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ABSTRACT
Scarce bandwidth and interferences in mobile ad-hoc
networks yield the need for more efficient diffusion
techniques than these employed on usual wired networks,
especially in dense environments. In this paper, we
compare some optimized flooding mechanisms that were
proposed in view to gain enough performance and allow
applications such as multimedia diffusion in an ad hoc
environment. We namely present multi-point relay (MPR)
flooding and gateway flooding. We investigate the matter
theoretically via mathematical modelling, as well as prac-
tically via simulations. It is shown how well each of these
techniques improve the diffusion performances: when the
network is dense, 2/3 of the gateway nodes participate in
the retransmissions, while the density of multi-point relay
retransmitters is1/ν , whereν is the node density.
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1 Introduction

Mobile ad hoc networking is the emergent concept in view
to interconnect wireless devices from computers to mobile
phones, and from sensors to vehicles. Since higher radio
link capacity implies shorter radio ranges in ground com-
munications, the routing protocol used between mobile
nodes is the key network feature. Still, radio bandwidth is
limited compared to that of wired networks and therefore
the reduction of any overhead is an essential issue.

Flooding (i.e. diffusing some data to each and every
node in the network) is on one hand a big part of the
routing overhead and on the other hand, a mechanism used
by various higher level applications (such as, for example,
multimedia broadcasting). The technique used at the
routing level in wired networks is rather brutal: basically,
from the source, each node redistributes the information
to all its neighbours and so on until the entire network is
inundated. This is namely the case with classic protocols
like OSPF or IS-IS (see [5] [6]).

When the network is dense, this approach leads to

too much overhead: not only are most retransmissions ac-
tually unnecessary, but even a single broadcast could break
the network down in an ad-hoc environment, where the
scarce bandwidth and the radio interferences between users
will jam the traffic. This leaves room for optimization,
which is absolutely needed in view to develop efficient
ad-hoc networking (see [3]), and which might also be of
some use on usual wired networks.

There are many proposals as far as ad-hoc routing
protocols are concerned, many of them in the IETF
framework within the MANET Working Group [2]. Most
of these protocols depend on a flooding mechanism at
some point in their algorithm. In the present paper we
focus on the broadcast performances of two techniques:
multi-point relays (MPR) and gateway nodes. These are
extracted from two different routing protocols that were
proposed: OLSR (Optimized Link State Routing [1]) and
DDR (Distributed Dynamic Routing [4]).

The paper is organized as follows : we will first de-
scribe simply each of the two flooding mechanisms in
Section 2 and 3, before comparing their abilities via
mathematical modelling in Section 4. Section 5 will
present the results we obtained via simulation before we
conclude on the matter.

2 The Gateway Mechanism

Gateway node flooding is a broadcast technique which
is extracted from the ad-hoc routing protocol DDR [4].
The protocol uses a forest of logical trees interconnected
between them via a set of gateway nodes as foundation for
its broadcast mechanism.

More precisely, the protocol initially forms trees in
the following way: each node selects as parent its preferred
neighbour,i.e. the neighbour which has itself the maxi-
mum number of neighbours, in other words, the maximum
degree. A node which is a local maximum degree-wise
(all its neighbours have lower degree) is then the root of its
tree. Inside a tree a node is either a leaf or an internal node.
A leaf is a node which is parent of none of its neighbours.
On the other hand, an internal node is a node which is



parent of at least one of its neighbours.

Under such considerations, the network can be viewed as
a so-called forest,i.e. a collection of disconnected logical
trees, each of them being identified by a random identifier
which is flooded from root to leaves via the logical links.
In order to interconnect those trees, one considers the
gateway nodes between them, a gateway node being a node
which has neighbours in its range that are in a different
tree than its own.

Therefore, the broadcast mechanism can be summed
up as follows:

A node retransmits a broadcast packet if it is ei-
ther a gateway node or an internal node in the
tree it belongs to.

3 The MPR Technique

Multipoint relay (MPR) flooding is a broadcast mechanism
which is extracted from the ad-hoc routing protocol OLSR
[1]. We will describe it now: the principle is that each
node features a multipoint relay set (i.e. a subset of
its neighbours), and only these selected neighbours, the
so-called multipoint relays of the node, will retransmit a
packet broadcasted by the node. Obviously, the smallest
this set is, the more efficient the optimization will be.

More precisely, this is done in a distributed fashion
as follows. LetA be a given node in the graph. Let the
neighbourhood ofA be the set of nodes which have an
adjacent link toA. And let the two-hop neighbourhood of
A be the set of nodes which don’t have a valid link toA
but that have a valid link to the neighbourhood ofA. Note
that the information about the two-hop neighbourhood and
the two-hop links can be made available simply via hello
packets, like in OLSR for instance, with every neighbour
of A periodically broadcasts information about their
adjacent links in order to continuously cross-check them
as valid or invalid, as well as discover new ones.

