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Towards connected filtering based on
component-graphs?

Benoı̂t Naegel1 and Nicolas Passat2
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2 CReSTIC, EA 3804, Université de Reims, France

Abstract. In recent works, a new notion of component-graph has been intro-
duced to extend the data structure of component-tree –and the induced antiexten-
sive filtering methodologies– from grey-level images to multivalued ones. In this
article, we briefly recall the main structural key-points of component-graphs, and
we present the initial algorithmic results that open the way to the actual develop-
ment of component-graph-based antiextensive filtering procedures.
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1 Introduction

Among the connected filtering approaches, that aim to process images without al-
tering their contours, the component-tree [17] has received a specific attention. The
component-tree is a data structure that models the characteristics of grey-level images
by considering their successive binary level-sets. It is well-suited for processing grey-
level images, based on hypotheses related to the topology (connectedness) and the spe-
cific intensity (local extrema) of structures of interest. In particular, it has been involved
in several approaches (see, e.g., [9, 19]), especially for filtering and segmentation.

The success of the component-tree in the field of grey-level image processing, to-
gether with the increasing need for applications involving multivalued images, motivate
its extension to the case of such images, which do not take their values in totally ordered
sets, but in any (possibly partially) ordered ones.

After a preliminary study of the relations between component-trees and multivalued
images [11], an extension of the component-tree to a more general notion of component-
graph has been initiated in [13]. A study of the structural properties of these component-
graphs has been proposed in [14], and we now consider the algorithmic key-points that
will lead to the effective development of antiextensive filtering procedures.

This article is organised as follows. Sec. 2 briefly recalls some previous works on
multivalued image handling in mathematical morphology. Sec. 3 describes the way to
extend the notion of component-tree into a compliant notion of component-graph. The
next sections explain how to build (Sec. 4), prune (Sec. 5) and recover a filtered multi-
valued image (Sec. 6) from a component-graph. The article is concluded by an illustra-
tive example and perspective works, in Secs. 7 and 8, respectively.
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2 Previous works

2.1 Mathematical morphology and multivalued images

The extension of mathematical morphology –initially defined on binary, and then on
grey-level images [8]– to multivalued (e.g., colour, label, multi- and hyperspectral, etc.)
images is an important task, motivated by potential applications in multiple areas. Sev-
eral contributions have been devoted to this specific purpose. A whole state of the art is
beyond the scope of this article, and the reader is referred to [3] for a recent survey.

By opposition to the grey-level case, the spaces in which such multivalued images
take their values are not canonically equipped with total orders, but with partial ones.
Several strategies have been considered to deal with this issue. Except in few works
(see, e.g., [15]), the proposed attempts generally consist of decomposing these value
spaces into several totally ordered ones (marginal processing), or to define ad hoc total
order relations on them (vectorial processing), with several variants (see, e.g., [7, 2, 20]).

These approaches embed multivalued images into simpler frameworks, which au-
thorise to process them similarly to grey-level ones, reducing in particular the com-
plexity induced by partial orders. However, they also potentially bias the information
intrinsically carried by these –more complex but richer– partially ordered value spaces.

2.2 The case of tree-based approaches

In the specific field of approaches based on tree structures (or more generally on par-
tition hierarchies) the difficulties raised by multivalued images vary according to the
proximity degree that exists between the data structure and the value space.

In the case of trees, or partition hierarchies, whose construction is not directly in-
duced by the value space, and more precisely by its associated order (e.g., partition trees
[16], hierarchical watershed [6]), the use of intermediate functions (e.g., a gradient for
watershed, or more complex metrics for partition trees [18]) enables us to “hide” the
complexity of the space, but necessarily induces a bias in the obtained data structure.

In the case of trees whose construction directly derives from the value space –and its
order–, passing from total orders to partial ones leads to structural and algorithmic open
issues. The main problems are caused by the fact that such data structures inherit from
the structural complexity of the considered orders, and actually increase this complexity
via their hierarchical structure. Among such kinds of trees, we find the component tree
[17] and its autodual version, the tree of shapes [10]. Research about the extension to
color images of the tree of shapes are currently developed by other authors [5].

