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Homogenization of reactive flows in porous media
and competition between bulk and surface diffusion

G. Allaire *, H. Hutridurga *

Abstract

In this work, we study the convection and diffusion of a solute in a porous
medium in the presence of a linear chemical reaction of adsorption/desorption
on the pore surfaces. The mathematical model is a system of two coupled
convection-diffusion equations, one in the bulk of the saturated fluid flowing
in the porous medium, the other on the pore surface, at the interface with the
solid part of the porous medium. The coupling takes place through a linear
reaction term expressing the exchange of mass between the bulk concentration
and the surface concentration. By a method of two-scale asymptotic expan-
sion with drift we obtain the homogenized problem in a moving frame. We
rigorously justify our upscaling approach by using the notion of two-scale con-
vergence with drift. Some 2-d numerical tests are performed in order to study
the effect of variations of the adsorption rate constant and surface molecular
diffusion on the effective dispersion tensor.

AMS classification: 35B27, 76 M50

1 Introduction

Transport of solutes through porous media, where there is an exchange of mass
at the interface between the bulk and the pore surface, has many applications in
chemical engineering or in soil sciences [10], [16]. We understand porous media
flows based on our knowledge of basic physical principles at the pore scale but most
experimental observations are made at the macroscale. Direct numerical simulation
for solving microscopic models are often impossible to handle with the available
computational resources and thus upscaling is a necessary tool in practice. The
method of multiscale asymptotic expansions is one of the most efficients to derive
effective models at a macroscopic scale and has the definite advantage that it can be
made mathematically rigorous through the theory of homogenization [17]. Disper-
sion phenomenon has attracted a lot of interest since the pioneering work of Taylor
[29]. Multiple scale expansions were employed to study dispersion phenomena in
presence of adsorption in many works including [4], [9], [12], [14], [18], [22], [23],
[28] (and references therein).

In the present paper we consider a single solute in an incompressible satu-
rated fluid flowing in a porous medium. A linear chemical reaction of adsorp-
tion/desorption can take place at the pore surfaces. Therefore, two unknown con-
centrations are taken into account: one in the bulk and the other on the liquid/solid
interfaces. The mathematical model is a system of two coupled convection-diffusion
equations, one in the bulk of the saturated fluid flowing in the porous medium, the
other on the pores surface. This model is a generalization of that in [4], [6]: the
novelty is the presence of convection and diffusion on the pores surface too (and
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not only in the bulk). In particular we study the possible competition between
surface and bulk molecular diffusion. Higher values of the surface diffusion may
favor a solute transport along the pore boundaries rather than in the bulk of the
fluid. Of course, our model can still be considered as a toy model since in most
applications one should consider multiple phase multi-component flow with more
complex adsorption isotherms of Langmuir type. This will be the topic of future
work [19].

Under a periodicity assumption on the porous media, our main result says that
the homogenized or upscaled limit of both surface and bulk concentrations is given
by the solution (¢, x) of the following macroscopic convection-diffusion equation

Ky 9t + lb* -V — div (A*Vag) =0,
ot €

where K is the effective porosity, A* is the effective diffusion (or dispersion) tensor
and b* /e is the effective velocity. Note that, as usual, € is the small positive param-
eter which is the ratio between the heterogeneities lengthscale and a characteristic
macroscopic lengthscale. Such a result is first obtained by the formal method of
two-scale asymptotic expansion with drift (see [8], [4], although it was anticipated
in [20], [26]) in Proposition 4.3 and Remark 4.4, which also deliver explicit formula
for the effective coefficients. A mathematically rigorous proof of our main result is
later given in Theorems 5.7 and 6.1 which rely on the notion of two-scale conver-
gence with drift introduced in [21] (see [3] for a pedagogical review). This notion
has also been applied to the homogenization of convection-diffusion equations in [8],
6], [13].

The contents of this paper is the following. Section 2 describes the periodic
porous medium and the nondimensional microscopic model. Section 3 is devoted
to uniform a priori estimates and briefly review existence results. In section 4, we
apply the formal method of two-scale asymptotic expansion with drift to deduce
the homogenized limit. Section 5 is dedicated to the rigorous justification of the
upscaling process and it contains most of the definitions and results of two-scale
convergence theory. An improved convergence theorem (in the strong norm) is
proved in Section 6. Eventually, Section 7 is concerned with some 2 — d numerical
tests using the FreeFem++ package [27]. In particular we study the behavior of the
cell solutions and of the homogenized dispersion tensor with respect to variations of
various microscopic parameters like the local Péclet number, the reaction rate and
the surface molecular diffusion.

