The asymptotic geometry of the Teichmüller metric

Cormac Walsh 1, 2
1 MAXPLUS - Max-plus algebras and mathematics of decision
CMAP - Centre de Mathématiques Appliquées - Ecole Polytechnique, Inria Saclay - Ile de France, X - École polytechnique, CNRS - Centre National de la Recherche Scientifique : UMR
Abstract : We determine the asymptotic behaviour of extremal length along arbitrary Teichmüller rays. This allows us to calculate the endpoint in the Gardiner-Masur boundary of any Teichmüller ray. We give a proof that this compactification is the same as the horofunction compactification. An important subset of the latter is the set of Busemann points. We show that the Busemann points are exactly the limits of the Teichmüller rays, and we give a necessary and sufficient condition for a sequence of Busemann points to converge to a Busemann point. Finally, we determine the detour metric on the boundary.
Type de document :
Pré-publication, Document de travail
34 pages. 2012
Liste complète des métadonnées

https://hal.inria.fr/hal-00778085
Contributeur : Canimogy Cogoulane <>
Soumis le : vendredi 18 janvier 2013 - 16:31:43
Dernière modification le : jeudi 10 mai 2018 - 02:05:48

Lien texte intégral

Identifiants

  • HAL Id : hal-00778085, version 1
  • ARXIV : 1210.5565

Collections

Citation

Cormac Walsh. The asymptotic geometry of the Teichmüller metric. 34 pages. 2012. 〈hal-00778085〉

Partager

Métriques

Consultations de la notice

226