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Abstract

This chapter describes an algorithm for determining the speed and the attitude of a sensor assembling

constituted by a monocular camera and inertial sensors (three orthogonal accelerometers and three

orthogonal gyroscopes). The system moves in a 3D unknown environment. The algorithm inputs are

the visual and inertial measurements during a very short time interval. The outputs are: the speed and

attitude, the absolute scale and the bias affecting the inertial measurements. The determination of these

outputs is obtained by a simple closed form solution which analytically expresses the previous physical

quantities in terms of the sensor measurements. This closed form determination allows performing

the overall estimation in a very short time interval and without the need of any initialization or prior

knowledge. This is a key advantage since allows eliminating the drift on the absolute scale and on the

orientation. The performance of the proposed algorithm is evaluated with real experiments.

I. INTRODUCTION

In recent years, vision and inertial sensing have received great attention by the mobile robotics

community. These sensors require no external infrastructure and this is a key advantage for

robots operating in unknown environments where GPS signals are shadowed. In addition, these

sensors have very interesting complementarities and together provide rich information to build

a system capable of vision-aided inertial navigation and mapping and a great effort has been

done very recently in this direction (e.g. [1], [3]). A special issue of the International Journal

of Robotics Research has recently been devoted to the integration of vision and inertial sensors



[6]. In [5], a tutorial introduction to the vision and inertial sensing is presented. This work

provides a biological point of view and it illustrates how vision and inertial sensors have

useful complementarities allowing them to cover the respective limitations and deficiencies. The

majority of the approaches so far introduced, perform the fusion of vision and inertial sensors

by filter-based algorithms. In [2], these sensors are used to perform egomotion estimation. The

sensor fusion is obtained with an Extended Kalman Filter (EKF ) and with an Unscented Kalman

Filter (UKF ). The approach proposed in [7] extends the previous one by also estimating the

structure of the environment where the motion occurs. In particular, new landmarks are inserted

on line into the estimated map. This approach has been validated by conducting experiments in a

known environment where a ground truth was available. Also, in [18] an EKF has been adopted.

In this case, the proposed algorithm estimates a state containing the robot speed, position and

attitude, together with the inertial sensor biases and the location of the features of interest. In the

framework of airbone SLAM, an EKF has been adopted in [9] to perform 3D−SLAM by fusing

inertial and vision measurements. It was remarked that any inconsistent attitude update severely

affects any SLAM solution. The authors proposed to separate attitude update from position and

velocity update. Alternatively, they proposed to use additional velocity observations, such as air

velocity observation. Regarding the robot attitude, in [4] it has been noted that roll and pitch

angles remain more consistent than the heading.

A fundamental issue to address when fusing vision and inertial measurements, is to understand

which are the observable modes, i.e. the physical quantities that the information contained in

the sensor data allows uniquely determining. The next issue to address is to find a reliable and

efficient method to determine all the previous physical quantities.

The following simple 1 − D example clearly shows that it is reasonable to expect that the

absolute scale is an observable mode and can be obtained by a closed-form solution. A vehicle

equipped with a bearing sensor (e.g. a camera) and an accelerometer moves on a line (see fig 1).

If the initial speed in A is known, by integrating the data from the accelerometer, it is possible

to determine the robot speed during the subsequent time steps and then the distances A − B

and B − C by integrating the speed. The lengths A − F and B − F are obtained by a simple

triangulation by using the two angles βA and βB from the bearing sensor. When the initial

speed vA is unknown, all the previous segment lengths can be obtained in terms of vA. In other

words, it is possible to obtain the analytical expression of A − F and B − F in terms of the



unknown vA and all the sensor measurements performed while the robot navigates from A to B.

By repeating the same computation with the bearing measurements in A and C, it is obtained

a further analytical expression for the segment A − F , in terms of the unknown vA and the

sensor measurements performed while the vehicle navigates from A to C. The two expressions

for A − F provide an equation in the unknown vA. By solving this equation the value of vA

is obtained. Hence, the value of all the segment lengths in fig 1 is obtained in terms of the

measurements performed by the accelerometer and the bearing sensor.

Fig. 1. A vehicle equipped with an accelerometer and a camera moves on a line. The camera performs three observations of

the feature in F , respectively from the points A, B and C.

The previous example is very simple because of several unrealistic restrictions. First of all,

the motion is constrained on a line. Additionally, the accelerometer provides gravity-free and

unbiased measurements.

In [15] these restrictions were relaxed. A vehicle equipped with IMU and bearing sensors was

considered. The motion of the vehicle was not constrained. However, only the case of one single

feature was considered. In addition, the inertial measurements were unbiased.

This chapter extends the results obtained in [15] by also considering the case of multiple

features. Additionally, also the case when the accelerometers provide biased measurements will

be considered.