2 Description of the problem

We consider an e-periodic infinite porous medium. Typically, this medium is built
out of R? (d = 2 or 3, being the space dimension) by removing a periodic distribution
of solid obstacles which, after rescaling, are all similar to the unit obstacle £°. More
precisely, let Y = [0,1]% be the unit periodicity cell. Let us consider a smooth
partition Y = X% UY? where X is the solid part and Y is the fluid part. The unit
periodicity cell is identified with the flat unit torus T¢. The fluid part is assumed
to be a smooth connected open subset whereas no particular assumptions are made
on the solid part.

For each multi-index j € Z%, we define Y7 = e(Y? + j), X7 = &(2° + ), S =
£(0%°+ ), the periodic porous medium Q. = Ujcz4Y7 and the (d—1)—dimensional
surface Q. = Ujeza57.

We denote by n(y) the exterior unit normal to Y°. Then, G(y) = Id—n(y)®@n(y)
is the projection matrix on the tangent hyperplane to the surface 9Y° = 9x°. In
order to define a Laplace-Beltrami operator on this surface, we define the tangential



gradient V5 = G(y)V and the tangential divergence div¥ = div(G(y)¥) for a
vector field defined from Y into R?.

We assume that the porous medium is saturated with an incompressible fluid,
the velocity of which is assumed to be independent of time, periodic in space and
given. The fluid cannot penetrate the solid obstacles but can slip on their surface.
Therefore, we consider two periodic vector fields: b(y), defined in the bulk Y, and
b%(y), defined on the surface 9%° and belonging at each point of 9X° to its tangent
hyperplane. Assuming that the fluid is incompressible and does not penetrate the
obstacles means that

div,b(y) =0 inY" b(y)-n(y)=0 ondx’,
divibs(y) =0 on 0¥’

In truth, b°(y) should be the trace of b(y) on 90 but, since this property is not
necessary for our analysis, we shall not make such an assumption. Of course, some
regularity is required for these vector fields and we assume that b(y) € L*°(Y?; R?),
b9 (y) € L= (90X RY) and b° = Gb® is always tangential to the surface.

We assume that the molecular diffusion is periodic, possibly anisotropic, varying
in space and different in the bulk and on the surface. In other words, we introduce
two periodic symmetric tensors D(y) and D°(y), with entries belonging respectively
to L>®(Y?) and to L>°(9%"), which are assumed to be uniformly coercive, namely
there exists a constant C' > 0 such that, for any ¢ € RY,

D(y)€-€ > ClE)? ae. in YO, DS(y)e- € > C|E? ae. on 9X°.

Without loss of generality, we also assume that D* acts only on the tangent hyper-
plane of X0, ie., D% = GDG.

Introducing the two positive constants x (the adsorption rate) and K (the ad-
sorption equilibrium constant), for some positive final time 7" we consider the cou-
pled system

0 1
;; + —be - Vu. — div(D.Vue) = 0 in (0,T) x .. (1)
D Ove 1 , K v
—fvua no= 8158 + Ebf-vsvg —div?® (vasvg) =3 [ug — EE} on (0,7T) x 09..

(2)
u:(0,7) = u’(z) in Qe v-(0,2) = v°(x) on 9. (3)
)

where the initial data are chosen such that u°(z) € L*(R?) and v*(x) € H'(R?
(so that its trace is well-defined on 052.). The notations for the coefficients are, as
usual, D.(x) = D(x/¢), DZ(z) = D%(x/e), b-(x) = b(z/e) and b3 (x) = b%(z/¢).

It should be noted here that the divergence free assumption and the no-penetration
condition on the velocity field is not necessary as one can still homogenize the above
system in their absence, using a factorization principle to start with as is done in
[8].