The multipoint relay set ofA, MPR(A), is then a
subset of the neighbourhood ofA which satisfies the
following condition: every node in the two-hop neighbour-
hood of A must have a valid link toward MPR(A). As
we already stated, the smaller the multipoint relay set (i.e.
MPR set), the more the broadcast mechanism is optimized.

In a nutshell, the MPR flooding mechanism works as
follows, in a distributed fashion, on each node:

A node retransmits a broadcast packet only if it
receives its first copy from a neighbour that has
chosen the node as multipoint relay.

4 Performance Evaluation via Mathematical
Modelling

The comparison parameter we consider is the number
of retransmissions of a single packet via each broadcast
technique. The model under which we investigate the
performance of these flooding mechanisms is the unit disk
model,i.e. nodes are randomly dispatched uniformly on a
map and the network graph is then the network obtained
by connecting nodes which are at a distance smaller than
or equal to the unit. The density of nodes isν, which is
the average number of nodes contained in an unit disk.
In other words,ν is the average number of neighbours
of a random node. This model is a classic in the field of
performance analysis of wireless networks, although not
fully realistic since it omits interferences with obstacles
and between simultaneous transmitters. Notice that the
number of nodes that is contained in an region of sizea is
a Poisson distribution of meanaν. We investigate dense
networks,i.e. mathematically whenν → ∞.

In the present analysis we will restrict our mathemat-
ical model to the linear map,i.e. the model addresses
networks with geographic locations that mainly stretch on
a single geometric dimension,e.g. a road. Note that the
simulation results presented in Section 5 show figures for
both the linear map and the planar map, where the network
can stretch in two dimensions, therefore extrapolating to
most of the real cases.

4.1 Gateway Flooding

Our aim is to find the probability for a random node to be a
gateway node. Gateway flooding introduces the so-called
preferred neighbour of a given node, which is its neighbour
with largest degree,i.e. the neighbour that has itself the
largest number of neighbours. When several neighbours
attain this maximum, the node selects the one with largest
ID. The selection criterion is thus said to be (degree, ID). A
node selecting itself as its preferred neighbour corresponds
to it being a local maximum with respect to the selection
criterion. Such a local maximum is therefore the root of its
region tree.

In the following subsections we gather some mathe-
matical results about the density of trees and the proportion
of gateway nodes via the analysis of local maxima
distribution with various selection criteria (degree and ID).

4.1.1 Density of Trees

In this section we evaluate the tree density, which corre-
sponds to the distribution of local maxima for the selection
criterion. As mentioned earlier, there are two distinct crite-
ria: ID and degree. Note that the local maxima distributions
vary depending on the criterion.



Theorem 1 The probability that a node is a local maxi-
mum for the ID selection criterion is1ν + O(e−ν) in the
case of the unit disk graph model in dimension 1.

Proof - Without loss of generality we can assume that IDs
are uniformly distributed in the interval(0, 1). The proba-
bility that a node with ID equal tox is a local maximum is
exp(−(1 − x)ν). Therefore the unconditional probability
that a node is local maximum is

∫ 1

0
exp(−(1 − x)ν)dx =

1−e−ν

ν . This is exponentially close to1/ν. From this result
we can say that the density of trees is in this case close to 1
per neighbourhood area, in other words the average interval
covered by a tree is 1.

Theorem 2 The probability that a node is a local maxi-
mum for the degree selection criterion is equivalent to2

πν
whenν increases.

A corollary of the previous theorem is that the average den-
sity trees in this case is close to2π per neighbourhood area,
which is less than with the ID criterion.

Lemma 1 Right maxima and left maxima are independent
events.

Proof - Let N(x) be the number of neighbours of a node at
locationx on the segment map. LetI([a, b]) be the number
of nodes contained by interval[a, b]. ThereforeN(x) =
I([x − 1, x + 1]). Let δ(x) = N(x) − N(0). If x ∈ [0, 1],
then we have∆(x) = I([−1,−1 + x]) − I([1, 1 + x]). If
x ∈ [−1, 0] then∆(x) = I([−1 + x,−1]) − I([1 + x, 1]).
Since the intervals don’t overlap then∆(x) and∆(y) are
independent whenx andy have different signs.

Theorem 3 The probability that a node is a right maxima

is equivalent to
√

2
πν whenν increases.

