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semantics ∗

Ivan Gazeau, Dale Miller, and Catuscia Palamidessi

INRIA and LIX, Ecole Polytechnique

The approximation introduced by finite-precision representation of continuous data can induce ar-

bitrarily large information leaks even when the computation using exact semantics is secure. Such

leakage can thus undermine design efforts aimed at protecting sensitive information. We focus here

on differential privacy, an approach to privacy that emerged from the area of statistical databases and

is now widely applied also in other domains. In this approach, privacy is protected by the addition of

noise to a true (private) value. To date, this approach to privacy has been proved correct only in the

ideal case in which computations are made using an idealized, infinite-precision semantics. In this

paper, we analyze the situation at the implementation level, where the semantics is necessarily finite-

precision, i.e. the representation of real numbers and the operations on them, are rounded according

to some level of precision. We show that in general there are violations of the differential privacy

property, and we study the conditions under which we can still guarantee a limited (but, arguably,

totally acceptable) variant of the property, under only a minor degradation of the privacy level. Fi-

nally, we illustrate our results on two cases of noise-generating distributions: the standard Laplacian

mechanism commonly used in differential privacy, and a bivariate version of the Laplacian recently

introduced in the setting of privacy-aware geolocation.

Keywords: Differential privacy, floating-point arithmetic, robustness to errors.

1 Introduction

It is well known that, due to the physical limitations of actual machines, in particular the finiteness of

their memory, real numbers and their operations cannot be implemented with full precision. While for

traditional computation getting an approximate result is not critical when a bound on the error is known,

we argue that, in security applications, the approximation error can became a fingerprint potentially

causing the disclosure of secrets.

Obviously, the standard techniques to measure the security breach do not apply, because an analysis

of the system in the ideal (aka exact) semantics does not reveal the information leaks caused by the

implementation. Consider, for instance, the following simple program

if f (h)> 0 then ℓ= 0 else ℓ= 1

where h is a high (i.e., confidential) variable and ℓ is a low (i.e., public) variable. Assume that h can take

two values, v1 and v2, and that both f (v1) and f (v2) are strictly positive. Then, in the ideal semantics,

the program is perfectly secure, i.e. it does not leak any information. However, in the implementation, it

could be the case that the test succeeds in the case of v1 but not in the case of v2 because, for instance,
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the INRIA Action d’Envergure CAPPRIS, and by the European Union Seventh Framework Programme under grant agreement
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http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 Preserving differential privacy

the value of f (v2) is below the smallest representable positive number. Hence, we would have a total

disclosure of the secret value.

The example above is elementary but it should give an idea of the pervasive nature of the problem,

which can have an impact in any confidentiality setting, and should therefore receive attention by those

researchers interested in (quantitative) information flow. In this paper, we initiate this investigation with

an in-depth study of the particular case of differential privacy.

Differential privacy [9, 10] is an approach to the protection of private information that originated

in the field of statistical databases and is now investigated in many other domains, ranging from pro-

gramming languages [3, 11] to social networks [18] and geolocation [15, 13, 2]. The key idea behind

differential privacy is that whenever someone queries a dataset, the reported answer should not allow him

to distinguish whether a certain individual record is in the dataset or not. More precisely, the presence or

absence of the record should not change significantly the probability of obtaining a given answer. The

standard way of achieving such a property is by using an oblivious mechanism1 which consists in adding

some noise to the true answer. Now the point is that, even if such a mechanism is proved to provide the

desired property in the ideal semantics, its implementation may induce errors that alter the least signif-

icant digits of the reported answer and cause significant privacy breaches. Let us illustrate the problem

with an example.

Example 1.1. Consider the simplest representation of reals: the fixed-point numbers. This representation

is used on low-cost processors which do not have floating-point arithmetic module. Each value is stored

in a memory cell of fixed length. In such cells, the last d digits represent the fractional part. Thus, if

the value (interpreted as an integer) stored in the cell is z, its semantics (i.e., the true real number being

represented) is z ·2−d .

To grant differential-privacy, the standard technique consists of returning a random value with prob-

ability p(x) = 1/2b · e−|x−r|/b where r is the true result and b is a scale parameter which depends on the

degree of privacy to be obtained and on the sensitivity of the query. To get a random variable with any

specific distribution, in general, we need to start with an initial random variable provided by a primitive

of the machine with a given distribution. To simplify the example, we assume that the machine already

provides a Laplacian random variable X with a scale parameter 1. The probability distribution of such an

X is pX(x) = 1/2e−|x|. Hence, if we want to generate the random variable bX with probability distribution

pbX(x) = 1/2b · e−|x|/b, we can just multiply by b the value x = z ·2−d returned by the primitive.

Assume that we want to add noise with a scale parameter b = 2n for some fixed integer n (b can

be big when the sensitivity of the query and the required privacy degree are high). In this case, the

multiplication by 2n returns a number 2nz · 2−d that, in the fixed-point representation terminates with n

zeroes. Hence, when we add this noise to the true result, we return a value whose representation has

the same n last digits as the secret. For example, assume b = 22 = 4 and d = 6. Consider that the true

answers are r1 = 0 and r2 = 1+2−5. In the fixed-point representation, the last two digits of r1 are 00, and

the last two digits of r2 are 10. Hence, even after we add the noise, we can always tell whether the true

value was r1 or r2. Note that the same example holds for every b = 2n and every pair of true values r1

and r2 which differ by (2nk+h)/2d where k is any integer and h is any integer between 1 and 2n −1. Figure

1 illustrates the situation for b = 4, k = 3 and h = 2.

Another attack, based on the IEEE standard floating-point representation [14], was presented in [17].

