αi, βi, κi ∈ Z be such that αi := (s−1
1 m1− s−1

i mi) mod q
βi := (s−1

1 r1− s−1
i ri) mod q

κi := k1,1−ki,1

In this case, (14) becomes 
α2 +aβ2 +2t1κ2 ≡ k1,0−k2,0 (mod q)
α3 +aβ3 +2t1κ3 ≡ k1,0−k3,0 (mod q)

...
...

...
...

αn +aβn +2t1κn ≡ k1,0−kn,0 (mod q)
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and the lattice L is spanned by the row vectors of the following basis matrix

M =



1 0 0 . . . 0 α2 . . . αn
0 1 0 . . . 0 β2 . . . βn
0 0 1 . . . 0 2t1 . . . 0
...

...
...

. . .
...

...
. . .

...
0 0 0 . . . 1 0 . . . 2t1

0 0 0 . . . 0 q . . . 0
...

...
...

...
...

. . .
...

0 0 0 . . . 0 0 . . . q


The targeted element of L is the vector

v0 = (1,a,κ2, . . . ,κn,k1,0−k2,0, . . . ,k1,0−kn,0) = (1,a,κ2, . . . ,κn,λ2, . . . ,λn) ·M

The proposed improvements of the section 4.2 can also be (directly) applied in the case of shared bits blocks.
Especially, a weighted Euclidean inner product gives rise to the following estimations of the required number of
shared bits in function of the number of blocks and the number of available messages.

Theorem 4. Let n messages mi (i = 1, . . . ,n, n > 2) with associated signatures (ri,si) such that the ephemeral keys ki
share a total of δ bits dispatched between l blocks of bits. Under the assumption 1, the secret key a can be computed

a. with the exhaustive search method in time δC ((l +1)(n−1)+2, 1
2 log2(n−1)) as soon as

δ ≥ N +(n−1)
n

+(1+ log2(πe))
(l +1)(n−1)+2

2n
(17)

b. with the lattice L′ obtained by removing the second column (8) in time C ((l+1)(n−1)+1, 1
2 log2(n−1)) as soon

as

δ ≥ N +(n−2)
n−1

+(1+ log2(πe))
(l +1)(n−1)+1

2(n−1)
(18)

The proof of this theorem is almost similar as the one developed in Section 4.2 and is given in the Appendix B.

5 Experimental results

In order to check the validity and the quality of the bounds on δ , we implemented the methods on the computational
algebra system Magma V2.17-1 ([BCP97]). All the tests have essentially validated the Gaussian Heuristic assumption
(assumption 1) and the fact that the first gap of the lattices (defined as λ2/λ1, see Annex A) is high enough so that
the shortest vector can be computed with the LLL algorithm. Hence they show the effectiveness of our method. In the
following, the length of q is fixed to N = 160.

5.1 Shared MSB and LSB

The figure 3 is the graph of the four bounds on δ given by the theorems 1, 2 and 3 in function of the number of
messages. The table 2 gives more details by listing some theoretical minimal integer values of the necessary number
of LSB/MSB shared bits δ for a given number of messages.

We conducted experiments of this attack when the ephemeral keys have their δ LSB in common. For the same
reason as the one explained in [NS02], the results for the case of MSB or both MSB/LSB are not as good as in the
LSB case, about one more bit being required. As the secret key is 160 bits long, we used the independent key size
method by removing the corresponding column of the lattice (see section 4.2.2). Additionally, we use a weighted
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Fig. 3. Theoretical bounds of Theorems 1, 2 and 3 with N = 160

Euclidean inner product during the LLL algorithm phase which gives better results than the canonical inner product
(more precisely, we use the inner product given as an example in section 4.2.3). The experiments are then conducted
under the theorem 3b conditions. Note that we consider an attack to be successful when the secret key is found, that
is when the targeted vector ±v0 (9) is a vector of the reduced basis. For each δ and each n, we generated 100 tests
and store the success rate in the table 3. To compare experimental values to the theoretical bound, the success rates
corresponding to the theoretical minimal value of δ for a given number of messages are written in red.

