Local Asymptotic Stability Conditions for the Positive Equilibrium of a System Modeling Cell Dynamics in Leukemia

Hitay Ozbay 1 Catherine Bonnet 2, 3 Houda Benjelloun 3 Jean Clairambault 4, 5
3 DISCO - Dynamical Interconnected Systems in COmplex Environments
L2S - Laboratoire des signaux et systèmes, Inria Saclay - Ile de France, SUPELEC, CNRS - Centre National de la Recherche Scientifique : UMR8506
5 BANG - Nonlinear Analysis for Biology and Geophysical flows
LJLL - Laboratoire Jacques-Louis Lions, Inria Paris-Rocquencourt
Abstract : A distributed delay system with static nonlinearity has been considered in the literature to study the cell dynamics in leukemia. In this chapter local asymptotic stability conditions are derived for the positive equilibrium point of this nonlinear system. The stability conditions are expressed in terms of inequalities involving parameters of the system. These inequality conditions give guidelines for development of therapeutic actions.
Type de document :
Chapitre d'ouvrage
R. Sipahi and T. Vyhlidal and S-I. Niculescu and P. Pepe. Time Delay Systems: Methods, Applications and New Trends, 423, Springer, pp.187-197, 2012, LNCIS, 978-3-642-25221-1. 〈10.1007/978-3-642-25221-1_14〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00780527
Contributeur : Catherine Bonnet <>
Soumis le : jeudi 24 janvier 2013 - 11:09:45
Dernière modification le : jeudi 11 janvier 2018 - 06:23:15

Identifiants

Citation

Hitay Ozbay, Catherine Bonnet, Houda Benjelloun, Jean Clairambault. Local Asymptotic Stability Conditions for the Positive Equilibrium of a System Modeling Cell Dynamics in Leukemia. R. Sipahi and T. Vyhlidal and S-I. Niculescu and P. Pepe. Time Delay Systems: Methods, Applications and New Trends, 423, Springer, pp.187-197, 2012, LNCIS, 978-3-642-25221-1. 〈10.1007/978-3-642-25221-1_14〉. 〈hal-00780527〉

Partager

Métriques

Consultations de la notice

630