In this article, we consider the component tree, and we investigate its extension to a
more general hierarchical data structure that is no longer a tree, namely, the component-
graph. In particular, we focus on the algorithmic consequences of this last property.

3 From component-trees to component-graphs

We now recall basic notions related to component-trees (Sec. 3.2). Then we introduce
the recently proposed notion of component-graph [13, 14] (Sec. 3.3). Due to space lim-
itations, we present the minimal set of definitions and properties that are required to
make this article self-contained. A more complete description may be found in [14].



3.1 Definitions and hypotheses

Let Ω be a nonempty finite set equipped with a given connectivity. In particular, for any
X ⊆ Ω, the set of the connected components of X is noted C[X].

Let V be a nonempty finite set equipped with an order relation 6. We assume that
(V,6) admits a minimum, noted ⊥.

Let I be an image defined onΩ and taking its values in V , i.e., a function I : Ω→ V .
Without loss of generality, we can assume that I−1({⊥}) = {x ∈ Ω | I(x) = ⊥} , ∅.

For any v ∈ V , let λv : VΩ → 2Ω be the thresholding function at value v, defined for
any image I, by λv(I) = {x ∈ Ω | v 6 I(x)}.

3.2 Component-trees

Here, we assume that 6 is a total order. In other words, the image I is a grey-level image.
Let us define Ψ as the set of all the connected components obtained from all the

thresholdings of I, that is
Ψ =

⋃
v∈V

C[λv(I)] (1)

Definition 1 (Component-tree [17]) The component-tree of I is the Hasse diagram T
of the partially ordered set (Ψ,⊆).

The component-tree has several virtues. Firstly, it can be built quite efficiently [17,
12, 4]. Secondly, it models the associated image in a lossless way. Indeed, we have

I =

≤∨
v∈V

≤∨
X∈C[λv(I)]

C(X,v) (2)

where ≤ is the pointwise order relation on VΩ induced by 6, and C(X,v) : Ω → V is the
cylinder function defined, for any x ∈ Ω by C(X,v)(x) = v if x ∈ X, and ⊥ otherwise.
Thirdly, any subset Ψ̂ ⊆ Ψ leads –by “substituting Ψ̂ to Ψ” in Eq. (2)– to a well-defined
image Î : Ω→ V that verifies Î ≤ I.

From these properties, an antiextensive filtering framework, based on component-
trees, has been developed [17, 9]. This framework, illustrated in Diagram (3), consists
of three successive steps:

(i) the construction of the component-tree T associated to I;
(ii) the pruning of T, based on an ad hoc criterion and a pruning policy, leading to a

reduced component-tree T̂, corresponding to the Hasse diagram of (Ψ̂ ,⊆); and
(iii) the reconstruction of the filtered image Î ≤ I induced by T̂.

I
Filtering
−−−−−−−−→ Î ≤ I

(i)

y x(iii)

T
(ii)

−−−−−→ T̂

(3)

The main purpose of this article is to provide algorithmic solutions (Secs. 4–6)
for making this antiextensive filtering framework tractable in the case of component-
graphs, that extend the component-trees to multivalued images. Before discussing such
algorithmic issues, let us first introduce briefly this notion of component-graph.



3.3 Component-graphs

We now relax the hypothesis of totality on 6, which can then be either a total or a
partial order. In Eq. (2), any cylinder function C(X,v) is generated by a couple (X, v)
where X ∈ C[λv(I)] is a connected component of the thresholded image λv(I) ⊆ Ω
of I at value v. In the sequel, (X, v) will be called a valued connected component. In
particular, we define the set Θ of all the valued connected components of I as follows

Θ =
⋃
v∈V

C[λv(I)] × {v} (4)

From the order relation 6 defined on V , and the inclusion relation ⊆ on 2Ω, we then
define the order relation E on Θ as follows

(X1, v1) E (X2, v2)⇐⇒ (X1 ⊂ X2) ∨ ((X1 = X2) ∧ (v2 6 v1)) (5)

In first approximation, the component-graph G of I is the Hasse diagram of the
ordered set (Θ,E). However, three variants of component-graphs can relevantly be con-
sidered by defining two other subsets Θ̈ ⊆ Θ̇ ⊆ Θ of valued connected components