Bound on n, number of messages
δ of theorem 3 4 5 6 7 8 9 10 15 20 30 40 50 60 70 80 90 100 200 ∞

1 83 67 56 49 43 39 35 32 23 19 14 11 10 9 8 7 7 7 5 ≈3.05
2 109 83 67 56 49 43 39 35 25 19 14 11 10 9 8 8 7 7 5 ≈3.05
3a 57 44 36 30 27 24 21 20 14 12 9 8 7 6 6 6 5 5 4 ≈3.05
3b 84 57 44 36 30 27 24 21 15 12 9 8 7 6 6 6 5 5 4 ≈3.05

Table 2. Theoretical minimum for δ with N = 160

First of all, the results show that we have a 100% success rate when δ is the bound (11) of theorem 3 and then we
could say that they confirm that the assumptions we made are justified. Moreover, we observe that we can often go a
few bits beyond the theoretical bound on δ . Then, the success rate gradually decreases to zero percent with δ .

Another interesting result is that the attack still works with only 1 or 2 shared bits (δ = 1,2) when there are enough
messages. This result is particularly surprising considering that the theoretical limit is 3 and that the success rate can
be higher than 90% (not to say 99% or 100% when n > 500).

Note also that the step of lattice reduction of this attack is very fast (always less than a minute, or even less than a
second up to n≈ 70).
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δ
n, Number of messages

40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 250 300 400 500 600

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 8 10 35 56 91 99 99
2 0 0 0 0 0 2 6 12 24 33 42 58 63 73 80 85 100 100 100 100 100 100
3 0 2 19 34 60 74 82 94 96 97 99 99 99 99 99 100 100 100 100 100 100 100
4 34 76 90 99 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
5 96 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Time (s) 0.35 0.58 0.78 0.94 1.2 1.4 1.7 1.9 2.1 2.4 2.6 2.9 3.2 3.5 3.8 4.1 4.2 6.3 8.5 15 27 44
Table 3. Success rate of LSB attack of theorem 3b

5.2 Blocks of shared bits

Following the bound (18) (better than the bound (17)) of theorem 4, the table 4 gives some theoretical minimal integer
values of the necessary number of total shared bits δ in function of the number of blocks and the number of messages.
Under theses conditions, we conducted a large number of experiments (100 tests for each δ and each n) whose results
are summarized in table 5. Once more, we wrote in red the success rates corresponding to the theoretical minimal
value of δ for a given number of messages.

Contrary to the case of shared LSB/MSB, we may have a success rate lower than 100% when δ was within the
bound with the attack of blocks of shared bits (see Section 4.3). The reason is that the assumption of the theorem 4
may fail because of the occurrence of exceptionally short vectors. However, we observe that we can always go a few
bits beyond the theoretical bound on δ keeping a good success rate.

We can also note that the computation time is longer than in the case LSB/MSB because of the larger dimension
of lattices.

Number of n, number of messages
blocks l 3 4 5 6 7 8 9 10 15 20 30 40 50 ∞

1 86 59 46 38 32 29 26 23 17 14 11 10 9 6
2 88 61 48 40 34 31 28 26 19 16 13 12 11 8
3 90 63 50 42 37 33 30 28 21 18 15 14 13 10

10 105 78 64 56 51 47 44 42 36 32 30 28 27 24
20 125 98 85 77 71 67 65 62 56 53 50 49 48 44
30 145 119 105 97 92 88 85 83 76 73 71 69 68 65

Table 4. Theoretical minimum for δ with theorem 4b

δ
n, number of messages

13 14 15 16 17 18 19 20 30 40 50 60 70 80 90 100

4 0 0 0 0 0 0 0 0 0 0 6 13 19 28 26 49
5 0 0 0 0 0 0 0 0 0 19 32 49 67 78 82 77
6 0 0 0 0 0 0 0 0 13 49 78 89 90 94 100 99
7 0 0 0 0 0 0 0 1 63 89 96 99 97 99 97 96
8 0 0 0 0 2 1 5 20 93 99 99 100 99 98 98 98
9 0 0 0 1 12 21 49 59 99 100 99 99 100 99 100 99

10 0 1 1 21 60 82 95 94 100 100 100 100 99 99 100 100

Time (s) 0.08 0.10 0.13 0.16 0.20 0.23 0.28 0.3 0.8 1.4 2.1 3.0 4.1 5 6 6.8
Table 5. Success rate of theorem 4b with one block

