G. Aguirre, . Detre, D. Zarahn, and . Alsop, Experimental Design and the Relative Sensitivity of BOLD and Perfusion fMRI, NeuroImage, vol.15, issue.3, pp.488-500, 2002.
DOI : 10.1006/nimg.2001.0990

K. Geoffrey, E. Aguirre, M. Zarahn, and . Esposito, Empirical analyses of BOLD fMRI statistics. II. Spatially smoothed data collected under null-hypothesis and experimental conditions, NeuroImage, vol.5, issue.3, pp.199-212, 1997.

S. Arndt, D. O. Cizadlo, . Leary, N. Gold, and . Andreasen, Normalizing Counts and Cerebral Blood Flow Intensity in Functional Imaging Studies of the Human Brain, NeuroImage, vol.3, issue.3, pp.175-84, 1996.
DOI : 10.1006/nimg.1996.0019

J. Ashburner, J. Karl, and . Friston, Unified segmentation, NeuroImage, vol.26, issue.3, pp.839-851, 2005.
DOI : 10.1016/j.neuroimage.2005.02.018

S. Aslan and H. Lu, On the sensitivity of ASL MRI in detecting regional differences in cerebral blood flow, Magnetic Resonance Imaging, vol.28, issue.7, pp.928-935, 2010.
DOI : 10.1016/j.mri.2010.03.037

F. Christian, M. Beckmann, . Jenkinson, M. Stephen, and . Smith, General multilevel linear modeling for group analysis in FMRI, NeuroImage, vol.20, issue.2, pp.1052-1063, 2003.

Y. Benjamini and Y. Hochberg, Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing, Journal of the Royal Statistical Society. Series B (Methodological), vol.57, issue.1, pp.289-300, 1995.

R. B. Buxton, L. R. Frank, E. C. Wong, . Siewert, R. Warach et al., A general kinetic model for quantitative perfusion imaging with arterial spin labeling, Magnetic Resonance in Medicine, vol.37, issue.3, pp.383-396, 1998.
DOI : 10.1002/mrm.1910400308

J. A. Chalela, C. David, J. B. Alsop, J. A. Gonzalez-atavales, S. E. Maldjian et al., Magnetic Resonance Perfusion Imaging in Acute Ischemic Stroke Using Continuous Arterial Spin Labeling, Stroke, vol.31, issue.3, pp.31680-687, 2000.
DOI : 10.1161/01.STR.31.3.680

S. Chawla, S. Wang, R. C. Wolf, J. Woo, D. Wang et al., Arterial Spin-Labeling and MR Spectroscopy in the Differentiation of Gliomas, American Journal of Neuroradiology, vol.28, issue.9, pp.1683-1689, 2007.
DOI : 10.3174/ajnr.A0673

G. Chen, S. Ziad, A. R. Saad, . Nath, S. Michael et al., FMRI group analysis combining effect estimates and their variances, NeuroImage, vol.60, issue.1, pp.747-765, 2012.
DOI : 10.1016/j.neuroimage.2011.12.060

T. Chen, L. Chiu, T. Wu, T. Wu, C. Lin et al., Arterial spin-labeling in routine clinical practice: a preliminary experience of 200 cases and correlation with MRI and clinical findings, Clinical Imaging, vol.36, issue.4, pp.345-352, 2012.
DOI : 10.1016/j.clinimag.2011.11.003

R. Cox, AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and biomedical research, an international journal, pp.162-73, 1996.

J. Crinion, J. Ashburner, A. Leff, M. Brett, C. Price et al., Spatial normalization of lesioned brains: Performance evaluation and impact on fMRI analyses, NeuroImage, vol.37, issue.3, pp.866-875, 2007.
DOI : 10.1016/j.neuroimage.2007.04.065

J. Ferré, J. Petr, E. Bannier, C. Barillot, and J. Gauvrit, Improving quality of arterial spin labeling MR imaging at 3 tesla with a 32-channel coil and parallel imaging, Journal of Magnetic Resonance Imaging, vol.28, issue.5, pp.1233-1239, 2012.
DOI : 10.1002/jmri.23586

K. J. Friston, T. Stephan, . Lund, S. Morcom, and . Kiebel, Mixed-effects and fMRI studies, NeuroImage, vol.24, issue.1, pp.244-52, 2005.
DOI : 10.1016/j.neuroimage.2004.08.055

B. Hakyemez, C. Erdogan, . Ercan, . Ergin, S. Uysal et al., High-grade and low-grade gliomas: differentiation by using perfusion MR imaging, Clinical Radiology, vol.60, issue.4, pp.493-502, 2005.
DOI : 10.1016/j.crad.2004.09.009

A. Holmes, K. Friston, and . Generalisability, Random Effects & Population Inference, Proceedings of Fourth International Conference on Functional Mapping of the Human Brain, 1998.