The chapter is organized as follows. Section II provides a mathematical description of the

system. Sections III and IV provide conditions for the state observability. Then, section V

provides the analytical derivation of the closed-form solution to determine the speed and attitude.

Section VI highlights the main steps of the proposed algorithm. The performance of the algorithm

is evaluated in section VII. Conclusions are provided in section VIII.



II. THE CONSIDERED SYSTEM

The system is a sensor assembling constituted by a monocular camera and IMU sensors.

The IMU consists of three orthogonal accelerometers and three orthogonal gyroscopes. The

transformations among the camera frame and the IMU frames are known (the local frame is the

camera frame). In the following, the word vehicle will be used to refer to this sensor assembling.

The IMU provides the vehicle angular speed and acceleration. Actually, regarding the accel-

eration, the one perceived by the accelerometer (A) is not simply the vehicle acceleration (Av).

It also contains the gravitational acceleration (Ag). In particular, A = Av −Ag since, when the

camera does not accelerate (i.e. Av is zero) the accelerometer perceives an acceleration which

is the same of an object accelerated upward in the absence of gravity.

In the following, upper-case letters will indicate the vectors when expressed in the local frame

and lower-case letters when they are expressed in the global frame. Hence, regarding the gravity:

ag = [0, 0, − g]T , being g ' 9.8 ms−2.

The camera is observing a point feature during a given time interval. The global frame will

be attached to this feature. The vehicle and the feature are displayed in fig 2.

Fig. 2. The feature position (F ), the vehicle acceleration (Av) the vehicle angular speed (Ω) and the gravitational acceleration

(Ag).

Finally, a quaternion will be adopted to represent the vehicle orientation. Indeed, even if this



representation is redundant, it is very powerful since the dynamics can be expressed in a very

easy and compact notation [10].

The system is characterized by the state [r, v, q]T where r = [rx, ry, rz]
T is the 3D

vehicle position, v is its time derivative, i.e. the vehicle speed in the global frame (v ≡ dr
dt

),

q = qt+iqx+jqy+kqz is a unitary quaternion (i.e. satisfying q2t +q
2
x+q

2
y+q

2
z = 1) and characterizes

the vehicle orientation. The analytical expression of the dynamics and the camera observations

can be easily provided by expressing all the 3D vectors as imaginary quaternions. In practice,

given a 3D vector w = [wx, wy, wz]
T , the imaginary quaternion ŵ ≡ 0 + iwx + jwy +kwz will

be associated with it. The dynamics of the state [r̂, v̂, q]T are:


˙̂r = v̂

˙̂v = qÂvq
∗ = qÂq∗ + âg

q̇ =
1

2
qΩ̂

(1)

being q∗ the conjugate of q, q∗ = qt− iqx−jqy−kqz. The camera observations can be expressed

in terms of the same state ([r̂, v̂, q]T ). The camera provides the direction of the feature in

the local frame. In other words, it provides the unit vector F
|F | (see fig. 2). Hence, the camera

provides the two ratios y1 = Fx

Fz
and y2 = Fy

Fz
, being F = [Fx, Fy, Fz]

T . The position of the

feature in the frame with the same orientation of the global frame but shifted in such a way

that its origin coincides with the one of the local frame is −r. Therefore, F is obtained by the

quaternion product F̂ = −q∗r̂q. The observation function provided by the camera is:

hcam(r̂, v̂, q) = [y1, y2]
T =

[
(q∗r̂q)x
(q∗r̂q)z

,
(q∗r̂q)y
(q∗r̂q)z

]T
(2)

where the pedices x, y and z indicate respectively the i, j and k component of the corresponding

quaternion. Finally, the constraint q∗q = 1 can be dealt as a further observation (system output):

hconst(r̂, v̂, q) = q∗q (3)

A. The Case with Multiple Features

In the case when the camera observes Nf features, simultaneously, the global frame will be

attached to one of the features. di denotes the 3D vector which contains the cartesian coordinates



of the ith feature (i = 0, 1, ..., Nf − 1). The global frame is attached to the 0th feature, i.e.

d0 = [0 0 0]T . The new system is characterized by the state [r̂, v̂, q, d̂1, ..., d̂Nf−1]
T , whose

dimension is 7 + 3Nf . The dynamics of this state are given by (1) together with the equations:

ḋi = [0 0 0]T i = 1, ..., Nf − 1 (4)

The position F i of the ith feature in the local frame is obtained by the quaternion product

F̂ i = q∗(d̂i − r̂)q. The corresponding observation function is:

hicam =

[
(q∗(d̂i − r̂)q)x
(q∗(d̂i − r̂)q)z

,
(q∗(d̂i − r̂)q)y
(q∗(d̂i − r̂)q)z

]T
, i = 0, 1, ..., Nf − 1 (5)

which coincides with the observation in (2) when i = 0. Summarizing, the case of Nf features

is described by the state [r̂, v̂, q, d̂1, ..., d̂Nf−1]
T , whose dynamics are given in (1) and (4)

and the observations are given in (5) and (3).