In contrast to [17], we have chosen an example based on the fixed point representation because it allows

1The name “oblivious” comes from the fact that the final answer depends only on the answer to the query and not on the

dataset.
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Figure 1: The probability distribution of the reported answers after the addition of Laplacian noise for

the true answer r1 = 0 (black) and r2 = 3 ·2−4 +2−5 (green).

to illustrate more distinctively a problem for privacy which rises from the finite precision2 and which

is, therefore, pandemic. (This is not the case for the example in [17]: fixed-point and integer-valued

algorithms are immune to that attack.)

In this paper, we propose a solution to fix the privacy breach induced by the finite-precision imple-

mentation of a differentially-private mechanism for any kind of implementation. Our main concern is

to establish a bound on the degradation of privacy induced by both the finite representation and by the

computational errors in the generation of the noise. In order to achieve this goal, we use the concept of

closeness introduced by the authors in [12], which allows us to reason about the approximation errors

and their accumulation. We make as few assumptions as possible about the procedure for generating the

noise. In particular, we do not assume that the noise has a linear Laplacian distribution: it can be any

noise that provides differential privacy and whose implementation satisfies a few properties (normally

granted by the implementation of real numbers) which ensure its closeness. We illustrate our method

with two examples: the classic case of the univariate (i.e., linear) Laplacian, and the case of the bivariate

Laplacian. The latter distribution is used, for instance, to generate noise in privacy-aware geolocation

mechanisms [2].

1.1 Related work

As far as we know, the only other work that has considered the problem introduced by the finite precision

in the implementation of differential privacy is [17]. As already mentioned, that paper showed an attack

on the Laplacian-based implementation of differential privacy within the IEEE standard floating-point

representation3. To thwart such an attack, the author of [17] proposed a method that avoids using the

standard uniform random generator for floating point (because it does not draw all representable numbers

but only multiple of 2−53). Instead, his method generates two integers, one for the mantissa and one for

the exponent in such a way that every representable number is drawn with its correct probability. Then

it computes the linear Laplacian using a logarithm implementation (assumed to be full-precision), and

finally it uses a snapping mechanism consisting in truncating large values and then rounding the final

2More precisely, the problem is caused by scaling a finite set of randomly generated numbers. It is easy to prove that the

problem raises for any implementation of numbers, although it may not raise for every point like in the case of the fixed-point

representation.
3We discovered our attack independently, but [17] was published first.
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result.

The novelties of our paper, w.r.t. [17], consist in the fact that we deal with a general kind of noise, not

necessarily the linear Laplacian, and with any kind of implementation of real numbers, not necessarily

the IEEE floating point standard. Furthermore, our kind of analysis allows us to measure how safe an

existing solution can be and what to do if the requirements needed for the safety of this solution are

not met. Finally, we consider our correct implementation of the bivariate Laplacian also as a valuable

contribution, given its practical usefulness for location-based applications.

The only other work we are aware of, considering both computational error and differential privacy, is

[7]. However, that paper does not consider at all the problem of the loss of privacy due to implementation

error: rather, they develop a technique to establish a bound on the error, and show that this technique can

also be used to compute the sensitivity of a query, which is a parameter of the Laplacian noise.

1.2 Plan of the paper

This paper is organized as follow. In section 2, we recall some mathematical definitions and introduce

some notation. In section 3, we describe the standard Laplacian-based mechanism that provides differen-

tial privacy in a theoretical setting. In section 4, we discuss the errors due to the implementation, and we

consider a set of assumptions which, if granted, allows us to establish a bound on the irregularities of the

noise caused by the finite-precision implementation. Furthermore we propose a correction to the mecha-

nism based on rounding and truncating the result. Section 5 contains our main theorem, stating that with

our correction the implementation of the mechanism still preserves differential privacy, and establishing

the precise degradation of the privacy parameter. The next two sections propose some applications of our

result: Section 6 illustrates the technique for the case of Laplacian noise in one dimension and section

7 shows how our theorem applies to the case of the Euclidean bivariate Laplacian. Section 8 concludes

and discusses some future work.

2 Preliminaries and notation

In this section, we recall some basic mathematical definitions and we introduce some notation that will

be useful in the rest of the paper. We will assume that the the queries give answers in R
m. Examples

of such queries are the tuples representing, for instance, the average height, weight, and age. Another

example comes from geolocation, where the domain is R2.

2.1 Distances and geometrical notations

There are several natural definitions of distance on R
m [19]. For m ∈ N and x = (x1, . . . ,xm) ∈ R

m, the

Lp norm of x, which we will denote by ‖x‖p, is defined as

‖x‖p = p

√

m

∑
i=1

|xi|p

The corresponding distance function is

dp(x,y) = ‖x− y‖p

We extend this norm and distance to p = ∞ in the usual way: ‖x‖∞ = maxi∈{1,...,m} |xi| and d∞(x,y) =
‖x− y‖∞. The notion of L∞ norm is extended to functions in the following way: given f : A → R

m, we
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define ‖ f‖∞ = maxx∈A ‖ f (x)‖. When clear from the context, we will omit the parameter p and write

simply ‖x‖ and d(x,y) for ‖x‖p and dp(x,y), respectively.

Let S ⊆R
m. We denote by Sc the complement of S, i.e., Sc =R

m \S. The diameter of S is defined as

�(S) = max
x,y∈S

d(x,y).

