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Abstract

Our goal is to represent images in terms of geometric obgttag as prim-
itive elements of an image description. Similar repregérta obtained by
stochastic marked point processes have already led toreoingiimage anal-
ysis results but suffer from serious drawbacks such as @ogid unstable
parameter tuning, large computing time, and lack of geitgraMe propose
an alternative descriptive model based on a Jump-Diffupimeess which
can be performed in shorter computing times and applied tariety of ap-

plications without changing the model or modifying the fmparameters.
In our approach, a probabilistic Gibbs model is adapted tbrarly of geo-

metric objects and is sampled by a Jump-Diffusion processdar to closely
match an underlying texture. Experiments with naturalueeg and remotely
sensed images show good potentialities of the proposedagipr

1 Introduction

Shape extraction is a well known computer vision problemcilitias been addressed by
various approaches. Deformable models such as paramelgiebsets based active con-
tours are particularly efficient to extract or track curvldges and have been successfully
used, for example, for recognition of organs in medical imggAlternative approaches
that use stochastic models and random sampling of geonoéfects are better adapted
to extraction of rectilinear shapes. Stochastic modebnaftvolve jump samplers which
allow to deal with state spaces of variable dimension. Thetrkiwown jump sampler is
the Reversible Jump Markov Chain Monte Carlo (RIMCMC) atbar [6]. It is partic-
ularly efficient for recognition of objects with variable mbers of parameters in large
configuration spaces, such as 3D reconstruction [2, 10xturte modelling [19].

Marked point process based models are among the most effitdehastic approaches
and have already obtained convincing results in variougjintaapplications such as
building extraction [13], road network detection [9], oeércrown extraction [14]. The
marked point processes, detailed in [16], exploit randoriatsées whose realisations are
configurations of geometrical objects (for example, regias [13], line segments [9], or
ellipses [14]). An energy is associated with each objectigaration, and the global min-
imum of this energy is searched for by using the conventisimllated annealing [12]

1The first author is grateful to the French Defence Agency (@A financial support. Both the authors
thank the French Mapping Agency (IGN) and the French Foregritory (IFN) for the aerial images.



coupled with the birth-and-death sampler [4]. Such praeessiow to describe complex
spatial interactions between the objects. Image reprasens provided by the marked
point process based models are particularly good for contpl¢ured images. However,
these models suffer from the following three major drawlsack

Lack of generality Each model is associated with a specific application, and rkeda
point process is limited to a single type of objects havimgme geometric shape.
Moreover, complexity of interactions between the objeafind in the model
makes impossible to generalise each particular model tthanapplication.

Trial-and-error parameter tuning Many parameters (up to ten in most of cases) are to be
used to define the interactions. They are tuned by trial araieesince parameter
estimation techniques which efficiently work with such E@pnfiguration spaces
simply do not exist.

Too long computational time Although proposition kernels are developed to speed up
the process, the birth-and-death sampler remains very skpecially at low tem-
perature.

This paper presents an alternative to the marked point psese Our aim is not
to provide results as accurate as those obtained by modeésl lmn the marked point
process, but to propose a more general stochastic procédseam produce target results
in shorter time and can be applied to a large range of apitawithout modifying
model and tuning parameters. The proposal involves theviallg two modifications of
the marked point process:

Sampling several types of objects and limiting their interations: In order to extend
the level of generality, the process must jointly sampléedint types of geometric
objects €.g. linear objects such as segments and areal ones such as m®gd
circles). The interactions between these objects musbalseduced and simplified
in order to strongly decrease the number of tuning parameter

Introducing a diffusion dynamic: The diffusion dynamic would allow us to significantly
speed up the convergence of the process. The marked poaggsrbased models
cannot use such a dynamic due to complexity of their energgtions (usually
gradients of these functions do not satisfy the Lipschitztiomity condition). The
Jump-Diffusion processes introduced by Grenaretieal.[7] represent a class of
random samplers which efficiently mix both the jump and diifun dynamics.

The paper is organised as follows. Section 2 presents a @Gitdrgy model adapted to
different types of geometric objects. The model is sampled Bump-Diffusion process
detailed in Section 3. Experimental results for texturecdption problems are given in
Section 4. Basic conclusions are outlined in Section 5.