Θ̇ =
⋃
X∈Ψ

{X} ×
6h
{v | X ∈ C[λv(I)]} (6)

Θ̈ =
{
(Ω,⊥)

}
∪

⋂{
Θ′ ⊆ Θ

∣∣∣ I =

≤∨
K∈Θ′

CK

}
(7)

where
`

denotes the set of the maximal elements. Broadly speaking, Θ gathers all
the valued connected components induced by I; Θ̇ gathers the valued connected com-
ponents of maximal values for any connected components; and Θ̈ gathers the valued
connected components associated to cylinders functions which are sup-generators of I.
We note J (resp. J̇, resp. J̈) the cover relation associated to the order relation E on Θ
(resp. to the restriction of E to Θ̇, resp. to the restriction of E to Θ̈). We then have the
following definition for the three variants of component-graphs.

Definition 2 (Component-graph(s) [14]) TheΘ- (resp. Θ̇-, resp. Θ̈-)component-graph
of I is the Hasse diagramG = (Θ,J) (resp. Ġ = (Θ̇, J̇), resp. G̈ = (Θ̈, J̈)) of the ordered
set (Θ,E) (resp. (Θ̇,E), resp. (Θ̈,E)). (The term Θ̊-component-graph and the notation
G̊ = (Θ̊, J̊) will sometimes be used for the three kinds of component-graphs.)

The component-graph is a relevant extension of the component-tree, since (i) both
notions are compliant for totally ordered sets (V,6), and (ii) the component-graph satis-
fies the image (de)composition model associated to component-tree, defined in Eq. (2).

Property 1 ([14]) If 6 is a total order, then two of the three variants of component-
graphs, namely Ġ and G̈, are isomorphic to the component-tree T.

Property 2 ([14]) For the three variants of component-graphs, we have

I =

≤∨
v∈V

≤∨
X∈C[λv(I)]

C(X,v) =

≤∨
K∈Θ̊

CK (8)



4 Building the (Θ̈-)component-graph

Efficient algorithms [17, 12, 4] have been proposed to build the component-tree, leading
to algorithmic complexities which are nearly linear with respect to the image size. Such
a linear bound is hard to reach in the case of multivalued images, in particular due to
the structural properties of 6, whose Hasse diagram is not necessarily a chain.

In the sequel, we specifically deal with the construction of the Θ̈-component-graph.
Our motivation is twofold. Firstly, the Θ̈-component-graph is the only of the three vari-
ants that guarantees to avoid the appearance of new values in the filtered images, since
any valued connected component of Θ̈ actually contributes to the formation of the image
I (see Eq. (7)). Secondly, due to the increasing cardinality of Θ̈-, Θ̇- and Θ, the algo-
rithmic process that is considered for building the Θ̈-component-graph may be further
used as a basis to develop (more complex) algorithms for building the other variants.

4.1 Algorithmics

Algorithm 1 describes the main procedure to compute the Θ̈-component-graph. The col-
lection of valued connected components (the nodes of the graph) is maintained using
Tarjan’s union-find algorithm, based on the makeSet, find and link operations, sim-
ilarly to [12]. The array graph stores, for each canonical element p , the set of fathers
of the node of p. To avoid to insert the same link twice, each cell of graph is managed
as a set data structure. The pixels are processed by decreasing values, using a priority
queue pq. More precisely (since the values are not totally ordered) a pixel of value v is
processed only if all the pixels of values v′ > v have been processed.

A key point of the algorithm relies on the lowestNodes function. This function
returns the set of minimal ancestors (the lowest nodes which are not comparable) of
a node given a value. This function plays the same role as the array lowestNode in
the component-tree computation, in Najman and Couprie’s algorithm [12]. However, in
the case of the component-tree, the lowestNode array can be maintained efficiently:
by contrast, in the case of the component-graph, the lowestNodes function must be
recomputed each time since its result depends on the value given in parameters.

4.2 Example

We illustrate the steps of the algorithm on a toy example. Fig. 1(a) depicts the Hasse
diagram of the partially ordered set (V,6) used by the image I (Fig. 1(b)). Successive
threshold sets of I are depicted on Fig. 1(c–g).