The scaling of system (1)-(3), where some terms are very large of order ¢! or
€72, should not be a surprise for the attentive reader. Indeed, it is obtained from an
adimensonalized system (without any e factor) by the parabolic change of variables
(1,y) — (¢72t,e712). In other words, one can claim that, even though the global
Péclet number is of the order of e, the local Péclet number is just of order 1. We
recall that the presence of a large drift is classical in the literature [4], [9], [13], [21],
[22], [26], [28].

Remark 2.1 When v = 0, the equations for u. and v. are decoupled. So, we
always assume k > 0. Formally, when k tends to +o0, the two concentrations are
fully coupled in the sense that v. = Ku,.



On the other hand, when K = 0, it formally yields that v = 0 and the only
remaining unknown u. satisfies a homogeneous Neumann boundary condition on
00.. However, if K tends to 400, then u. and ve are again decoupled in the limit,
with a Fourier-type boundary condition —D:Vue - n = kue /e on Q..

Remark 2.2 A crucial assumption in our work, as in [{] and[6], is that all coeffi-
cients are purely periodic functions depending only on the fast variable y = x/e and
not on the slow variable x. In particular, we are unable to treat the case of more
general velocity fields of the type b.(x) = b(x,x/e) and bS(x) = b°(x,x/c) where
b(z,y) and b3 (x,y) are smooth divergence-free (with respect to both variables) vector
fields. The main technical reason is that the homogenized drift b* would then depend
on x which cannot be handled by our method. Even more, we know from [7] that,
under special assumptions on the coefficients depending on x and y, a new local-
ization phenomenon can happen which is completely different from the asymptotic
behavior proved in the present work. There is still a lot to understand for general
velocity fields b(x,y) and b (x,y) but we are lacking the adequate tools (even formal
ones) to guess the correct effective limit.

3 A Priori Estimates

The existence and uniqueness of solution to (1)-(3) is classical. One can either use
the argument of Galerkin approximation followed by a priori estimates as in [15]
(Chapter 7) or use a variant of the Lax-Milgram lemma due to Lions-Magenes (see,
if necessary, chapter 10 in [11]).

The variational formulation for (1)-(2) amounts to find (ue,v:) such that u. €
L2((0,T); HY(Q2))NC([0,T]; L*(Q:)) and v. € L?((0,T); H(0Q.))NC([0, T]; L?(09.))
satisfying, for any test function (¢.,.) € H' () x H(08.),

1
// [8“5 gb5~Vu5¢5+DEVUE~V¢E] dz dt

0 Q.

O\ﬂ

/ |:6U51/18+ bS VSUEwE+DSvSU5 vSwa] dO‘E( )d
00

e ~ YN | o () dt = 0.
+O/BQ/EL( ) (0 %) | doterae =0 (@)

From this variational formulation we deduce the following parabolic a priori esti-
mate.

Lemma 3.1 There exists a constant C, which is independent of €, such that the
solution of (1)-(3) satisfies

el o= (0,7);L2(020)) + VEIvellLos((0,7):22(09.))
Vel 20,1y 0.y + VEIVI Vel L2(0,7)x 00 (5)
+Velwe |l oo 0,y 22 00.)) < C (I1u0]l L2may + [0°] 11 may)

where we = e~ (ue — K~ 'v,).



Remark 3.2 Since the (d — 1)-dimensional measure of the periodic surface 082, is
of the order of e*, a bound of the type /2| 2| r2(90.) < C means that the sequence
ze 18 “bounded” on the surface OS)..

Proof. We first derive an energy equality for (1)-(3). We multiply (1) by u. and
then integrate over €2

2dt/|u€|2dz+/D Vug - VugdzwL—/ u? 7%1}5 dog(z):() (6)
00,

where the integral of the convective term has disappeared since

1 1 1

/—b8 -Vusues de = 5 /div(b€|u€|2) dx = 5 / |ue|?be - ndo.(x) = 0.
5

Q. Q. Q.

-1

Multiply the second equality in (2) by K~ 'ev. and integrate over 09 to get

e d 2 € SuS, oS Er vE e
ﬁ@/m dgs(xH?/ng ve Ve doe(2)+— w2 ) doe(@) =0
2. 2. 0.
(7)

where the integral of the convective term has also disappeared since b2 is divergence
free. Adding (6) and (7) results in the following energy equality

2dt/|ug|2dx+ﬁ5 / |ve|? do (x /D Vue - Vu, dx

Qe o0, Qe
€ ER Ve 2
—|—§ / vasva.vsvgdaa(x)—l—s—Q / (ug—é) do.(x) =0
O O

Integrating it over the time interval (0,7") leads to the desired estimate (5).