B. The Case with Bias

Abias denotes and Ωbias denote the two 3D-vectors whose components are the mean values of

the measurement errors from the accelerometers and the gyroscopes, respectively. The two vectors

Abias and Ωbias are time-dependent. However, during a short time interval, it is reasonable to

consider them to be constant. Under these hypotheses, the dynamics in (1) become:

˙̂r = v̂

˙̂v = qÂvq
∗ = qÂq∗ + qÂbiasq

∗ + âg

q̇ =
1

2
qΩ̂ +

1

2
qΩ̂bias

Ȧbias = Ω̇bias = [0 0 0]T

(6)

Note that these equations only hold for short time intervals. In the following, these equations

will be used only when this hypothesis is satisfied (in particular, during time intervals allowing

the camera to perform at most ten consecutive observations).



III. OBSERVABILITY PROPERTIES

We investigate the observability properties of the system whose dynamics are given in (1) and

whose observations are given in (2) and (3). For the sake of clarity, we discuss both the case

without gravity (III-A) and with gravity (III-B).

A. The Case without Gravity

Let us set g = 0 in (1). By directly computing the Lie derivatives and their gradients, it is

possible to detect three independent symmetries for the resulting system (see [14]). They are:

w1
s =

[
0 − rz ry 0 − vz vy −

qx
2

qt
2
− qz

2

qy
2

]T
(7)

w2
s =

[
rz 0 − rx vz 0 − vx −

qy
2

qz
2

qt
2
− qx

2

]T

w3
s =

[
−ry rx 0 − vy vx 0 − qz

2
− qy

2

qx
2

qt
2

]T
According to definition of continuous symmetry introduced in [14], these vectors are orthogonal

to all the gradients of all the Lie derivatives. These symmetries could also be derived by

remarking the system invariance with respect to rotations about all the three axes. For instance,

an infinitesimal rotation of magnitude ε about the vertical axis changes the state as follows [8]:
rx

ry

rz

→

rx

ry

rz

+ ε


−ry
rx

0



vx

vy

vz

→

vx

vy

vz

+ ε


−vy
vx

0



qt

qx

qy

qz

→

qt

qx

qy

qz

+
ε

2


−qz
−qy
qx

qt





that is: 
r

v

q

→

r

v

q

+ εw3
s

On the other hand, without computing the Lie derivatives, we could not conclude that the previous

ones are all the symmetries for the considered system.

In [14] we proved that for every symmetry there is an associated partial differential equation

and every observable mode must satisfy simultaneously all the three partial differential equations.

Since our system is defined by 10 variables, the number of independent solutions satisfying all

the three partial differential equations is 10 − 3 = 7 [11]. On the other hand, their derivation,

once the three symmetries are detected, is easy. Indeed, it is immediate to prove that the distance

of the feature from the camera, i.e. |r|, is a solution of the three equations (this can be checked

by substitution for the partial differential equations associated with the symmetries in (7) but can

also be proved by remarking that the scale factor is invariant under rotations). This means that

the distance of the feature is observable and it is one among the 7 independent solutions. On the

other hand, since the camera provides the position of the feature in the local frame up to a scale

factor, having the distance means that the feature position in the local frame is also observable.

Therefore, the three components of the feature position in the local frame are three independent

solutions. By using quaternions, we can say that three independent solutions are provided by the

components of the imaginary quaternion q∗r̂q. Additionally, since the three partial differential

equations are invariant under the transformation r ↔ v, three other independent solutions are

the components of the imaginary quaternion q∗v̂q. Physically, this means that the vehicle speed

in the local frame is also observable. Finally, the last solution is q∗q since it is directly observed

(see equation (3); it can be in any case verified that it satisfies the three partial differential

equations).

B. The Case with Gravity

We investigate the observability properties when g 6= 0. The presence of the gravity breaks two

of the previous three symmetries. In other words, the system remains invariant only with respect

to rotations about the vertical axis. This means that w1
s and w2

s are no longer symmetries for the



new system. By directly computing the Lie derivatives, we were able to find nine independent

Lie derivatives. Hence, the system has 10− 9 = 1 symmetry which is ws
3.