5.3 Random number generator tests

In the scenario with malicious PRNG, we verified that a defect is experimentally undetectable by conventional tests.
Indeed, a 8 GByte bit sequence from the AES OFB random number generator in Dieharder ([Bro11]), manipulated
to contain enough implicit information, was used as input for the Dieharder test suite. More precisely, sequences of
some randomly selected bits are repeated in a predictable way. For instance, a sequence of 4 bits can be repeated 100
times following a predictable pattern in a random sequence corresponding to 210 ephemeral keys. The pattern that
describes the positions of corrupted nonces (i.e. ephemeral keys sharing some bits) can be, for example, a function of
the position of the first corrupted nonce. Therefore, in this case we need an additional step containing an exhaustive
search to find the first corrupted nonce (of complexity of about 210 with this example). All tests of the two referenced
statistical test suites: Dieharder statistical test suite ([Bro11]) and the NIST statistical test suite (STS) ([RSN+10])
have shown a random behavior at a high confidence level, our manipulations being then unnoticed when the number
of shared bits matches the number of corrupted nonces to have a 100% success rate (see Table 3). These experiments
remind that these tests are not a proof of randomness even though they are common tools for initial validation. Finally,
it has been shown that an exploitable bias is currently undetectable by conventional statistical tests.
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6 Further developments

Throughout this work, we assumed that all ephemeral keys used in the attack shared a same block of bits. In this
scenario, by the pigeonhole principle, our attack needs, in the worst case, 2δ + 1 samples before obtaining only two
signatures that have ephemeral keys with δ bits in common. However, from a practical perspective, we would like
to use all the signatures generated by a signer, which is not possible for the moment. Assuming, as in [LPS04], that
an attacker can determine, in practice, some relation amongst the bits of the secret ephemeral keys rather than their
specific values, we present below how to solve this problem by slightly adapting the lattices of our method.

In this context, our attack can be naturally extended to the more general case where each ephemeral key ki (i =
1 . . .n) shares δ bits with at least one other key k j (i 6= j) and not necessarily with all of them. For instance, we look at
shared MSB/LSB, with the same notation as in section 4.1. For two fixed positions t and t ′, we can take the partition
P of the set of all ephemeral keys corresponding to the equivalence relation Rt,t ′ , defined such that related ephemeral
keys share the first t MSB and the last t ′ LSB (which represent a total of δ bits). In a given equivalence class [k j], if
we have #[k j] ≥ 2 then we can apply the method of Section 4.1. For each class [k j], we obtain a system of #[k j]− 1
modular equations as (5) with

∀ki ∈ [k j] s.t. i 6= j,


αi := 2−t(s−1

j m j− s−1
i mi) mod q

βi := 2−t(s−1
j r j− s−1

i ri) mod q
κi := k̃ j− k̃i

The set of all common solutions of the #P = #
(
{ki, i = 1..n}/Rt,t ′

)
systems described as above forms a lattice similar

to (6) of dimension equal to n−#P.
In the same way, other shared bits in other positions (i.e. when t and t ′ are not fixed) can be exploited by expanding

the lattice with the corresponding columns. Also the same improvement can be developped in the case of shared
bits blocks in the middle. All these further developments will be detailed in an extended version of this paper. More
generally, we could also imagine other forms of implicit information, i.e. an other relationship than just the equality
between bits. For instance, an interesting open question is whether we can exploit inequalities or simple relationships
between unknown bits.
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A Common results on lattice

In this section, we state common results on lattices that are used throughout this paper. Readers interested in getting
more details and proofs can refer to [NV09].

An integer lattice L is a discrete additive subgroup of Zn. It can be generated from a basis of d independent vectors
(b1, . . . ,bd) of Zn by linear combinations with integer coefficients. A lattice may be described by many different bases.
All the bases are then related by an unimodular transformation. The integer d is called the dimension of L. If d = n
then L is said to be full-rank.

Definition 1. The Gram determinant of b1, . . . ,bd ∈Rn denoted by ∆(b1, . . . ,bd), is the determinant of the d×d Gram
matrix (〈bi,b j〉)1≤i, j≤d .

Definition 2. The volume of L is defined by Vol(L) = ∆(b1, . . . ,bd)
1/2. In other words, it is the d-dimensional volume

of the parallelepiped spanned by the vectors of a basis.

The dimension and the volume are independent of the choice of this basis.
The volume of a lattice is easy to compute with Definition 2 if at least one explicit basis is known. But, in this

article, we also need a way to compute the volume of lattices spanned by a set of linearly dependent vectors. In this
case, the following results on sublattices is very useful.

Definition 3. A sublattice of L is a lattice M included in L. Clearly, the sublattices of L are the subgroups of L.

Lemma 2 ([NV09]). A sublattice M of L is full-rank if and only if the group index [L : M] is finite, in which case we
have

Vol(M) = Vol(L)× [L : M].