For ε ∈ R
+, the +ε-neighbor and the −ε-neighbor of S are defined as

S+ε = {x | ∃s ∈ S,d(x,s)≤ ε} S−ε = {x | ∀s ∈ R
m,d(x,s)≤ ε =⇒ s /∈ S}= ((Sc)+ε)c

For x ∈ R
m, the translations of S by x and −x are defined as

S+ x = {y+ x | y ∈ S} S− x = {y− x | y ∈ S}

2.2 Measure theory

We recall here some basic notions of measures theory that will be used in this paper.

Definition 2.1 (σ -algebra and measurable space). A σ -algebra T for a set M is a nonempty set of

subsets of M that is closed under complementation (wrt to M) and (potentially empty) enumerable union.

The tuple (M,T ) is called a measurable space.

Definition 2.2 (Measure). A positive measure µ on a measurable space (M,T ) is a function T →
R
+∪{0} such that µ( /0) = 0 and whenever (Si) is a enumerable family of disjoint subset of M then

∑µ(Si) = µ(
⋃

Si).

A positive measure µ where µ(X) = 1 is called a probability measure.

A tuple (M,T ,P) where (M,T ) is a measurable space and P a probability measure is called proba-

bility space.

In this paper we will make use of the Lebesgue measure λ on (Rm,S ) where S is the Lebesgue

σ -algebra. The Lebesgue measure is the standard way of assigning a measure to subsets of Rm.

Definition 2.3 (Measurable function). Let (M,T ) and (V,Σ) be two measurable spaces. A function

f : M →V is measurable if f−1(v) ∈ T for all v ∈ Σ.

Definition 2.4 (Absolutely continuous). A measure ν is absolutely continuous according to a measure

µ , if for all M ∈ S , µ(M) = 0 implies ν(M) = 0.

If a measure is absolutely continuous according to the Lebesgue measure then by the Radon-Nikodym

theorem, we can express it as an integration of a density function f :

µ(M) =
∫

M
f (x)dλ

2.3 Probability theory

Definition 2.5 (Random variable). Let (Ω,F ,P) be a probability space and (E,E ) a measurable space.

Then a random variable is a measurable function X : Ω → E. We shall use the expression P [X ∈ B] to

denote P
(

X−1(B)
)

.
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Let f : Rm →R
m be a measurable function and let X : Ω →R

m be a random variable. In this paper,

we will use the notation f (X) to denote the random variable Y : Ω →R
m such that f (X)(ω) = f (X(ω)).

In particular, for m ∈R
m we denote by m+X the random variable Y : Ω →R

m such that ω 7→ X(ω)+m.

Definition 2.6 (Density function). Let X : Ω → E be a random variable. If there exists a function f

such that, for all S ∈ S , P[X ∈ S] =
∫

S f (u)du, then f is called the density function of X.

In this paper, we use the following general definition of the Laplace distribution (centered at zero).

Definition 2.7 (Laplace distribution). The density function F of a Laplace distribution with scale pa-

rameter b is Fb(x) = K(b)e−b‖x‖ where K(b) is a normalization factor which is determined by imposing
∫

S Fb(x)dx = 1.

Definition 2.8 (Joint probability). Let (X ,Y ) be a pair of random variable on R
m. The joint probability

on (X ,Y ) is defined for all I,J ∈ S as: P[(X ,Y ) ∈ (I,J)] = P[X ∈ I ∧ Y ∈ J].

Definition 2.9 (Marginals). Let X and Y : (Ω,F ,P) → (Rm,S ). The marginal probability of the

random variable (X ,Y ) for X is defined as:

P[X ∈ B] =
∫

Rm
P[(X ,Y ) ∈ (B,dy)].

3 Differential privacy in the exact semantics

In this section we recall the definition of differential privacy and of the standard mechanisms to achieve

it, and we discuss its correctness.

3.1 Differential privacy

We denote by D the set of databases and we assume that the domain of the answers of the query is Rm

for some n ≥ 1. We denote by D1 ∼ D2 the fact that D1 and D2 differ by at most one element. Namely,

D2 is obtained from D1 by adding or removing one element.

Definition 3.1 (ε-differential privacy). A randomized mechanism A : D →R
m is ε-differentially private

if for all databases D1 and D2 in D with D1 ∼ D2, and all S ∈ S (the Lebegue σ -algebra), we have :

P[A (D1) ∈ S]≤ eεP[A (D2) ∈ S]

Definition 3.2 (sensitivity). The sensitivity ∆ f of a function f : D → R
m is

∆ f = sup
D1,D2∈D ,D1∼D2

d( f (D1), f (D2)).

3.2 Standard technique to implement differential privacy

The standard technique to grant differential privacy is to add random noise to the true answer to the

query. In the following, we denote the query by f : D → R
m. This is usually a deterministic function.

We represent the noise as a random variable X : Ω → R
m. The standard mechanism, which we will

denote by A0, returns a probabilistic value which is the sum of the true result and of a random variable

X , namely:

Mechanism 1.

A0(D) = f (D)+X
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3.3 Error due to the implementation of the query

The correctness of a mechanism A , if we do not take the implementation error into account, consists

in A being ε-differentially private. However, we are interested in analyzing the correctness of the

implemented mechanism. We start here by discussing the case in which, in mechanism 1, the noise X is

exact but we take into account the approximation error in the implementation of f .

Notation Given a function g, we will indicate by g′ its implementation, i.e. the function that, for any x,

gives as result the value actually computed for g(x), with all the approximation and representation errors.

The first thing we observe is that the implementation of f can give a sensitivity ∆ f ′ greater than ∆ f and

we need to take that into account. In fact, in the exact semantics the correctness of the mechanism relies

on the fact that d( f (D1), f (D2))≤∆ f . However, with rounding errors, we may have d( f ′(D1), f ′(D2))>
∆ f . Hence we need to require the following property, usually stronger than differential privacy.