The partial differential equation associated with ws
3 is:

−2ry
∂Λ

∂rx
+ 2rx

∂Λ

∂ry
− 2vy

∂Λ

∂vx
+ 2vx

∂Λ

∂vy
+ (8)

−qz
∂Λ

∂qt
− qy

∂Λ

∂qx
+ qx

∂Λ

∂qy
+ qt

∂Λ

∂qz
= 0

The number of independent solutions Λ = Λ(rx, ry, rz, vx, vy, vz, qt, qx, qy, qz) is equal

to the number of variables (i.e. 10) minus the number of equations (i.e. 1) [11]. Hence, in this

case we have two additional observable modes. They are:

Qr ≡
qtqx + qyqz

1− 2(q2x + q2y)
; Qp ≡ qtqy − qzqx (9)

Also for these two solutions it is possible to find a physical meaning. They are related to

the roll and pitch angles [10]. In particular, the first solution provides the roll angle which is

R = arctan(2Qr). The latter provides the pitch angle which is P = arcsin(2Qp). Finally, we

remark that the expression of the yaw, Y = arctan
(

2 qtqz+qxqy
1−2(q2y+q2z)

)
, does not satisfy (8).

C. The Case with Multiple Features

Let us suppose that the vehicle is observing Nf > 1 features, simultaneously. The new system

is characterized by the (7+3Nf )− dimensional state [r̂, v̂, q, d̂1, ..., d̂Nf−1]
T , whose dynamics

are given in (1) and (4) and the observations are given in (5) and (3).

It is immediate to realize that all the camera observations are invariant with respect to the

same symmetries found in the case of one single feature (for instance, the camera observations

do not change when the initial state [r̂, v̂, q, d̂1, ..., d̂Nf−1]
T is rotated about the vertical

axis). Hence, in presence of gravity, the yaw angle is still unobservable. In absence of gravity,

also the roll and pitch angles are unobservable. Hence, in presence of gravity, the number of

independent modes cannot exceed 7 + 3Nf − 1 = 6 + 3Nf . In absence of gravity, this number

cannot exceed 7 + 3Nf − 3 = 4 + 3Nf .

On the basis of the results obtained in the previous subsections, we know that the position

of each feature in the local frame provides 3 observable modes. Also, the vehicle speed in the



local frame provides 3 observable modes. In addition, an observable mode is the norm of the

quaternion. Therefore, in both the cases with and without gravity, we have 3Nf + 4 observable

modes. In absence of gravity, these are all the observable modes. In presence of gravity, also

the roll and pitch angles are observable modes, since they are observable modes with a single

feature.

The analytical results derived in the previous subsections can be summarized with the following

property:

Property 1 Let us consider the system defined by (1), (3), (4) and (5). All the independent

observable modes are the components of the imaginary quaternion q∗(d̂i−r̂)q, i = 0, 1, ..., Nf−

1 (i.e. the position of the observed features in the local frame), the three components of the

imaginary quaternion q∗v̂q (i.e. the vehicle speed in the local frame) and the product q∗q (i.e.

the norm of the quaternion). In addition, in presence of gravity, also the roll and pitch angles

are observable modes.

D. The Case with Bias

In this subsection we will prove that, even when the camera only observes a single feature, the

bias affecting the accelerometers and the gyros are observable. The system we are considering

is defined by the state: [r v q bA bΩ]T , whose dimension is 16. This state satisfies the dynamics

in (6). Finally, this system is characterized by the observations given in (2) and (3).

We know that the state is not observable. Indeed, even without bias, we know that it is not

possible to estimate the yaw angle (section III-B). In other words, also this system is invariant

with respect to rotations about the vertical axis. Hence, its observable modes must satisfy the

equation in (8), where, now, Λ also depends on the components of bA and bΩ. On the other hand,

we do not know if the system has additional symmetries in which case the observable modes must

satisfy additional partial differential equations, simultaneously. In order to prove that the system

has a single symmetry, we must provide 15 independent Lie derivatives. By a direct computation,

performed by using the symbolic Matlab computational tool, we were able to find the following

15 independent Lie derivatives: L0y1, L0y2, L0hconst, L1

f0
y1, L1

f0
y2, L2

f0, f0
y1, L2

f0, f1
y1,

L2

f0, f4
y1, L2

f0, f0
y2, L2

f0, f4
y2, L2

f0, f5
y2, L3

f0, f0, f5
y1, L3

f0, f0, f6
y1, L3

f0, f0, f2
y2, L3

f0, f0, f6
y2.

As previously mentioned, we know that we cannot have more than 15 independent Lie derivatives



(otherwise, the yaw angle would be observable). The fact that we have 15 independent Lie

derivatives means that there are no additional symmetries and, the independent observable modes,

are the independent solutions of (8). They are: the 9 solutions provided in III-B and the six

components of the two vectors bA and bΩ (note that these components are trivial solutions of

(8)).

E. Unknown Gravity

The results provided in the previous sections are obtained by assuming that the magnitude of

the gravity (g) is a priori known. In this section we want to investigate if the information contained

in the sensor data allows us to also estimate g. This investigation could seem useless since in

most of cases the value g is known with good accuracy. On the other hand, this investigation

allows us to derive several properties of practical importance.