We also need the following results about lattice basis reduction. More particularly, we require a way to provide a
precise estimation of the expected length of the shortest vector, which is called the Gaussian heuristic, and a way to
get an approximation of this small vector in polynomial time, which is done by using the LLL algorithm ([LLL82]).

Definition 4. For 1 ≤ r ≤ d, let λr(L) be the least real number such that there exists at least r linearly independent
vectors of L of euclidean norm smaller or equal to λr(L). We call λ1(L), . . . ,λd(L) the d minima of L and we call
g(L) = λ2(L)/λ1(L) the gap of L.
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Theorem 5 (LLL [LLL82]). Let L be a d-dimensional lattice of Zn given by a basis (b1, . . . ,bd). Then LLL algorithm
computes a reduced basis (v1, . . . ,vd) that approximates the shortest vector of L within an exponential factor:

‖v1‖ ≤ 2
d−1

4 Vol(L)
1
d

The running time of Nguyen and Stehlé’s version is O(d5(d + logB) logB) where B = maxi(‖bi‖), see [NS05].

The time complexity of computing a shortest vector of L (which is a NP-Hard problem [Ajt98]) is denoted here by
C (d,B).

Theorem 6 (Gaussian heuristic [Ajt06]). Let L be a random d-dimensional lattice of Zn. Then, with overwhelming
probability, all the minima of L are asymptotically close to:√

d
2πe

Vol(L)
1
d

Thus, it is common practice to assume that if a vector v ∈ L is shorter than the Gaussian heuristic λ1(L) ≈√
d

2πe Vol(L)
1
d applied to the d-dimensional lattice L then it is the shortest vector of L. Moreover, when the gap of

L is high enough, this vector can be found in an LLL-reduced basis of L. For lattices proposed in this article, this
essential and common assumption is confirmed by experimental results of section 5 and seems to be true in practice.

B Proof of Theorem 4

Proof. Let an integer k ≥ N− δ . We use a weighted Euclidean inner product such that each component of the seek
vector v0 have the same size k (i.e. the i-th weight is equal to k−dlog2(v0,i)e).

a. With the exhaustive search method: first note that the dimension of the lattice L defined by (15) is

dim(L) = (l +1)(n−1)+2

A close approximation of the norm of vector v0 (16) is then computed:

‖v0‖2 =
dim(L)

∑
i=1

v2
0,i2

2(k−dlog2(v0,i)e) ≤
dim(L)

∑
i=1

22k = 22k((l +1)(n−1)+2)

Next, the volume of the lattice (15) is

Vol(L) = 2k2k−(N−δ )(q2k−p1)(n−1)
l

∏
j=1

2(k−(p j+1−t j))(n−1)

but, we have
(k −p1)(n−1)+∑

l
j=1(k− (p j+1− t j))(n−1)

= (n−1)(k− p1 +∑
l
j=1(k− p j+1 + p j +δ j))

= (n−1)(k− p1 + lk−∑
l
j=1 p j+1 +∑

l
j=1 p j +∑

l
j=1 δ j)

= (n−1)(k(l +1)− pl+1 +δ )
= (n−1)(k(l +1)−N +δ )

then
Vol(L) = qn−12k2k−(N−δ )2(n−1)(k(l+1)−N+δ ) ≥ 2k((l+1)(n−1)+2)+n(δ−1)−N+1

Using the Gaussian heuristic assumption, we have

22k+log2(dim(L)) ≤ dim(L)
2πe

(2k dim(L)+n(δ−1)−N+1)
2

dim(L)

which is equivalent to

δ ≥ N +(n−1)
n

+(1+ log2(πe))
dim(L)

2n
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b. Same computation with the lattice L′ obtained by removing the second column of (15). The dimension of L′ is
equal to (l +1)(n−1)+1. Then a close approximation of the norm of vector v′0 is

‖v′0‖2 ≤ 22k((l +1)(n−1)+1)

Next, the volume of L′ is

Vol(L′) = 2kqn−2(2k−p1)(n−1)
l

∏
j=1

2(k−(p j+1−t j))(n−1) ≥ 2k((l+1)(n−1)+1)+(n−1)δ−N−n+2

Using the Gaussian heuristic assumption, we have

22k dim(L′)≤ dim(L′)
2πe

(2k dim(L′)+(n−1)δ−N−n+2)
2

dim(L′)

which is equivalent to

δ ≥ N +(n−2)
n−1

+(1+ log2(πe))
dim(L′)
2(n−1)

ut
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