Lemma 2 Let P (ν) be the probability that a node is a
right maxima, we have

∫

∞

0

P (ν)e−ωνdν =

√

(1 + ω)2 − 1

ω
− 2. (1)

Proof - Having∆(x) ≥ 0 for all x ∈ [0, 1] is equivalent
to an M/M/1 system with service rate and arrival rate equal
to 1, starting with one customer, and that does not empty
its queue during a time interval ofν/2. Let f(ω) be the
Laplace transform of the distribution of the time T needed
to empty the queuef(ω) = E[e−ωT ]. Let θ be the time
needed for the exit of the first customer, we have from clas-
sic queuing theory:

T = θ + Nθ × T (2)

whereNθ is a Poisson random variable of meanθ andN ×
T means the addition ofN independent copies ofT (N
i.i.d. variables distributed asT ). Therefore:

f(ω) =

∫

∞

0

P (θ = x)e−xωexf(ω)−xdx (3)

=
1

2 + ω − f(ω)
. (4)

Lemma 3 QuantityP (ν) ∼
√

2
πν .

Proof - We have:

P (ν) =
1

2iπ

∫ +i∞

−i∞

(1 − f(ω))

ω
eων/2dω. (5)

Using the fact thatf(ω) ∼
√

ω + O(ω) whenω → 0 we
have from Flajolet and Odlyzko [7]:

1

2iπ

∫ +i∞

−i∞

(1 − f(ω))

ω
eωydω ∼

Γ(1/2)

π
y−1/2 . (6)

4.1.2 Density of Gateway Nodes

In this section we evaluate the density of gateway nodes
in a forest of trees formed with the ID selection criterion.
As seen in the previous section, this criterion yields more
trees and likely, more gateways nodes than the (degree, ID)
selection criteria used in gateway flooding. However, we
believe that this gives a good idea of what kind of density
we can expect, and we confirm this with the simulations in
section 5.

Once again, without loss of generality we will assume
that the identifiers of the nodes are randomly uniformly
distributed between 0 and 1.

Theorem 4 When the preferred neighbour is the one with
highest ID, the probability that a randomly picked node is
a gateway node is larger than23 +O( 1

ν ), when the network
follows the unit disk model in dimension 1.

Proof - If a node is not root for its tree, then its preferred
node is either in the left part of its neighbourhood or in the
right part. Let us call a node with preferred neighbour on
its left, a leftist node. Conversely, we will call a node with
preferred neighbour on its right, a rightist node. A centrist
node, which is a node that is both leftist and rightist, is
then root for its tree. Note that when a node is leftist, then
the root of its tree is in the left part of the network, but not
necessarily in its neighbourhood.

A sufficient condition for a leftist node to be a gate-
way node is to have a rightist node in the right part of
its neighbourhood. Indeed, if all the right neighbours
belonged to the same tree, then they would all be leftist.

Let us consider a random nodeA at a positiony on
the network map. We split the interval[y − 1, y + 1] into
four parts of equal size:I1 = [y−1, y− 1

2 ], I2 = [y− 1
2 , y],

I3 = [y, y + 1
2 ], I4 = [y + 1

2 , y + 1]. Let xk be the greatest
identifier in the intervalIk.

Neglecting the cases when these numbers are not all
different (with probabilityO( 1

ν )) we consider the order of
the sequence(x1, x2, x3, x4). If x2 > x3 then the node
A is leftist. If x3 < x4 then the rightmost node which



has a position smallest toy + 1
2 is rightist, excepted if it

is not neighbour of the node that has identifierx4, which
occurs with probabilityO( 1

ν ). Therefore all orders such
that eitherx2 > x3 < x4 (right case) orx1 > x2 < x3

(left case) imply with probability1 − O( 1
ν ) that the node

A is a gateway node.

Let sk be the order ofxk in sequence(x1, x2, x3, x4).
If xk is the largest number thensk = 1, if it is the
second largest number thensk = 2, etc. We callT the
order tuple(s1, s2, s3, s4). If x1 > x2 > x3 > x4 then
T = (1, 2, 3, 4). The tuples that correspond to the right
case are:

(1,2,4,3), (1,3,4,2)
(2,1,4,3), (2,3,4,1)
(3,1,4,2), (3,2,4,1)
(4,1,3,2), (4,2,3,1)

The left case is symmetric, therefore there are16 order tu-
ples that lead nodeA to be a gateway node with probability
1 − O( 1

ν ). Given that there are4! = 24 order tuples and
that they are all equiprobable, the nodeA is a gateway node
with probability greater than23 + O( 1

ν ).

4.2 MPR Flooding

Conversely, our goal is now to find the probability for a ran-
dom node to be used as a multi-point relay during a flood-
ing.