We will show that g is among the observable modes even in the worst case when the inertial

sensors are affected by bias and when only a single feature is available. We will proceed as in

section III-D.

The system we are considering is defined by the state: [r v q bA bΩ g]T , whose dimension

is 17. This state satisfies the dynamics in (6) with the additional equation ġ = 0. Finally, this

system is characterized by the observations given in (2) and (3).

We know that the state is not observable. Indeed, even without bias, we know that it is not

possible to estimate the yaw angle (section III-B). In other words, also this system is invariant

with respect to rotations about the vertical axis. Hence, its observable modes must satisfy the

equation in (8), where Λ also depends on the components of bA, bΩ and on g. On the other hand,

we do not know if the system has additional symmetries in which case the observable modes must

satisfy additional partial differential equations, simultaneously. In order to prove that the system

has a single symmetry, we must provide 16 independent Lie derivatives. By a direct computation,

performed by using the symbolic Matlab computational tool, we were able to find the following

16 independent Lie derivatives: L0y1, L0y2, L0hconst, L1

f0
y1, L1

f0
y2, L2

f0, f0
y1, L2

f0, f1
y1,

L2

f0, f4
y1, L2

f0, f0
y2, L2

f0, f4
y2, L2

f0, f5
y2, L3

f0, f0, f0
y1, L3

f0, f0, f5
y1, L3

f0, f0, f6
y1, L3

f0, f3, f0
y1,

L3

f0, f0, f6
y2. As previously mentioned, we know that we cannot have more than 16 independent

Lie derivatives (otherwise, the yaw angle would be observable). The fact that we have 16

independent Lie derivatives means that there are no additional symmetries and, the independent



observable modes, are the independent solutions of (8). They are: the 15 solutions provided in

III-D and g.

IV. NECESSARY CONDITIONS FOR OBSERVABILITY

The observability analysis performed so far takes into account all the degrees of freedom

allowed by the dynamics in (1). In other words, the observability of the modes previously

derived, could require the vehicle to move along all these degrees of freedom. It is interesting to

understand what happens when only special trajectories are considered. Mathematically, this can

be done by introducing in (1) the constraints characterizing the trajectory we want to consider.

Then, it suffices to apply the method described in [14] to the system characterized by the new

dynamics and the same observations (2) and (3).

By applying this technique we proved in [16] the two following properties:

Property 2 The absolute scale factor is not observable when the vehicle moves at constant

speed.

Property 3 When the vehicle moves at constant acceleration all the modes derived in section

III are observable, with the exception of the magnitude of the gravitational acceleration (g).

A fundamental consequence of the previous two properties is:

Theorem 1 In order to estimate the observable modes the camera must perform at least three

observations (i.e. the observability requires to have at least three images taken from three distinct

camera poses). When the magnitude of the gravitational acceleration is unknown, the minimum

number of camera images becomes four.

Proof: The proof of this theorem is provided in [16]. In particular, it is shown that, if the

observability of a given physical quantity requires to have a not constant speed, this observability

also requires at least three camera observations. Similarly, it is shown that, if the observability

of a given physical quantity requires to have a not constant acceleration, this observability also

requires at least four camera observations. �

In most of cases, the value g is known with good accuracy. Hence, considering the case

of unknown magnitude of gravitational acceleration, could seem useless. On the other hand,

considering this case has a very practical importance (see sections V and VI).



V. CLOSED-FORM SOLUTIONS

This section provides closed form solutions which directly express the observable modes in

terms of the sensor measurements collected during a short time interval. It starts by dealing with

the case without bias.

A. The case without Bias

In the local frame, the dynamics are:
Ḟ i = MF i − V

V̇ = MV +A+Ag

q̇ = mq

i = 0, 1, ..., Nf − 1 (10)

where F i is the position of the ith feature in the local frame (i = 0, 1, ..., Nf − 1), V is the

vehicle speed in the same frame, Ag is the gravitational acceleration in the local frame, i.e.

Âg = q∗âgq, and q is the four vector whose components are the components of the quaternion

q, i.e. q = [qt, qx, qy, qz]
T . Finally:

m ≡ 1

2


0 −Ωx −Ωy −Ωz

Ωx 0 Ωz −Ωy

Ωy −Ωz 0 Ωx

Ωz Ωy −Ωx 0

 , M ≡


0 Ωz −Ωy

−Ωz 0 Ωx

Ωy −Ωx 0


The validity of (10) can be checked by using F̂ = −q∗r̂q, V̂ = q∗v̂q and by computing their

time derivatives with (1). In the local frame, the observation in (2) for the ith feature is:

hcam = [y1, y2]
T =

[
F i
x

F i
z

,
F i
y

F i
z

]T
(11)

Because of the gravity, the first two equations in (10) cannot be separated from the equations

describing the dynamics of the quaternion.