Let us suppose that we have processed the pixels3 having values f , d and b. The
current computed graph is depicted on Fig. 2(a). The level c is processed, and the pixel
4 is extracted from the priority queue. It has four processed neighbors: {2, 3, 5, 6}. We
observe that 4 and 2 are not comparable, while I(4) < I(3); then 4 is an ancestor of 3.
The result of the function lowestNodes(3,c) is the set {3}, so the pixel 4 is a direct
father of 3. It is inserted in the set graph[3]. Similarly, the pixel 4 is a direct father of

3 There is no pixel having the value e; then this value is not present in the Θ̈-component-graph.



Algorithm 1: Computation of the Θ̈-component-graph
Data: image I : Ω→ V
Result: Θ̈-component-graph G̈ (array [0...N − 1] storing, for each canonical element, the

set of its “fathers”)
foreach p ∈ Ω do
makeSet(p);
pq.put(p,I(p));

while pq , ∅ do
p← pq.front();
foreach already processed neighbors q of p do

ad jNode←find(q);
if I(ad jNode) = I(p) ∧ ad jNode , p then
link(ad jNode,p); // p is the new canonical element of the
node

else if I(ad jNode) < I(p) then
nodesList← lowestNodes(ad jNode,I(p));
foreach n ∈ nodesList do

if I(p) < I(n) then graph[n].insert(p);
else link(n,p); // p is the new canonical element of the
node

Function lowestNodes(node,value)
Data: active (array [0...N − 1] initialized to true)
Data: lowestNode (array [0...N − 1] initialized to true)
Result: nodesList: lowest ancestors of node having a value superior or equal to value
fifo.push(node);
while fifo , ∅ do

p←fifo.get();
foreach father f ∈ graph[p] do

q← find( f);
if I(q) > v∧ active[q] then
fifo.push(q);
active[q]← f alse;

if active[q]= f alse then lowestNode[p]= f alse;

if lowestNode[p]= true then nodesList.add(p);
return nodesList

5 (see Fig. 2(b)). The level a is now processed. The point 0 is extracted. It has two pro-
cessed neighbors of higher value: {3, 4}. The result of the function lowestNodes(3,a)
is the set {4, 6}: 0 is then a direct father of these points (which are canonical elements).
The result of the function lowestNodes(4,a) is the set {0} (since 0 is now a father
of 4 and 6), i.e., the current visited point: nothing has to be done. The point 1 is pro-
cessed and compared to its five neighbors {0, 2, 3, 4, 5}. We have I(1) = I(0), then it
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Fig. 2. Θ̈-component-graph computation: illustration of some steps.

becomes the canonical element of the (partial) node {0, 1}. We have I(1) < I(2) and
lowestNodes(2,a)= {2}, consequently 1 becomes a father of 2. The other compar-
isons do not change the graph, since lowestNodes(i,a)= {1} for i = 3, 4, 5 (see
Fig. 2(c)). Finally, the points 7 and 8 are processed. When 7 is compared to any of
its neighbors of greater value, the function lowestNodes returns the set {1}. Since 7
and 1 have the same value but belong to different nodes, 7 and 1 are linked to the same
node. At last, 8 is linked to 7 and becomes the new canonical element of the node
{0, 1, 7, 8}. The final (Θ̈)-component-graph is depicted in Fig. 2(d).

5 Pruning the component-graph

Similarly to the antiextensive filtering framework based on component-trees, filtering
with component-graphs requires to define a subset Θ̂ ⊆ Θ̊. This choice is based on (i)
a selection (Boolean) criterion ρ on Θ̊, and (ii) a pruning policy which determines, to-
gether with ρ, which parts of the component-graph should be preserved.

Pruning policies If ρ is a non-increasing criterion, then various pruning policies can be



considered. For component-trees, several classical policies have been defined (for ex-
ample min, direct, max, subtractive, Viterbi [17, 21]). In the case of component-graphs,
the direct and max policies can be directly transposed, while the min one leads to two
variants, min1 and min2, that can be axiomatically (and recursively) defined by

ρ(K1) =⇒
(
(∀K2 I K1,K2 ∈ Θ̂min1

)⇒ K1 ∈ Θ̂min1

)
(9)

ρ(K1) =⇒
(
(∃K2 I K1,K2 ∈ Θ̂min2

)⇒ K1 ∈ Θ̂min2

)
(10)

These four policies lead to increasing results, i.e., for a same criterion ρ, we have

Θ̂min1
⊆ Θ̂min2

⊆ Θ̂direct ⊆ Θ̂max (11)

Moreover, in the case where (Θ̊, J̊) has a tree structure, the min1 and min2 policies are
equivalent. In this case, which happens in particular when (V,6) is totally ordered (i.e.,
for grey-level images), we retrieve the standard min policy defined for component-trees.