2 Image representation model

By way of illustration, we restrict ourselves to a simpleaitijset (or library) of seven
geometric patterns (see Fig. 1). Segments, lines, andtide &e specific to linear struc-
tures whereas rectangles, bands, band ends, and circltesmpomd to areal descriptors.



All the objects have between three and five control paramgtee positional coordinates
(Xc,Yc) of the object’s centre being common to all the objects. Oglseameters depend
on the object types (e.g. radius for circles; length, wi@thgl orientation for bands and
rectangles; or length and orientation for lines and segs)enthe parameters are de-
fined in both continuous and discrete domains. This set dedibasic objects used in
the known marked point process based models and thus isisnffio produce detailed

representations of a large range of scenes in terms of thearland areal components.

rectangle

Figure 1: The chosen library of linear and areal geometrjeab.

2.1 Gibbs energy

The number of objects in any particular scene is unknown tla@objects have different
numbers of parameters. Thus, the configuration saogour problem is defined as an
union of subspaces, each subspace containing fixed numbers of objects of eaeh ty
A probability distributionu on the configuration spacg is defined as a combination of
U distributions on the subspac&g. We assume unnormalized distributiopg on %k
have Gibbs densities of the fora15X) whereE, is a Gibbs energy associated with the
configuration subspacé.

The energyEy takes into account both the cohererigx) between the objects and
the image data and the adjacency constrd®(x) for positioning of the objects with no
overlaps:

Ex(X) = Dk(X) + Ru(X); x € %k @

2.1.1 The data coherence term

Dk(x) accumulates the local energy associated with each abjetthe configuratiorn:

Dil(x) = Y d(x) (2)

whered(x;) is a measure of coherence of the objgctvith respect to the data.¢ an
image). This measurd(.) must satisfy two important conditions:

e It must beindependent of the object type In particular, the object area must be
taken into account in order to not favour linear or areal cigpes.

¢ It must allow toselect “attractive” objects, i.e. the well-fitted objects having a
negative local energy. This feature is very important inrtiaelels using birth-and-
death processes [16, 13, 9] since it partly defines the obgity in the scene.



The function we propose is derived from the Mahalanobisdist and includes a thresh-
old B. that makes some objects attractive if the function is negati

2 2
02 +02, ¢

d(x) = My —mon)? Oattr I Min # Moyt ©)
0 otherwise

Here,my, andmy; represent the mean of pixel intensities inside and out$ideobject
respectively (i.e. the blue and red areas on Fig. B), and oot denote the associated
standard deviation§is the whole inside and outside area, and 0 is an infinitesimal
value allowingd(.) to be derivable. The thresholi}y, allows to select the attractive ob-
jects and tune the sensitiveness of the data fitting. Thisureaf coherence is based on
homogeneity criteria inside and outside the object. Theprdation time of this measure
is very short, but this function is not optimal for noisy datdonetheless, it produces
better experimental results than other measuwgsbhased on the Bhattacharya distance.

2.1.2 The adjacency constraint

Rk (x) follows from the unique prior knowledge and is necessary&weloping a general
model of non-overlapping objects. Other types of intetatisuch as inter-connections
or mutual alignments of the objects could be also introdudddwever, our aim is to
minimise the number of tuning parameters in the model sihisea critical problem for
the marked point processes. This term is expressed as follow

R(¥) =3 (e9%%) —1) (4)

Xi,XjEX

whereg(x;,X;) taking values irf0, 1] quantifies the mutual overlap between the obj&cts
andx;, andk is a big positive real value(>> 1) which strongly penalises the overlaps
(in our experimentsg = 100). Under small overlaps between two objects, this pridr w
weakly penalise the global energy. But if the overlappindigh, this prior will act as
an hardcorei(e. the prior energy takes a very high value), and the configumatiill be
practically banned.