χg will denote the gravity vector in the local frame at a given time T0. In other words,

χg ≡ Ag(T0). Note that, determining χg allows determining the roll and pitch angles (R0 and

P0). Indeed, from the definition of the roll and pitch angles it is possible to obtain:



χg = g[sinP0, − sinR0 cosP0, − cosR0 cosP0]
T (12)

F i
0 ≡ F i(T0) will denote the position of the ith feature (i = 0, 1, ..., Nf − 1) at T0. Similarly,

V0 ≡ V (T0) will denote the vehicle speed at T0.

In the following, a closed form expression of the vectors F 0
0 , F

1
0 , ..., F

Nf−1
0 , V0 and χg

in terms of the sensor measurements in the time-interval [T0, T0 + T ] will be provided.

To derive this closed form expression it is useful to first consider the special case where the

vehicle does not rotate during the interval [T0, T0 + T ]. In this case, the first two equations in

(10) become:

 Ḟ i = −V

V̇ = A+ χg

i = 0, 1, ..., Nf − 1 (13)

It is immediate to integrate the previous equations and obtain the position of the ith feature in

the local frame:

F i(t) = F i
0 −∆tV0 −

∆t2

2
χg −

∫ t

T0

∫ t′

T0

A(τ)dτdt′ (14)

where A(τ) are provided by the accelerometers and ∆t ≡ t− T0.

Ξ(t) will denote the matrix which characterizes the rotation occurred during the interval [T0, t].

The equations in (14) correspond to the case when Ξ(t) is the identity 3 × 3 matrix for any

time t ∈ [T0, T0 +T ]. In the general case, i.e. when the vehicle is not constrained to move with

a fixed orientation, Ξ(t) can be evaluated by using the data from the gyroscopes during this

time interval (see appendix A). Hence, it is possible to obtain the extension of (14) to a generic

motion:

F i(t) = Ξ(t)

(
F i

0 −∆tV0 −
∆t2

2
χg −

∫ t

T0

∫ t′

T0

Ξ−1(τ)A(τ)dτdt′

)
, i = 0, 1, ..., Nf−1 (15)

In [16] the same result has been obtained by directly integrating the equations in (10).

The components of F i(t), i.e. F i
x(t; F

0
0 , F

1
0 , ..., F

Nf−1
0 , V0, χg), F i

y(t; F
0
0 , F

1
0 , ..., F

Nf−1
0 , V0, χg)

and F i
z(t; F

0
0 , F

1
0 , ..., F

Nf−1
0 , V0, χg) are linear in the unknowns F 0

0 , F
1
0 , ..., F

Nf−1
0 , V0, χg.

By using (11) the following linear equations are obtained:



F i
x(t; F

0
0 , F

1
0 , ..., F

Nf−1
0 , V0, χg) = y1(t) F

i
z(t; F

0
0 , F

1
0 , ..., F

Nf−1
0 , V0, χg) (16)

F i
y(t; F

0
0 , F

1
0 , ..., F

Nf−1
0 , V0, χg) = y2(t) F

i
z(t; F

0
0 , F

1
0 , ..., F

Nf−1
0 , V0, χg)

i = 0, 1, ..., Nf − 1

In particular, each camera observation occurred at the time t ∈ [T0, T0 +T ] provides 2Nf linear

equations in the 3Nf + 6 unknowns (which are the components of F i
0 (i = 0, 1, ..., Nf − 1), V0

and χg).

When the camera performs observations from nobs distinct poses the number of equations

provided by (16) is 2nobsNf while the number of unknowns is 3Nf + 6. In order to determine

the unknowns, it is fundamental to know whether these equations are independent or not. To this

regard, according to theorem 1, we know that the number of independent equations is always

smaller than the number of unknowns for nobs ≤ 3. On the other hand, when nobs = 3 the

knowledge of the magnitude of the gravity makes possible the determination of the modes.

1) nobs ≥ 4: In this case the equations in (16) are in general independent. On the other hand,

when nobs = 4 and Nf = 1, the number of equations is 8, which is less than the number of

unknowns 9. In section VI it is shown that, by using the knowledge of the gravity (i.e. the

magnitude of the vector χg), it is possible to determine the unknowns by solving a second order

polynomial equation. Hence, in this case, two solutions are determined. When nobs ≥ 5 and/or

Nf ≥ 2 the determination can be done by the computation of a pseudoinverse. Hence, a single

solution can be obtained. Then, the knowledge of the magnitude of the gravitational acceleration,

can be used to improve the precision (see section VI).

2) nobs = 3: When Nf = 1 the number of equations is 6 and the number of unknowns is 9.