Algorithmic remarks From their very definition, the min1 and min2 policies require to
define Θ̂ in a top-down fashion, i.e., by starting from (Ω,⊥). By contrast, the max policy
requires a bottom-up strategy. The direct policy –which can be applied indifferently in
both directions– may be more relevantly involved in a bottom-up strategy.

The min1 and max pruning The pruning of a component-graph based on the min1
and max policies is globally straightforward, since the edges of the pruned component-
graph constitute a subset of the edges of the initial component-graph. This property
leads in particular to pruning procedures whose algorithmic complexity is O(|Θ̊| + |J̊|).

The min2 and direct pruning In the case where (Θ̊, J̊) is not a tree, by opposition
to the previous two policies, the min2 and direct ones do not imply that Ĵ ⊆ J̊. Indeed,
when a element K ∈ Θ̊ is not preserved in Θ̂, each pair of edges of the form K′ J̊ K J̊ K′′

may lead to an edge K′ Ĵ K′′. However, the existence of such an edge in (Θ̂, Ĵ) is con-
ditioned by the non-existence of a series of edges K′ Ĵ K1 Ĵ . . . Ĵ Kt Ĵ K′′. Based on
these considerations, a relevant approach consists of first computing (Θ̂,J), where J is
a superset of Ĵ, containing redundant edges which may be obtained by transitivity from
the edges of Ĵ. Such an approach, that presents an algorithmic complexity O(|E|), may
then be followed by a standard transitive reduction procedure [1] to recover Ĵ from J.

6 Recovering a filtered image from a pruned component-graph

Once Θ̂ is defined, the filtered image Î : Ω → V should be obtained from the cylinder
functions {CK | K ∈ Θ̂}. However, the expression of Î via Eq. (8) (by substituting Î to
I, and Θ̂ to Θ̊) is not necessarily well-defined. Indeed, there is no guarantee that for any
x ∈ Ω, the set {CK(x) | K ∈ Θ̂} ⊆ V admits a maximum (or even a supremum) for 6.

In such conditions, it is then necessary to define a reconstructed image Ĩ : Ω → V
formed by a set Θ̃ being “as similar as possible” to Θ̂. In this first study, we chose to
consider the sets Θ̃ leading to reconstructed images Ĩ being either greater or lower than
the putative image Î (w.r.t. ≤). To this end, let us first define the following notions.



6.1 Well-defined sets of valued connected components

We say that Θ′ ⊆ Θ̊ is well-defined if
∨≤

K∈Θ′ CK exists, i.e., if for any x ∈ Ω, the set
{CK(x) | K ∈ Θ′} admits a maximum for 6. We note Ξ̊ ⊆ 2Θ̊ the set of all the well-
defined subsets of Θ̊, and for any Θ′ ∈ Ξ̊ we note IΘ′ =

∨≤
K∈Θ′ CK , namely the image

reconstructed from Θ′. Let ∼ be the equivalence relation on Ξ̊ defined by

(Θ′ ∼ Θ′′)⇐⇒ (IΘ′ = IΘ′′ ) (12)

that gathers the well-defined sets of valued connected components which lead to similar
images. Let v by the (partial) relation order on the quotient set Ξ̊/∼, defined by

([Θ′]∼ v [Θ′′]∼)⇐⇒ (IΘ′ ≤ IΘ′′ ) (13)

that embeds the relation ≤ on images into the space of the (sets of) generating valued
connected components. Given a subset of valued connected components Θ̂ ⊆ Θ̊, we set

Ξ̊+(Θ̂) = {Θ′ ∈ Ξ̊ | ∀K ∈ Θ̂,CK ≤ IΘ′ } (14)
Ξ̊−(Θ̂) = {Θ′ ∈ Ξ̊ | ∀K ∈ Θ̂, IΘ′ ≤ CK} (15)