S. Huck, H. Kerl, C. Zghloul, I. Groden, and . Nölte, Arterial Spin Labeling at 3.0??Tesla in Subacute Ischemia, Clinical Neuroradiology, vol.49, issue.Suppl 1, pp.29-37, 2012.
DOI : 10.1007/s00062-011-0126-x

J. Martin-a-lindquist, I. Spicer, . Asllani, D. Tor, and . Wager, Estimating and testing variance components in a multi-level GLM, NeuroImage, vol.59, issue.1, pp.490-501, 2012.
DOI : 10.1016/j.neuroimage.2011.07.077

J. Bradley, N. F. Macintosh, W. Mark, C. E. Woolrich, P. Mackay et al., Assessment of arterial arrival times derived from multiple inversion time pulsed arterial spin labeling MRI, Magnetic Resonance in Medicine, vol.63, issue.3, pp.641-647, 2010.

C. Maumet, P. Maurel, J. Ferré, and C. Barillot, A contrario detection of focal brain perfusion abnormalities based on an ASL template, Proceedings of the IEEE 9th International Symposium on Biomedical Imaging, pp.1176-1179, 2012.

C. Maumet, P. Maurel, J. Ferré, and C. Barillot, A Comprehensive Framework for the Detection of Individual Brain Perfusion Abnormalities Using Arterial Spin Labeling, Proceedings of the 15th International Conference on Medical Image Computing and Computer Assisted Intervention, pp.542-549, 2012.
DOI : 10.1007/978-3-642-33454-2_67

URL : https://hal.archives-ouvertes.fr/inserm-00720593

J. Mazziotta, A. Toga, and . Evans, A Four-Dimensional Probabilistic Atlas of the Human Brain, Journal of the American Medical Informatics Association, vol.8, issue.5, pp.401-430, 2001.
DOI : 10.1136/jamia.2001.0080401

S. Mériaux, A. Roche, G. Dehaene-lambertz, B. Thirion, and J. Poline, Combined permutation test and mixed-effect model for group average analysis in fMRI, Human Brain Mapping, vol.15, issue.5, pp.402-412, 2006.
DOI : 10.1002/hbm.20251

J. A. Mumford, L. Hernandez-garcia, R. Gregory, . Lee, E. Thomas et al., Estimation efficiency and statistical power in arterial spin labeling fMRI, NeuroImage, vol.33, issue.1, pp.103-117, 2006.
DOI : 10.1016/j.neuroimage.2006.05.040

A. Jeanette, T. Mumford, and . Nichols, Simple group fMRI modeling and inference, NeuroImage, vol.47, issue.4, pp.1469-1475, 2009.

T. Noguchi, . Yoshiura, . Hiwatashi, . Togao, E. Yamashita et al., Perfusion imaging of brain tumors using arterial spin-labeling: correlation with histopathologic vascular density High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis, American Journal of Neuroradiology Magnetic Resonance in Medicine, vol.2929, issue.365, pp.688-93715, 1996.

M. Laura, . Parkes, A. John, and . Detre, ASL: Blood Perfusion Measurements Using Arterial Spin Labelling, Quantitative MRI of the Brain: Measuring Changes Caused by Disease., chapter 13, 2003.

D. William, A. Penny, and . Holmes, Random-Effects Analysis, Human Brain Function, pp.843-850, 2004.

J. Petr, J. Ferre, E. Bannier, H. Raoult, J. Gauvrit et al., Construction and evaluation of a quantitative arterial spin labeling brain perfusion template at 3T, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.1035-1038, 2011.
DOI : 10.1109/ISBI.2011.5872578

URL : https://hal.archives-ouvertes.fr/inserm-00601149

J. Petr, J. Ferré, H. Raoult, E. Bannier, J. Gauvrit et al., Template-based approach for detecting motor task activation-related hyperperfusion in pulsed ASL data, Human Brain Mapping, vol.120, issue.4, p.2012
DOI : 10.1002/hbm.22243

URL : https://hal.archives-ouvertes.fr/inserm-00800899

A. Pinkham, J. Loughead, K. Ruparel, W. Wu, E. Overton et al., Resting quantitative cerebral blood flow in schizophrenia measured by pulsed arterial spin labeling perfusion MRI, Psychiatry Research: Neuroimaging, vol.194, issue.1, pp.64-72, 2011.
DOI : 10.1016/j.pscychresns.2011.06.013