Condition 1. Given a mechanism A (D) = f ′(D)+X, we say that A satisfies Condition 1 with degree ε

(the desired degree of differential privacy) if the random variable X has a probability distribution which

is absolutely continuous according to the Lebesgue measure, and

∀S ∈ S ,r1,r2 ∈ R
m,P[r1 +X ∈ S]≤ e

ε
d(r1 ,r2)

∆
f ′ P[r2 +X ∈ S]

Remark 1. In general we expect that an analysis of the implementation of f will provide some bound

on the difference between f and f ′, and that will allow us to provide a bound on ∆ f ′ in terms of ∆ f . For

instance, if ‖ f − f ′‖ ≤ δ f then we get ∆ f ′ ≤ ∆ f +2δ f .

Proposition 3.1. Condition 1 implies that the mechanism A (D) = f ′(D)+X is ε-differentially private

(w.r.t. f ′).

Proof Let D1 and D2 be two databases such that D1 ∼ D2. Let r1 = f ′(D1) and r2 = f ′(D2) be two

answers. By definition of sensitivity, d(r1,r2)≤ ∆ f ′ so e
ε

d(r1 ,r2)
∆

f ′ ≤ eε . Hence,

P[A (D1) ∈ S]≤ eεP[A (D2) ∈ S]

The following theorem shows that Condition 1 is actually equivalent to differential privacy in the

case of Laplacian noise.

Theorem 3.1. Let A (D) = f ′(D)+X be a mechanism, and assume that X is Laplacian. If A is ε-

differentially private (w.r.t. f ′), then Condition 1 holds.

Proof First, we show that if A is ε-differentially private then b ≤ ε
∆ f ′

holds for the scale parameter b

of X . Let D1 ∼ D2 with d( f ′(D1), f ′(D2)) = ∆ f ′ . By ε-differential privacy we have, for any S ∈ S :

P[ f ′(D1)+X ∈ S]≤ eεP[ f ′(D2)+X ∈ S]

From the density function of the Laplace noise (Definition 2.7), we derive:

K(n,d)dλ ≤ eεK(n,d)e−b∆ f ′ dλ
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Hence,

b ≤ ε

∆ f ′
. (1)

Now, by definition of the density function, we have

P[r2 +X ∈ S] =
∫

x∈S
K(n,d)e−bd(x,r2)dλ

From the triangular inequality, we derive:

P[r2 +X ∈ S]≥
∫

x∈S
K(n,d)e−b(d(x,r1)+d(r1,r2))dλ

Hence,

P[r2 +X ∈ S]≥ e−bd(r2,r1)
∫

x∈S
e−bd(r1,x)dλ

From inequality (1), we derive:

P[r2 +X ∈ S]≥ e
− εd(r2 ,r1)

∆
f ′
∫

x∈S
e−bd(r1,x)dλ

Finally,

P[r2 +X ∈ S]≥ e
− εd(r2 ,r1)

∆
f ′ P[r1 +X ∈ S]

4 Error due to the implementation of the noise

In this section we consider the implementation error in the noise, trying to make as few assumptions as

possible about the implementation of real numbers and of the noise function.

We start with example which shows that any finite implementation makes it impossible for a mech-

anism to achieve the degree of privacy predicted by the theory (i.e. the degree of privacy it has in the

exact semantics). This example is more general than the one in the introduction in the sense that it does

not rely on any particular implementation of the real numbers, just on the (obvious) assumption that in

a physical machine the representation of numbers in memory is necessarily finite. On the other hand it

is less “dramatic” than the one in the introduction, because it only shows that the theoretical degree of

privacy degrades in the implementation, while the example in the introduction shows a case in which

ε-differential privacy does not hold (in the implementation) for any ε .

Example 4.1. Consider the standard way to produce a random variable with a given probability law,

such as the Laplace distribution. Randomness on most computers is generated with integers. When we

call a function that returns a uniform random value on the representation of reals, the function generates a

random integer z (with uniform law) between 0 and N (in practice N ≥ 232) and returns u= z/N. From this

uniform random generator, we compute n(z/N) where n depends on the probability distribution we want

to generate. For instance, to generate the Laplace distribution we have n(u) = −bsgn(u− 1/2) ln(1−
2|u− 1/2|) which is the inverse of the cumulative function of the Laplace distribution. However the

computation of n is performed in the finite precision semantics, i.e. n is a function F → F where F is

the finite set of the representable numbers. In this setting, the probability of getting some value x for

our noise depends on the number of integers z such that n(z/N) = x : if there are k values for z such
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Figure 2: The probability distributions of Laplace noises generated from a discretized uniform generator

that n(z/N) = x then the probability of getting x is k/N. This means, in particular, that, if the theoretical

probability for a value x is 1.5/N, then the closest probability actually associated with the drawing of x

is either 1/N or 2/N and in both cases the error is at least 33%. In figure 2, we illustrate how the error on

the distribution breaks the differential-privacy ratio that holds for the theoretical distribution. The ratio

between the two theoretical Laplacian distributions is 4/3. However, since the actual distribution is issued

from a discretization of the uniform generator, the resulting distribution is a step function. So when the

theoretical probability is very low like in x0, the discretization creates an artificial ratio of 2 instead of
4/3.

4.1 The initial uniform random generator

To generate a random variable, programing languages have only one primitive that generates a random

value between 0 and 1 that aims to be uniform and independent across several calls.Hence, to get a

random variable with a non uniform distribution, we generate it with a function that makes calls to this

random generator. For instance, to draw a value from a random variable X on R distributed according

to the cumulative function C : R→]0,1], it is sufficient to pick a value u from the uniform generator in

]0,1] and then return C−1(u).