Since our purpose is to define a result image Ĩ being “as close as possible” to the
putative image Î, the choice of the solution set of valued connected components has to
be made among the minimal (resp. maximal) equivalence classes [Θ′]∼, associated to
the sets Θ′ of Ξ̊+(Θ̂) (resp. Ξ̊−(Θ̂)), for v. More precisely, in order to respect both the
content of the image I, and the nature of the component-graph (G, Ġ, or G̈), the sets Θ′

have actually to be considered within Ξ̊−(Θ̂) ∩ 2Θ̂ (resp. Ξ̊+(Θ̂) ∩ 2Θ̊).
Note that in the case where a solution Θ̃+ is determined among Ξ̊+(Θ̂) (i.e., when Ĩ

is greater than the putative image Î), we do not necessarily have Θ̂ ⊆ Θ̃+. However, we
do have (Θ̂∪Θ̃+) ∈ Ξ̊+(Θ̂), and (Θ̂∪Θ̃+) ∼ Θ̃+. Broadly speaking (an equivalent version
of) Θ̃+ can be defined from Θ̂ by relevantly adding new valued connected components.

Under such assumptions, we have in particular

[∅]∼ = [{(Ω,⊥)}]∼ v [Θ̃−]∼ v [Θ̂]∼ v [Θ̂ ∪ Θ̃+]∼ = [Θ̃+]∼ v [Θ̊]∼ (16)

The pruned set Θ̂, obtained from Θ̊, leads to a partition of Ω into two sets: Ωw(Θ̂)
that contains the points x such that {CK(x) | K ∈ Θ̂} admits a maximum for 6, andΩw(Θ̂)
that contains the points x such that {CK(x) | K ∈ Θ̂} has several maximal elements for
6, i.e., where Î is not well-defined. We now discuss the way to deal with Ωw(Θ̂).

6.2 Algorithmics

Let us first assume that 6 is a lower piecewise total order (LPTO), i.e., that ({v′ ∈ V |
v′ 6 v},6) is totally ordered for any v ∈ V . In such conditions, a component-graph has
a tree structure [14], and we have the following property.

Property 3 If 6 is a LPTO, we have Ξ̊ = 2Θ̊ and [Θ̂]∼ =
∨v[Ξ̊−(Θ̂)]∼ =

∧v[Ξ̊+(Θ̂)]∼.

In other words, Ωw(Θ̂) = ∅, and Î = Ĩ is then straightforwardly obtained from Θ̂ by
applying Eq. (8). In the sequel, we now suppose that 6 is no longer a LPTO.



Reconstruction from Ξ̊+(Θ̂) Let us first assume that 6 is a lower piecewise lattice
(LPL), i.e., that ({v′ ∈ V | v′ 6 v},6) is a lattice for any v ∈ V . In such conditions, we
have the following property for the Θ and the Θ̇-component-graphs.

Property 4 If 6 is a LPL, then
∧v[Ξ+(Θ̂)]∼ and

∧v[Ξ̇+(Θ̂)]∼ exist. Moreover, in the
case of the Θ-component-graph, Ĩ = IΘ̃+ is directly defined from Θ̂, by applying Eq. (8).

In other words, Ωw(Θ̂) , ∅ in general, but the (unique) solution Ĩ can be straightfor-
wardly obtained from Θ̃+ in the case of G, and from Θ̃+ and Ġ in the case of Ġ.

For G̈ (and for any G̊when 6 is not a LPL), the definition of a solution Ĩ is no longer
straightforward. Such a solution Ĩ can be obtained by defining Θ̃+ by the following (non-
deterministic) process. (For the sake of concision in the next property, we note the set
of valued connected components of Θ′ that are in conflict at a given point x ∈ Ωw(Θ′)
as Θ′x = {(K′, v′) ∈ Θ′ | (x ∈ K′) ∧ (v′ ∈

`6
{v′′ | ((K′′, v′′) ∈ Θ′) ∧ (x ∈ K′′)})}.)