Theorem 5 The probability for a random node to retrans-
mit during an MPR flooding is1ν + O( 1

ν2 ), when the net-
work follows the unit disk model in dimension 1.

In the linear map case, the number of MPR per any given
node is exactly 2: one at each end of its neighbourhood
segment, right and left. When a flooding occurs, a packet is
retransmitted via MPR on the right side and on the left side
of the segment: retransmissions jump from one MPR to
another MPR, with hops of length equal to the radio range.
Therefore, the number of retransmitters that participate in
an MPR flooding sums up to exactly 2 nodes per neighbour
segment length (i.e. radio range).

5 Performance Evaluation via Simulation

In parallel with the theoretical modelling, we have also car-
ried out simulations to evaluate the density of broadcast re-
transmitters in the case of MPR flooding on the one hand
and gateway flooding on the other hand. The simulations
were carried out in C++ and did not take into account the
actual exchange of protocol messages between nodes, but
rather, were simply based on the unit disk model as the
analysis in Section 4. However, we have simulated both
the road map case (nodes randomly spread on one dimen-
sion) and the planar map case (nodes randomly spread on

two dimensions), in view to validate our theoretical results
for the road map, as well as further, to extrapolate to the
two-dimensional case. The figures we obtained come from
averages over several hundred random distributions of the
nodes.

5.1 Gateway Simulations

The simulations for the road map confirm the predictions
of the mathematical models of section 4.1. Roughly, when
the density is such that on average, a given node has more
than a dozen neighbours, approximately half of the nodes
are retransmitting broadcasts in the end,i.e. counting
retransmissions inside the trees (the internal nodes) and
retransmissionsbetweentrees (the gateway nodes). This
is shown in Figure 1, where the total percentage of
retransmitters as well as the percentage of gateway nodes
alone (dashed) are plotted.

Though we didn’t prove anything mathematically in
the two dimensions, we can anticipate intuitively that it
will turn out to be worse than with one dimension, in
terms of number of retransmissions. The simulations for
the planar map are consistent with this intuition as they
show that when the density is such that on average, a given
node has a dozen neighbours, approximately 2/3 of the
nodes participate in the broadcast retransmissions. When
the density is higher, up to 3/4 of the nodes turn out to be
retransmitters. Once again, as with only one dimension,
the vast majority of these are gateway nodes as shown in
Figure 2, where the total percentage of retransmitters as
well as the percentage of gateway nodes alone are plotted.

It is obvious that retransmissions within a tree are
pretty much optimized, as the protocol specifically de-
signed it to be. The simulations confirm this point, with
very reasonable numbers for internal retransmitters. On
the other hand, as we have already stated, the number of
gateway retransmitters between trees is very substantial
and this because not at all optimized in the gateway
flooding mechanism specifications. There is indeed a
vacuum here, and the protocol would very much benefit
from further specifications on this point, if possible.

5.2 MPR Simulations

The simulations for the road map confirm the mathematical
model of section 4.2. The percentage of retransmitters
decreases when the density increases in a way that is
roughly proportional to1/ν. This is shown in Figure 3.

Once again, we didn’t prove anything mathematically
for the planar map, but we anticipate that the behaviour
will roughly hold. Indeed, the simulations for the planar
map show that the highest percentage of retransmitters
is about 45%, which coincides with a density of a dozen
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Figure 2. Percentage of gateway retransmitters in the two-
dimensional case

neighbours. On the other hand, for higher densities, the
model seems to be confirmed with once again a percentage
of retransmitters that drastically decreases when the
density increases, and such in a hyperbolic fashion. This is
shown in Figure 4.

It is to note that the good simulation results obtained
here with MPR diffusion conform with the actual live
testing of multimedia broadcasting over OLSR that we
have carried out.

6 Conclusions

In this paper we have analysed and compared two recently
proposed flooding algorithms (i.e. MPR flooding and gate-
way flooding), in view to improve the usual broadcast tech-
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Figure 3. Percentage of MPR retransmitters in the one-
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Figure 4. Percentage of MPR retransmitters in the two-
dimensional case

nique - like OSPF’s - that has been in use for years on wired
networks. The flooding algorithm is an essential part of
most routing protocols and is also used by various higher
level applications, such as multimedia diffusion. However,
the usual mechanism is too brutal to work efficiently in an
ad-hoc environment, where the bandwidth is limited and in-
terference between users is a big issue when a lot of retrans-
missions occur. We have shown via mathematical anal-
ysis and simulations how well these techniques improve
flooding performances. Our results namely show that MPR
flooding presents a much better optimization than gateway
nodes flooding, and we have also pointed out why the latter
is not as fully optimized as it may be.
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