R. A. Poldrack, J. Mumford, and T. Nichols, Handbook of functional MRI data analysis, 2011.
DOI : 10.1017/CBO9780511895029

B. Rosner, Percentage Points for a Generalized ESD Many-Outlier Procedure, Technometrics, vol.6, issue.2, pp.165-172, 1983.
DOI : 10.1080/00401706.1983.10487848

P. Skudlarski, R. Constable, and J. Gore, ROC Analysis of Statistical Methods Used in Functional MRI: Individual Subjects, NeuroImage, vol.9, issue.3, pp.311-329, 1999.
DOI : 10.1006/nimg.1999.0402

T. Sugahara, Y. Korogi, Y. Tomiguchi, . Shigematsu, . Ikushima et al., Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue, American Journal of Neuroradiology, vol.21, issue.5, pp.901-909, 2000.

B. Thirion, P. Pinel, S. Mériaux, A. Roche, S. Dehaene et al., Analysis of a large fMRI cohort: Statistical and methodological issues for group analyses, NeuroImage, vol.35, issue.1, pp.105-125, 2007.
DOI : 10.1016/j.neuroimage.2006.11.054

URL : https://hal.archives-ouvertes.fr/cea-00371089

R. Viviani, E. Sim, H. Lo, S. Richter, S. Haffer et al., Components of variance in brain perfusion and the design of studies of individual differences: The baseline study, NeuroImage, vol.46, issue.1, pp.12-22, 2009.
DOI : 10.1016/j.neuroimage.2009.01.041

Y. Wang, J. Andrew, J. Saykin, C. Pfeuffer, K. M. Lin et al., Regional reproducibility of pulsed arterial spin labeling perfusion imaging at 3T, NeuroImage, vol.54, issue.2, pp.1188-1195, 2011.
DOI : 10.1016/j.neuroimage.2010.08.043

Z. Wang, Improving cerebral blood flow quantification for arterial spin labeled perfusion MRI by removing residual motion artifacts and global signal fluctuations. Magnetic resonance imaging, 2012.

C. Warmuth, M. Günther, and C. Zimmer, Quantification of Blood Flow in Brain Tumors: Comparison of Arterial Spin Labeling and Dynamic Susceptibility-weighted Contrast-enhanced MR Imaging, Radiology, vol.228, issue.2, pp.523-532, 2003.
DOI : 10.1148/radiol.2282020409

M. Weber, . Zoubaa, . Schlieter, H. Jüttler, . Huttner et al., Diagnostic performance of spectroscopic and perfusion MRI for distinction of brain tumors, Neurology, vol.66, issue.12, pp.661899-1906, 2006.
DOI : 10.1212/01.wnl.0000219767.49705.9c

M. Wintermark, M. Sesay, E. Barbier, K. Borbély, P. William et al., Comparative overview of brain perfusion imaging techniques, Journal of Neuroradiology, vol.32, issue.5, pp.36-83, 2005.
DOI : 10.1016/S0150-9861(05)83159-1

URL : https://hal.archives-ouvertes.fr/inserm-00410400

E. C. Wong, R. B. Buxton, and L. R. Frank, Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II), Magnetic Resonance in Medicine, vol.6, issue.5, pp.702-708, 1998.
DOI : 10.1002/mrm.1910390506

W. Mark, T. E. Woolrich, C. F. Behrens, M. Beckmann, . Jenkinson et al., Multilevel linear modelling for FMRI group analysis using Bayesian inference, NeuroImage, vol.21, issue.4, pp.1732-1779, 2004.

J. Keith, C. Worsley, . Liao, . Aston, G. Petre et al., A general statistical analysis for fMRI data, NeuroImage, vol.15, issue.1, pp.1-15, 2002.

G. Zaharchuk, R. Bammer, M. Straka, A. Shankaranarayan, C. David et al., Arterial Spin-Label Imaging in Patients with Normal Bolus Perfusion-weighted MR Imaging Findings: Pilot Identification of the Borderzone Sign, Radiology, vol.252, issue.3, pp.252797-807, 2009.
DOI : 10.1148/radiol.2523082018

G. Zaharchuk, . Mogy, J. Nancy, . Fischbein, W. Gregory et al., Comparison of Arterial Spin Labeling and Bolus Perfusion-Weighted Imaging for Detecting Mismatch in Acute Stroke, Stroke, vol.43, issue.7, pp.431843-1848, 2012.
DOI : 10.1161/STROKEAHA.111.639773