We identify three reasons why a uniform random generator may induce errors. The first has been

explained in the introduction: finite precision allows generating only N different numbers such that when

we apply a function on the value picked some values are missing and other are over represented. The

second reason comes from the generator itself which can returns the N values with different probabilities

even though we might assume that they are returned with probability 1/N: furthermore, some values

may not even be returned at all. A third error is due to the dependence of returned results when we pick

several random values. Indeed most of the generator implementations are indeed pseudo generators:

when a value is picked the next one is generated as a hash function of the first one. This means that if we

have N possibilities for one choice then we also have N possible pairs of successive random values.

To reason about implementation leakage, we have to take into account all of these sources of errors.

We propose the following model. In the exact semantics, the uniform random variable Uq is generated

from a cross product of q uniform independent variables U (with q≥m). We denote by u1, . . . ,uq ∈ [0,1]q

the values picked by our perfect random generator. Then we consider the random variable Uq′ actually

provided as generated from a function n0 : Rq → R
q, (u′1, . . . ,u

′
q) = n0(u1, . . . ,uq). We assume that the
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bias, i.e., the difference between n0 and the identity, is bounded by some δ0 ∈ R
+:

‖n0 − Id‖∞ ≤ δ0. (2)

4.2 The function n for generating the noise

From the value u (resp. u′) drawn according to the distribution Uq in the exact semantics (resp. according

to Uq′ in the actual implementation), we generate another value by applying the functions n and n′

respectively. Let X = n(Uq) be the random variable with the exact distribution and X ′ = n′(Uq′) the

random variable with the actual one.

Definition 4.1. We denote by µ and ν the probability measure of X and X ′, respectively: for all S ∈ S ,

µ(S) = P[n(Uq) ∈ S] = λ (n−1(S)) and ν(S) = P[n′(Uq′) ∈ S] = λ (n−1
0 (n−1(S))).

In order to establish a bound on the difference between the probability distribution of X and X ′ we

need some condition on the implementation n′ of n. For this purpose we use the notion of closeness that

we defined in [12].

Definition 4.2 ((k,δ )-close, [12]). Let A and B be metric spaces with distance dA and dB, respectively.

Let n and n′ be two functions from A to B and let k,δ ∈ R
+. We say that n′ is (k,δ )-close to n if

∀u,v ∈ A,dB(n(u),n
′(v))≤ k dA(u,v)+δ .

This condition is a combination of the k-Lipschitz property, that states a bound between the error on

the output and the error on the input, see below, and the implementation errors of n:

Definition 4.3 (k-Lipschitz). Let (A,dA) and (B,dB) be two metrics spaces and k ∈ R: A function n :

A → B is k-Lipschitz if:

∀u,v ∈ A,dB(n(u),n(v))≤ kdA(u,v)

In [12], we have proven the following relation between the properties of being k-Lipschitz and of

being (k,δ )-close.

Theorem 4.1 ([12]). If n is k-Lipschitz and ‖n−n′‖∞ ≤ δ then n and n′ are (k,δ )-close.

We strengthen now the relation by proving that (a sort of) the converse is also true.

Theorem 4.2. If there exist u,v, d(n(u),n(v))> kd(u,v)+2δ then there exist no function n′ such that n

and n′ are (k,δ )-close.

Proof Let u, v such that d(n(u),n(v))> kd(u,v)+2δ . Let n′ such that n and n′ are (k,δ )-close. From

the definition of closeness, we get d(n(u),n′(u))≤ δ and d(n′(u),n(v))≤ kd(u,v)+δ . From a triangular

inequality, we derive d(n(u),n(v))≤ kd(u,v)+2δ . Hence, we obtain a contradiction.

Now, we would like n and n′ to be (k,δ )-close on R
m. However, this implies that A0 (mechanism 1)

cannot be ε-differentially-private. In fact, the latter would imply ‖n([0,1]q)‖∞ = ∞ otherwise certain

answers could be reported (with non-null probability) only in correspondence with certain true answers

and not with others. However, ‖n([0,1]q)‖∞ = ∞ and [0,1]q bounded implies there exist u,v, such that

d(n(u),n(v))> kd(u,v)+2δ : we derive from theorem 4.2 that n′ cannot exist.

In order to keep computed results in a range where we are able to bound the computational errors,

one possible solution consists of a truncation of the result. The traditional truncation works as follows:

choose a subset Mr ⊂ R
m and, whenever the reported answer x is outside Mr return the closest point to

x in Mr. However, while such a procedure is safe in the exact semantics because remapping does not

alter differential privacy, problems might appears when n and n′ are not close. Furthermore, while in the
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uni-dimensional case there are two disjoints set that are mapped one on the minimal value and the other

on the maximal value, in higher dimensions we have a connected set that is mapped on several points,

and on which the error is not bounded.

Therefore, to remain in a general framework where we do not have any additional knowledge about

computational errors for large numbers, we decide here to return an exception value when the result is

outside of some compact subset Mr of Rm. We denote by ∞ the value returned by the mechanism when

f ′(D)+X ′ /∈Mr. Hence, the truncated mechanism A returns the randomized value or ∞:

Mechanism 2.

A (D) =

{

f ′(D)+X ′ if f ′(D)+X ′ ∈Mr

∞ otherwise

We truncate the result because we want to exclude non-robust computations from our mechanism.

However, such a procedure is effective only if unsafe computations remain outside the safe domain.