Property 5 A set Θ̃+ can be defined as F +(Θ̂) where F + : 2Θ̊ → 2Θ̊ is the extensive
function (recursively) defined by

F +(Θ′) =

{
Θ′ if Ωw(Θ′) = ∅

F (Θ′ ∪ {(K, v)}) if Ωw(Θ′) , ∅ (17)

where x ∈ argy min |Θ′y|, and (K, v) ∈
aE
{(K′, v′) | (∀(K′′, v′′), (K′′, v′′) E (K′, v′))∧(x ∈

K′)}

It has to be noted that in the case of G̈, this process is deterministic, and the solution
Ĩ is then unique. However, this is not the case for G and Ġ.

Reconstruction from Ξ̊−(Θ̂) When Θ̃− is determined among Ξ̊−(Θ̂), the solution Ĩ
is not unique in general, independently from hypotheses about the kind of component-
graph (G, Ġ, G̈), and the kind of order 6 (except in the case of LPTO). Indeed, a solution
Ĩ can be obtained by defining Θ̃− by the following (non-deterministic) process.

Property 6 A set Θ̃− can be defined as F −(Θ̂) where F − : 2Θ̂ → 2Θ̂ is the antiextensive
function (recursively) defined by

F −(Θ′) =

{
Θ′ if Ωw(Θ′) = ∅

F −(Θ′ \ X) if Ωw(Θ′) , ∅ (18)

where X = {(K′, v′) ∈ Θ′ | (K′ ∩ K ∩ Ωw(Θ′) , ∅) ∧ (v′ 
 v)} and (K, v) ∈ Θ′ verifies
K ∩ Ωw(Θ′) , ∅ and v ∈

`6
{v′ | ((K′, v′) ∈ Θ′) ∧ (K′ ∩ Ωw(Θ′) , ∅)}.

7 An application example

In this section, we illustrate, on a simple application case, the interest of component-
graphs for multimodal imaging. The proposed example involves both PET (Positron
Emission Tomography) and standard CT (Computed Tomography) X-ray data. The CT
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Fig. 3. (a) CT image. (b) PET image. (c) Detected components. (Image courtesy of D. Papathanas-
siou, Institut Jean-Godinot, France.)

image provides homogeneous zones that characterise specific tissues and organs. The
PET image provides local intensity minima where tumours are active, but with a spatial
accuracy that is lower that CT information. Consequently, by coupling both grey-level
value spaces into a single value space V , it may be possible to extract some valued
connected components that gather the spatial accuracy of CT images and the spectral
accuracy of PET ones, thus leading to accurate localisation of tumors.

In the considered example (Fig 3(a,b)), the resolution of the image is 1318 × 864
and V = [0, 255] × [0, 255]. Since the purpose is to extract bright objects in one image
and dark objects in the other one, we consider the partial order relation 6 defined by:
(v1, v2) 6 (w1,w2)⇔ (v1 ≤ w1)∧ (v2 ≥ w2). The graph G̈ is computed4 and we consider
for each node the attributes “area” and “height”5. Graph pruning is performed by using
a non-increasing criterion based on (minimal and maximal) thresholds on the attributes.
The reconstruction is performed “from bottom” based on the set Ξ̈−(Θ̂), therefore en-
suring the removal of all non-desired components. Fig. 3(c) shows the detected areas.

One may notice that using the same strategy on the component-tree of the CT-scan
image is not sufficient to extract the component, while using only the PET image pre-
vents the extraction of an accurate contour.

8 Conclusion

This article has proposed first algorithmic results that may lead to connected filtering
methodologies relying on component-graphs, and thus handling multivalued images
(and, more generally, any valued graph structures [22]) in a “component-tree” fashion.
Some issues remain however to be considered on the way toward such methodologies.

From an algorithmic point of view, solutions to (smartly) define both Θ- and Θ̇-
component-graphs still have to be found. Distributed strategies [21] may provide some
solutions to deal with these issues. Moreover, the reduction of the algorithmic complex-
ity of filtered image reconstruction(s), in the most general cases, also has to be carefully
considered. To this end, discrete optimisation strategies may be investigated.

4 The graph computation takes 50 s on an Intel Core-i7 for 130 000 nodes and 800 000 edges.
5 Maximal distance (L1-norm) between the value of the node and the value of all its descendants.
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