3 Jump-Diffusion sampler

The search for an optimal configuration of objects is perfmmsing the Jump-Diffusion
process introduced by Grenandeal. [7]. It has been used in various applications such as
target tracking [15] and image segmentation [8]. This pssa®mbines the conventional
Markov Chain Monte Carlo (MCMC) algorithms [12, 6] and thenigavin equations [3].
Both dynamics play different roles in the Jump-Diffusiomgess: the former performs
reversible jumps between the different subsp&ggsvhereas the latter conducts stochas-
tic diffusion within each continuous subspace. The globakess is controlled by a
relaxation temperaturé depending on timéand approaching zero asends to infinity.
Simulated annealing theoretically ensures convergentieetglobal optimum from any

2By takingmy, > Moyt OF My, < Moyt instead ofmy, # Mgyt in the definition domain ofl(.), we can modify
the measure in order to introduce radiometric information awrf respectively bright or dark objects with
respect to the background. This variantgf) will be used for tree crown and building extraction experitsen



initial configuration using a logarithmic decrease of thaperature. In practice, we use a
faster geometric decrease which gives an approximate@olcibse to the optimum. The
simulated annealing parameters such as the initial terperare estimated using the ap-
proach of White [18]. The diffusions are interrupted by junfipifowing a discrete time
stepAt (in practice At = 50). At the very low temperature, the diffusion process glay
more important role: the time step is increasét-€ 100) to speed up the convergence.

3.1 Jump dynamic

Reversible jumps between the different subspaces arerpwtbaccording to families of
moves called proposition kernels and denote@Ry The jump process performs a move
from an object configuratior € %j to y € ¢ according to a probabilit@Qm(x — y).
Then, the move is accepted with the following probability:

; Qmly— %) _ EvO)-EX)
mn(L S ©

We use two different families of moves in order to jump betw#e subspaces.

Birth-and-death kernel Q1: This kernel allows for adding or removing an object from
a current object configuration. These transformationsesponding to jumps into
the spaces of higher (birth) and lower (death) dimensiortezeretically sufficient
to visit the whole configuration space. In practice, we clkedosadd or remove an
object following a Poisson distribution. If an object is addits type is randomly
chosen and its parameters are chosen according to unif@tnibdtions over the
parameter domains. The computation of this kernel is detai [16, 4].

Switching kernel Qy: This kernel allows to switch the type of an objeety a circle by
a rectangle). Contrary to the previous kernel, this moveaahange the number
of objects in the configuration. However, the number of paatans can be different
(eg. three parameters for a circle substituted by five paraméders rectangle).
This kernel is based on the creation of bijections betweendifferent types of
objects. The computation of this kernel is detailed in [6].

Usually the jump processes [13, 9, 14, 10] use a perturb&tomel that allows them to
explore each subspace by modifying only parameters of tfectsh In our case, this
kernel is substituted by a diffusion dynamic which is clgdaster since the exploration
of the subspace is directed by the energy gradient.

3.2 Diffusion dynamic

The diffusion process between jumps controls the dynanfitsembject configuration in
their respective subspaces. Stochastic diffusion (or €giny equations driven by Brow-
nian motionsdB(t) with temperaturel are used to explore the subspa@gs If x(t)
denotes the variables at tihethen

dx(t) = — dEdk)EX) dt + /2T (D dwt (6)

wheredw; ~ N(0,dt?). At high temperatureT >> 0), the Brownian motion is useful in
avoiding trapping in local optima. At low temperatufie{ < 1), the role of the Brownian
motion becomes negligible and the diffusion dynamic acts @sadient descent.




4 Experimental results

4.1 Texture representation

The proposed method has been tested on a number of selettiedl textures in order
to evaluate its potentialities of representing variougt/pf images by geometric objects.
The obtained results (some of them are presented in Figejuate promising. Various
spatially homogeneous and heterogeneous textures amsstdty represented even with
a chosen simple set of objects. Some textures having dpataiant illumination and
reflectance (seeg. the metal grid and tile roof examples in Fig. 2) are usualffiatilt

to describe, and often require specific advanced technispes as [1]. Our method is
particularly interesting for representing such texturieses the fitting of objects do not
depend of illumination effects.