To grant this property we need two more conditions. One requires the implementation to respect the

monotonicity of the computed functions:

Condition 2. We say that a function g : Rm → R
k satisfies Condition 2 if, for all x,y ∈ R

m, ‖g(x)‖ ≤
‖g(y)‖ implies ‖g′(x)‖ ≤ ‖g′(y)‖.

With this property, even if the implementation is not robust for large values, if we know some result

is not in Mr then the result for any greater value is not in Mr either.

The other condition is about the closeness of the implementation of the noise and its exact semantics

in a safe area. For any δr ∈ R
+, we consider the set Ur ⊂ Uq defined as ∀u ∈ Ur ‖n(u)‖ ≤ �(Mr)+ δr

i.e. : Ur = n−1 ({y |‖y‖ ≤ �(Mr)+δr }).
Condition 3. We say that a noise n satisfies Condition 3 if n and n′ are (k,δn)-close on a set Ur such that

∀u ∈Uc
r f ′(D)+n(u) /∈M

+kδ0+δn
r

To find such a set Ur, one possible way is by a fix point construction. We begin by finding the smallest

k0 and δn0 such that n and n′ are (k0,δn0)-close on Mr. Then for the generic step m > 0, we compute the

smallest km+1 and δnm+1 such that n and n′ are (km+1,δnm+1)-close on M
kmδ0+δnm
r .

If Conditions 2 and 3 hold, then from (2) we derive

∀u ∈Uc
r f ′(D)+n′(n0(u)) /∈Mr (3)

So whatever happens outside of Ur, the result will be truncated. We can then consider that there is no

implementation error outside Ur. Finally, we have a bound δt for the maximal shift between the exact

and the actual semantics:

δt = kδ0 +δn (4)

4.3 A distance between distributions

Given that we are in a probabilistic setting, the round-off errors cannot be measured in terms of numerical

difference as they can be in the deterministic case, they should rather be measured in terms of distance

between the theoretical distribution and the actual distribution. Hence, we need a notion of distance

between distributions. We choose to use the ∞-Wassertein distance [5] which, as we will show, is the

natural metric to measure our deviation.



12 Preserving differential privacy

Definition 4.4 (∞-Wassertein distance). Let µ , ν two probability measures on (Rm,S ) such that there

exist a compact Ω, µ(Ω) = ν(Ω) = 1, the ∞-Wassertein distance between µ and ν is defined as follows:

W∞(µ,ν) = inf
γ∈Γ(µ,ν)

(

inf
t≥0

(

γ
({

(x,y) ∈ (Rm)2
∣

∣d(x,y)> t
}))

= 0

)

Where Γ(µ,ν) denotes the collection of all measure on M×M with marginals µ and ν respectively.

If we denote by Supp(x,y), the support where γ(x,y) is non zero, we have an equivalent definition

[5] for the ∞-Wassertein distance:

W∞(µ,ν) = inf
γ∈Γ(µ,ν)

(

sup
Supp(x,y)

d(x,y)

)

We extend this definition to any pair of measures that differ only on a compact (Mr in our case) by

considering the subset of Γ(µ,ν) containing only measure γ(x,y) with γ(x,y) = 0 if x 6= y and either

x ∈M
c
r or y ∈M

c
r .

We have introduced this measure because it has a direct link with the computational error as expressed

by the following theorem.

Theorem 4.3. Let X and X ′ be two random variables with distribution µ and ν respectively. We have

that ‖X −X ′‖∞ ≤ δ implies d(µ,ν)≤ δ .

Proof We consider the measure γ on M×M, ∀A,B ∈ S ,γ(A,B) = P(X ∈ A ∧ X ′ ∈ B). The marginals

of γ are µ and ν . Moreover, the support of γ is δ since P(X ∈ A ∧ X ′ ∈ B) = 0 when A and B are distant

by more than δ . Since we have such a γ the minimum on all the γ ∈ Γ(µ,ν) is less than δ .

In our case, according to (4), we have d(µ,ν)≤ δt . The following theorem allow us to bound the µ

measure of some set with the measure ν .

Theorem 4.4.

d(µ,ν)≤ ε =⇒ ∀S ∈ R
m,ν(S−ε)≤ µ(S)≤ ν(Sε)

Proof The property of marginals is ν(S) =
∫

Rm×S dγ(x,y). Since γ(x,y) = 0 if d(x,y) > ε , we derive

ν(S) =
∫

Sε×S dγ(x,y). Then we get ν(S) ≤ ∫

Sε×Rm dγ(x,y). The last expression is the marginal of γ in

Sε , hence by definition of marginal: ν(S) ≤ µ(Sε). The other inequality is obtain by considering the

complement set of S (Rm \S).

4.4 Rounding the answer

Once the computation of A (D) is achieved, we cannot yet return the answer, because it could still leak

some information. Indeed, the distribution of X and X ′ are globally the same, but, on a very small scale,

the distributions could differ a lot. We prevent this problem by rounding the result:

Mechanism 3. The mechanism rounds the result by returning the value closest to f (D)+ n′ in some

discrete subset S′. So K (D) = r(A (D)) where r is the rounding function.

From the above rounding function we define the set S ′
0 of all sets that have the same image under

r. Then we define the σ -algebra S ′ generated by S ′
0: it is the closure under union of all these sets.

Observe now that it is not possible for the user to measure the probability that the answer belongs to a

set which is not in S ′. Hence our differential privacy property becomes:

∀S ∈ S
′,P[A (D1) ∈ S]≤ eεP[A (D2) ∈ S] (5)
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In this way we grant that any measurable set has a minimal measure and we prevent the inequality

from being violated when probabilities are small. The following value R represents the robustness of the

rounding.