Hence the estimation cannot be performed. When Nf ≥ 2 the number of equations is larger or

equal to the number of unknowns. On the other hand, according to theorem 1, the vector χg

cannot be determined, since its norm is not observable. In other words, the equations in (16)

are not independent. As in the case nobs = 4, Nf = 1, it is possible to determine the unknowns

by solving a second order polynomial equation. Hence, also in this case, two solutions are

determined (see section VI and [16] for further details).

Note that the previous remarks hold in general. There are special situations, whose probability

of occurrence is zero, where the determination cannot be carry out. For instance, in the case



nobs = 3, Nf = 2, if one of the three camera poses is aligned along with the two features, the

determination cannot be performed. Another special case is when the three camera poses and

the two features belong to the same plane.

B. The case with Bias

The closed-form solution will be derived only when the accelerometers are affected by a bias,

i.e. in the case Abias 6= [0 0 0]T and Ωbias = [0 0 0]T .

The expression in (15) can be easily extended to deal with this case by the substitution:

A(τ)→ A(τ) +Abias:

F i(t) = Ξ(t)

(
F i

0 −∆tV0 −
∆t2

2
χg −

∫ t

T0

∫ t′

T0

Ξ−1(τ)dτdt′Abias −
∫ t

T0

∫ t′

T0

Ξ−1(τ)A(τ)dτdt′

)
(17)

i = 0, 1, ..., Nf − 1

By proceeding as in the case without bias the analogous of equations (16) is obtained. The new

equations also depend on the vector Abias.

VI. THE ALGORITHM

This section describes the algorithm which allows determining the speed, the attitude and the

absolute scale starting from the inertial and visual data collected in a very short time interval.

The extension to also determine the bias is straightforward.

As stated at the beginning of the previous section, the local frame is the camera frame.

Hence, it is necessary to determine the expression of the acceleration and the angular speed of

this frame starting from the acceleration and the angular speed provided by the IMU and from

the knowledge of the transformation between the IMU frame and the camera frame (which is

assumed a priori known).

The following notation will be adopted:

• C is the matrix which transforms vectors in the IMU frame in vectors expressed in the

camera frame;

• D is the vector describing the position of the origin of the camera frame in the IMU frame;



• ΩIMU and AIMU are the angular speed and the acceleration in the IMU frame (i.e. provided

by the inertial sensors).

The expressions of the angular speed and the acceleration in the camera frame are:

Ω = CΩIMU , A = C
[
AIMU + Ω̇IMU ∧D + ΩIMU ∧ (ΩIMU ∧D)

]
(18)

The previous expressions must be used to obtain all the inertial measurements in the camera

frame.

The second step consists in computing the matrix Ξ at each time step when the inertial data

are delivered (see appendix A). This allows computing the term −
∫ t
T0

∫ t′
T0

Ξ−1(τ)A(τ)dτdt′ for

all the time t when a camera image is available.

The linear system in (16) will be denoted with:

Γx = β (19)

where the vector x contains all the unknowns, i.e. x ≡ [F 0
0 , F

1
0 , ..., F

Nf−1
0 , V0, χg]T . Γ and

β are respectively a (2nobsNf × 3Nf + 6) matrix and a (2nobsNf × 1) vector and are obtained

as follows. For a camera observation occurred at time t, each feature contributes with two rows

to the matrix Γ and with two entries to the vector β.

For the jth feature observed at time t the three rows of the matrix Ξ(t) will be denoted with

ξ1(t), ξ2(t) and ξ3(t). The two rows of the matrix Γ are, respectively:

[
03j−3, ξ1(t)− y1(t)ξ3(t), 03Nf−3j, −∆t (ξ1(t)− y1(t)ξ3(t)) , −

∆t2

2
(ξ1(t)− y1(t)ξ3(t))

]

[
03j−3, ξ2(t)− y2(t)ξ3(t), 03Nf−3j, −∆t (ξ2(t)− y2(t)ξ3(t)) , −

∆t2

2
(ξ2(t)− y2(t)ξ3(t))

]
where 0n denotes the row-vector whose dimension is n and whose entries are all zeros. The

corresponding two entries in the vector β are, respectively:

[ξ1(t)− y1(t)ξ3(t)]
∫ t

T0

∫ t′

T0

Ξ−1(τ)A(τ)dτdt′, [ξ2(t)− y2(t)ξ3(t)]
∫ t

T0

∫ t′

T0

Ξ−1(τ)A(τ)dτdt′



As stated in the previous section, it is possible in general to compute the pseudoinverse (or the

inverse) of the matrix Γ in the following cases:

1) when nobs ≥ 4 and Nf ≥ 2;

2) when nobs ≥ 5 and Nf = 1.