Fig. 3 presents both the result obtained from an image auntafive different tex-
tures and the evolution of the object configuration duriregjtimp-diffusion process. This
result showing five various object layouts underlines igéng potentialities for texture
discremination. At the beginning of the algorithng, when the temperature is higied),
the process explores the subspaces and favors configwatitma low energy. At this
exploration stage, the jump dynamic plays an importantlglepecifying both the num-
ber and the type of objects. At low temperat(iokie), the object configuration belongs
to a subspace being close to the optimal one, and the numbéjeafts in the scene does
not evolve very much. The diffusion dynamic is mainly usedtithis stage in order to
perform a detailed adjustment of the object parameterss d@jaamic is clearly faster
than a single jump process with a perturbation kernel sineekploration is directed by
the gradient of the energy (and not by a random search). GiiapFfig. 3 describe how
the energy and the number of objects change in function dfitineber of iterations.

Even if the objects are disconnected (gag brick wall or hair in Fig. 2), the rep-
resentation is detailed enough to be useful in solving texdiescription and recognition
problems. In particular, it would be interesting to combsueh object-based representa-
tions with Gibbs Markov random field models which are mos#gdi on the pixel-wise
intensities [5] and thus cannot explicitly take into accshmapes and relative locations of
depicted characteristic objects. In order to deal with noomaplicated textures and have
a description level similar to filter bank methods such a$, [the object library has to be
extended and new relevant shapes, especially curved sistyoesd be introduced. More-
over, it will be necessary to develop more general energgtions taking into account, in
particular, typical object deviations and noise in theueas (see the stone ornament and
rose results in Fig. 2 which are quite limited in term of dgstown).

4.2 Remote sensing applications

A similar approach detailed in [11] has been tested on differemote sensing problems
such as bird detection, tree crown extraction, road netwet&ction, and building extrac-
tion, with the data used in the marked point process basedaug{13, 9, 14]. Although
the obtained results are generally less accurate than titiséned by the specialised
marked point process based methods, the proposed genecakprallows to deal with
various remote sensing problems in much shorter time arftbwfitmodifying the model
and tuning parameters. Some results are presented on Fgr4he tree crown extrac-
tion, the main goal is to count trees on large forest scenéthoégh the shapes of trees
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Figure  2: Examples of our representation of textures

http://www.cgtextures.com in terms of geometrical objects.
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are roughly approximated by circles and rectangles, altrées are accurately detected.
The accuracy of the tree locations is practically the samzbtgined by a marked point
process [14] with elliptical objects to represent the trees

number of iterations number of iterations

Figure 3: Texture representation: original image and tdsop); evolution of the object
configuration during the jump-diffusion process - configiaras from the initial tempera-
ture (red) to the final one (bluéniddle); energy and number of objects graphs in function
of the number of iterations during the critical phgbettom).

The road network and building extraction results cannotdmsiclered as a final rep-
resentation since the detected objects are not conneatattdry to [9] or [13] where
complex interactions had been defined to link the objectsyvéver, the objects found are
mainly lines and bands which are globally well fitted to roadd buildings and provide
a rough pattern of the target structures. These object tayare sufficiently informative
to make it possible to extract the global network on the bafsiseir subsequent analysis.
For example, one could use post-processing based on aigatitmn principle to connect
the objects found. The building extraction is convincing the object localisation re-
mains very rough compared to the one obtained in [13]. Howewe method is clearly



faster: 30 minutess 2 hours on a @ knm? dense urban area using a 3 GHz processor.
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Figure 4: Remote sensing applications from aerial imgfyem top to bottom, and left to
right): Tree crown extraction with the original ima@/FN, our result, the result obtained
in [14], and cropgtop); a road network extraction result and its cropped partahienage
of a urban scen®)IGN and the buildings extracted from the associated DfEbttom).

5 Conclusions

We have proposed a new approach for the representation gesria terms of simple,
or primitive geometric objects. The approach possessesaewmportant characteris-
tics comparing to its conventional counterparts based emtarked point processes and
models. It is more general and works efficiently on variougliaptions without modi-
fying the model and tuning parameters. Moreover, the ogation technique based on
the jump-diffusion process allows to obtain shorter corapabnal time compared to the
classical jump processes. However, the proposed prockssted by the content of the
object library (the current set in Fig. 1 cannot in principtevide relevant representations
of complex textures including curved object shapes andehols the future, it could be
particularly interesting, first, to extend the object lirand, secondly, to develop mod-
els and techniques for automatic selection of relevantotdbjieom a given collection of
training image before the use of the above jump-diffusiatpss.
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