R = max
S∈S ′

0 ,S 6= /0

λ (Sδt \S−δt )

λ (S−δt )
(6)

5 Preserving differential privacy

In this section, we prove that if all conditions are met, then the implementation of the mechanism satisfies

differential privacy.

Theorem 5.1. Any mechanism that respects Conditions 1–3 is ε ′-differentially private, with:

∀S ∈ S ,P[A ′(D1) ∈ S]≤ eε ′P[A ′(D2) ∈ S′]

where ε ′ = ε + ln(1+Re
ε L+δt

∆
f ′ ), δt = kδ0 +δn and L = maxS∈S ′

0
�S.

Proof Let S in S . We first consider the case S 6= ∞.

Define P1 = P[A ′(D1) ∈ S] and P2 = P[A ′(D2) ∈ S]. Since the result has been rounded (Definition

3), it is equivalent to consider the set S′ ∈ S ′ with S′ = r−1(S) instead of S.

Now we have Pi = P[ f ′(Di)+ n′(X) ∈ S′] = P[n′(X) ∈ S′− f ′(Di)] where i is 1 or 2. Since ν is the

measure associated to n′, we have

Pi = ν(S′− f ′(Di))

From (4) and Theorem 4.3, d(ν ,µ)≤ δt . From Theorem 4.4 we derive

P1 ≤ µ(Sδt − f ′(D1)) and P2 ≥ µ(S−δt − f ′(D2)).

The additivity property of measures grants us µ(Sδt ) = µ(S−δt ) + µ(Sδt − S−δt ). Condition 1 can be

expressed in term of the measure as:

∀S ∈ S ,r ∈ R
m‖r‖,µ(S)≤ e

ε
‖r‖
∆

f ′ µ(S− r)

From this inequality, we can derive, since ‖r‖= ∆ f ′ :

µ(Sε)≤ eεP2 +µ(Sδt \S−δt )

Since the probability is absolutely continuous according to the Lebesgue measure (Condition 1), we

can express the probability with a density function p:

∀S ∈ S ,µ(S) =
∫

S
p(x)dλ

We derive:

∀S ∈ S ,min
x∈S

p(x)≤ µ(S)

λ (S)

By applying this property on S−δt − f ′(D2), we get:

min
x∈S−δt − f ′(D2)

p(x)≤ µ(S−δt − f ′(D2))

λ (S−δt − f ′(D2))
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We derive:

∃x0 ∈ S− f ′(D2), p(x0)≤
P2

λ (S)

By the triangular inequality, we can bound the distance between x0 and any point of Sδt by ∆ f ′+L+δt

Hence, from Condition 1 we derive:

∀x ∈ Sδt − f ′(D1), p(x)≤ e
ε

∆
f ′+L+δt

∆
f ′ p(x0)

Then by integration:

µ(Sδt − f ′(D1)\S−δt )≤ e
ε

∆
f ′+L+δt

∆
f ′

λ (Sδt \S−δt )

λ (S−δt )
P2

We apply the condition 6:

µ(Sδt − f ′(D1)\S−δt )≤ e
ε

∆
f ′+L+δt

∆
f ′ RP2

Finally we obtain :

P1 ≤ (1+Re
ε L+δt

∆
f ′ )eεP2

In case S is ∞, due to (3), P[A ′(D) = ∞] is the same as P[ f ′(D)+X ′ ∈ M
c
r ] where d(µ,ν) ≤ δt .

Moreover, Mc
r can be decomposed in a enumerable disjoint union of element of S0. Therefore, the first

part of the proof applies: ε ′-differential privacy holds for all these elements. By the additivity of the

measure of disjoint union we conclude.

6 Application to the Laplacian noise in one dimension

In this section we illustrate how to use our result in the case in which the domain of the answers is R.

The noise added for the protocol, stated in the mechanism 1, is the Laplacian centered in 0 with scale

parameter ∆ f ′/ε . Theorem 3.1 implies that Condition 1 holds for ε . We truncate the result outside of

some interval Mr = [m,M].

Implementation of the n function To generate a centered Laplacian distribution from a uniform ran-

dom variable U in ]0,1], a standard method consists in using the inverse of the cumulative function, i.e.

X = n(U) = −bsgn(U − 1/2) ln(1− 2|U − 1/2|), where b is the intended scale parameter (
∆ f ′
ε in our

case). Hence our exact function n is

n(u) =
∆ f ′

ε
sgn(u−1/2) ln(1−2|u−1/2|). (7)

Closeness of n and n′ In order to apply our theorem, we need to prove that Condition 3 is satisfied.

By theorem 4.1, it is sufficient to prove that, in the interval of interest, n(u) is k-Lipschitz and that

|n(u)− n′(u)| ≤ δn. Note that the values of δn and k in general depend on n and on its implementation

(often the logarithm is implemented by the CORDIC algorithm).
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The logarithm function used by n is not k-Lipschitz for any k. However, we are interested in the

behavior of n when |n(u)| ≤ M−m. From the definition of n in (7), we have:

dn

du
(u)≤ dnmax =

2∆ f ′

ε
e

ε�(Mr)
∆

f ′

in Ur = {u|n(u)≤ M−m}. So our function n is dnmax-Lipschitz. Finally, our global error is

δt =
2∆ f ′

ε
e

ε�(Mr)
∆

f ′ δ0 +δn

Rounding the result The rounding process generates a σ -algebra S ′ composed by small intervals of

length L where L is the accuracy step of the rounding. In that case, the value defined in (6) is R = L+2δt

L−2δt
.