When the rank of Γ is one less than the number of its columns, the nullspace of Γ has dimension

one. As discussed at the end of the previous section, this is in general the case when nobs =

3, Nf ≥ 2 (because of the theorem 1) or when nobs = 4, Nf = 1. In this case, the system in

(19) has an infinite number of solutions. By denoting with ν the unit vector belonging to the

nullspace of Γ, with xp one among the solutions of (19), any solution of (19) is

x = xp + λν

where λ is a real number. On the other hand, by knowing the magnitude of the gravitational

acceleration, it is possible to determine two values of λ. This is obtained by enforcing the

constraint that the vector sλ constituted by the last three entries of the solution xp + λν is a

vector with norm equal to g. In other words:

|sλ|2 = g2 (20)

which is a second order polynomial equation in λ. Hence, in this case two solutions are

determined.

Finally, when Γ is full rank, the knowledge of the magnitude of the gravitational acceleration

can be exploited by minimizing the cost function:

c(x) = |Γx− β|2 (21)

under the constraint |χg| = g. This minimization problem can be solved by using the method

of Lagrange multipliers.

The main steps of the algorithm are displayed in the algorithm 1.

Algorithm 1 (Returns features’s positions, speed and attitude)

Inputs: AIMU(t), ΩIMU(t), yi1(t), y
i
2(t), (i = 0, 1, ..., Nf − 1), t ∈ [T0, T0 + T ]

Outputs: F i
0, V0, χg, (i = 0, 1, ..., Nf − 1)



Compute A and Ω by using (18)

Build the matrix Γ and the vector β in (19)

Compute the rank (r) of Γ

if r = 3Nf + 6 then

xin = pinv(Γ)β

minimize c(x) in (21) with initialization xin

else

if r = 3Nf + 5 then

Determine two solutions by (20)

else

Determination non possible

end if

end if

VII. PERFORMANCE EVALUATION

This section shows the results obtained by using the algorithm with a real data set. The

data have been provided by the autonomous system laboratory at ETHZ in Zurich. The data

are provided together with a reliable ground-truth, which has been obtained by performing the

experiments at the ETH Zurich Flying Machine Arena [13], which is equipped with a Vicon

motion capture system. The visual and inertial data are obtained with a monochrome USB-

camera gathering 752 × 480 images at 15Hz and a Crossbow VG400CC-200 IMU providing

the data at 75 Hz. The camera field of view is 150 deg. The calibration of the camera was

obtained by using the omnidirectional camera toolkit by Scaramuzza [17]. Finally, the extrinsic

calibration between the camera and the IMU has been obtained by using the strategy introduced

in [12]. The experiment here analyzed lasted for about 250s.

Figure 3 a shows the trajectory (ground truth) during the time interval [200, 240]s.

Figures 3 b and 4 show the results regarding the estimated speed, roll and pitch angles,

respectively. In all these figures, the blue dots are the ground truth while the red disks are the

estimated values.



a b

Fig. 3. In a: the trajectory (ground truth) in the 3D real data set during the time interval [200, 240]s. In b: the vehicle speed

in the real 3D experiment. Blue dots are the ground truth and red disks the estimated values.

Fig. 4. Roll (left) and pitch (right) angles in the real 3D experiment. Blue dots are the ground truth and red disks the estimated

values.

VIII. CONCLUSIONS

This chapter described a method for determining the speed and the attitude of a vehicle

equipped with a monocular camera and inertial sensors (i.e. one tri-axial accelerometer and one

tri-axial gyrometer). The vehicle moves in a 3D unknown environment. It has been shown that, by

collecting the visual and inertial measurements during a very short time interval, it is possible to

determine the following physical quantities: the vehicle speed and attitude, the absolute distance



of the point features observed by the camera during the considered time interval and the bias

affecting the inertial measurements. In particular, this determination, is based on a closed form

solution which analytically expresses the previous physical quantities in terms of the sensor

measurements. This closed form determination allows performing the overall estimation in a

very short time interval and without the need of any initialization or a priori knowledge. This

is a key advantage since allows eliminating the drift on the scale factor and on the vehicle

orientation.

APPENDIX A

EXPRESSION OF THE ROTATION MATRIX Ξ BY INTEGRATING THE ANGULAR SPEED

Let consider a vehicle and a frame attached to this vehicle. When the vehicle moves during the

infinitesimal interval [tj, tj + δt], the rotation matrix which transforms vectors in the reference

before this motion and the reference after this motion is: I3+Mjδt, where I3 is the 3×3 identity

matrix and Mj is the skew-symmetric defined in section V at the time tj .

Now, let us suppose that the vehicle moves during the interval of time [ti, tf ]. In order to

compute the rotation matrix which transforms vectors in the reference before this motion and the

reference after this motion, the path is divided in many (N ) steps. For each step, the expression

of the rotation matrix is the one previously provided. Then, it suffices to compute the product

of all these matrices, namely:

Ξ =
N∏
k=1

(I3 +Mkδtk) (22)

where t1 = ti and tN = tf .
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