Clustering of incomplete, high dimensional and dependent biological data with SpaCEM3

Abstract : The SpaCEM3 software makes the most of variational estimates in Markov Random Field (MRF) models to cluster (i) high-dimensional (ii) dependent and (iii) incomplete data. This methodology has been applied to draw meaningful modules of genes from high-throughput data. To download the latest version, visit http://spacem3.gforge.inria.fr/
Document type :
Conference papers
Complete list of metadatas

https://hal.inria.fr/hal-00780725
Contributor : Florence Forbes <>
Submitted on : Thursday, January 24, 2013 - 4:36:49 PM
Last modification on : Wednesday, April 11, 2018 - 1:59:42 AM

Identifiers

  • HAL Id : hal-00780725, version 1

Collections

Citation

Matthieu Vignes, Juliette Blanchet, Damien Leroux, Florence Forbes. Clustering of incomplete, high dimensional and dependent biological data with SpaCEM3. Journée Satellite JOBIM MODGRAPH 2010, Sep 2010, Montpellier, France. ⟨hal-00780725⟩

Share

Metrics

Record views

709