Differential privacy By Theorem 5.1, the implementation of our mechanism is ε ′-differentially private

with

ε ′ = ε + ln(1+
L+2δt

L−2δt

e
ε L+δt

∆
f ′ )

Remark 2. In case our answer is not in [m,M], we can return −∞ or +∞ instead of ∞. The reason is

that even if the algorithm is not robust when |u−0.5| is small the sign is still correct. Then we can remap

−∞ to m and +∞ to M to get the usual truncation procedure.

7 Application to the Laplacian noise in R
2

When the domain of the answers are the points of a map, like in the case of location-based applications,

it is natural to formalize it as the space R
2 equipped with the Euclidean distance.

According to the protocol, we sanitize the results by adding a random variable X . In this case, we

will use for X the bivariate Laplacian defined for the Euclidean metric [2] whose density function is:

p(x,y) = Keb
√

|x−x0|2+|y−y0|2

where K is the normalization constant and b the scale parameter. Since we are using a Laplacian noise,

by Theorem 3.1, Condition 1 holds.

Truncation Since most of the time the domain studied is bound (for instance the public transportation

of a city is inside the limit of the city), we can do a truncation. However, we recall that our truncation

is made for robustness purpose and not just for utility reasons. Hence, if our domain of interest is a

circle, we will not choose Mr to be the same circle because the probability the truncation would return

an exception would be too high (more than one half if the true result is on the circumference).

Implementation of the n function Following [2], we compute the random variable by drawing an

angle and a distance independently. The angle θ is uniformly distributed in [−π,π[. The radius r has a

probability density Dε,R(r) = ε2re−εr and cumulative function Cε(r) = 1− (1+ εr)e−εr. The radius can

therefore be drawn by setting r =C−1
ε (u) where u is generated uniformly in ]0,1].
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Robustness of n As in the previous section, we do not analyze an actual implementation but we care

about the k factor used for Condition 3. First, we analyze for which kC(ε,�(Mr)) the function C−1
ε

is k-Lipschitz in [0,�(Mr)]. Since C is differential, this question is equivalent to find the inverse of

the minimal value taken by its derivative function on the interval C−1
ε ([0,�(Mr)]). By computing this

minimum value, we get:

KC(ε,�(Mr)) =
eε�(Mr)

2ε + rε2

On the other hand, the computation of θ is just a multiplication by 2π of the uniform generator hence

kθ = 2π . Then, with the conversion (r,θ) 7→ (r cos(θ),r sin(θ)) from polar coordinates to Cartesian

coordinates we obtain the global k factor:

k =
√

KC(ε,�(Mr))2 +2π�(Mr)

Let δn be the distance between n and n′, and δ0 be the error of the uniform generator. From (4) we get:

δt =
√

KC(ε,�(Mr))2 +2π�(Mr)δ0 +δn.

Rounding the answer We now compute the parameter R in (6). The rounding is made in the Cartesian

coordinates, hence the inverse image of any returned value is a square S of length L. Note that Sδt is

included in the square of length L+ 2δt and S−δt is a square of length L− 2δt . Hence the ratio value is

smaller than R = (L+2δt

L−2δt
)2.

Differential privacy By Theorem 5.1 we get that (the implementation of) our mechanism is ε ′-differentially

private with

ε ′ = ε + ln(1+(
L+2δt

L−2δt

)2e
ε L+δt

∆
f ′ )

8 Conclusion and future work

In this paper we have shown that, in any implementation of mechanisms for differential privacy, the finite

precision representation of numbers in any machine induces approximation errors that cause the loss of

the privacy property. To solve this problem, we have proposed a method based on rounding the answer

and raising an exception when the result is outside some values. The main result of our paper is that the

above method is sound in the sense that it preserves differential privacy at the price of a degradation of

the privacy degree. To prove this result, we needed to pay special attention at expressing the problem in

terms of probability theory and at defining the link between computational error and distance between

probability distributions. Finally, we have shown how to apply our method to the case of the linear

Laplacian and to that of bivariate Laplacian.

As future developments of this work, we envisage two main lines of research:

• Deepening the study of the implementation error in differential privacy: there are several directions

that seem interesting to pursue, including:

– Improving the mechanisms for generating basic random variables. For instance, when gen-

erating a one-dimensional random variable, it may have some advantage to pick more values

from the uniform random generator, instead than just one (we recall that the standard method
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is to draw one uniformly distributed value in ]0,1] and then apply the inverse of the cumula-

tive function). For instance, u1 + u2 has a density function with a triangular shape and cost

only one addition. The other advantage is due to the finite representation: if the uniform

random generator can pick N different values then two calls of it generate N2 possibilities,

which enlarge considerably the number of possibilities, and therefore reduce the “holes” in

the distribution.

– Considering more relaxed versions of differential privacy, for instance the (ε,δ )-differential

privacy allows for a (small) additive shift δ between the two likelihoods in Definition 3.1 and

it is therefore more tolerant to the implementation error. It would be worth investigating for

what values of δ (if any) the standard implementation of differential privacy is safe.

• Enlarging the scope of this study to the more general area of quantitative information flow. There

are various notions of information leakage that have been considered in the computer security

literature; the one considered in differential privacy is just one particular case. Without the pretense

of being exhaustive, we mention the information-theoretic approaches based on Shannon entropy

[8, 16, 6] and those based on Rényi min-entropy [20, 4] and the more recent approach based on

decision theory [1]. The main difference between differential privacy and these other notions

of leakage is that in the former any violation of the bound in the likelihood ratio is considered

catastrophic, while the latter focuses on the average amount of leakage, and it is therefore less

sensitive to the individual violations. However, even though the problem of the implementation

error may be attenuated in general by the averaging, we expect that there are cases in which it may

still represent a serious problem.
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