4 Two Scale Expansions with drift

We homogenize the microscopic model (1)-(3) using the formal method of two-scale
asymptotic expansions with drift [4], [6], [8], [13], [26]. This method starts with the
assumption that u. and v. can be written in terms of an infinite series as

— bt
= Z g'u, (t, x——, E) (8)
=0 < °

and

= b*t x
g(t,x):;(svi (t,ac— . ,g) 9)

where w;(t, x,y) and v;(t, z,y) are functions of macroscopic variable x and the mi-
croscopic variable y = £ € (0, 1)4. The drift b* € R? is unknown to start with. It
shall be determined along the process of homogenization. The idea is to plug (8)
and (9) in (1)-(2). We shall keep in mind the following chain rule differentiation:

Dotz _ |20 _Boo|(, bt
ot T T o e Oz;j )

J=1

9 b\ [0 1067 (, btz
o (o8- [ 2 (- 22).

(10)



Inserting the asymptotic expansions of the solutions in the model, we identify the
coefficients of the various powers of € to get a cascade of systems of equations. We
present a lemma that plays a crucial role in solving those systems of pde’s.

Lemma 4.1 For f € L?(Y"), g € L?*(0X°) and h € L?*(0X°), the following system
of equations

b(y) - Vyu — divy (D(y)Vyu) = f in YO,
—D(y)Vyu-n+g=r(u—4v) on 9%°,

b (y) -ng—divf(DS(y)ng) —h=rk(u—+%v) on 9%, (1)
y — (u(y),v(y)) Y — periodic,

admits a solution (u,v) € Hy(Y°) x HL(0%°), unique up to the addition of a
constant multiple of (1, K), if and only if

g fder/az (g +h)do(y) = 0. (12)

Remark 4.2 The subscript # indicates a space of Y -periodic functions. Recall
that YO and X0 are thought as subsets of the unit cell Y, identified with the unit
flat torus, i.e., YO and X0 are periodic subsets of R?.

Proof. The variational formulation of (11) is

/ (b~ Vyu) pdy + /D(y)vyu -Vyody+
YU

Yo

1 1
+ [ e wsea & [ Dwve vivdew)+
o0X0 o0X0

[rfu-¢] [¢_ % o) = | sody+ /6 ; (g¢+ %w) do(y).

)38

Taking (¢,v) = (1, K) we find the necessary condition (12). The left hand side of
the variational formulation is coercive on the space [H;E(YO) X H#(@EO)]/[R(I, K))
where the space R(1, K) is the set of constant vectors of the type (C, KC) when C
takes values in R. Lax-Milgram lemma yields the existence of a unique solution in
this space.

d

Proposition 4.3 Under the assumption (8)-(9), the solution (us,ve) of (1)-(3)
formally satisfy
b*t b*t x
ue(t,x) mug | t,x — +euy [t — —, —
€

b*t b*t
ve(t, x) = Kug <t,z ) + evy (t,:c ,E)
€ € €
with the effective drift

/b(y)dy+K/bS(y)d0(y)

b* :Yo 0X0 13
YO + K[0%°|4-1 (13)




and ug the solution of the homogenized problem

auO . . d
Kq—— —divy (A*Vug) = ,T) xR
d 5y ivy (A*Vyug) =0 in (0,T) x (14)

Kauo(0,2) = [VOu() + [054_10°(x), o € R
where Kq = |Y9| + K|0X°|4—1 and the dispersion tensor A* is given by
Ay = | D) (Vyxi +ei) - (Vyx; +e;) dy+5 (Xi - ?) (Xj - ?) do(y)
YO

ox0
+K7! / Ds(y) (Kei + Viwi) . (Kej + Viwj) do(y)

930
(15)
with (x,w) = (xi, wi)1<i<a being the solution of the cell problem such that
ur(t,,y) = x(y) - Vauo(t, ), vi(t, 2,y) = w(y) - Vaeuo(t, ), (16)
and the cell problem s
b(y) - Vyxi — divy(D(Vyxi +€;)) = (b* —b) - e; in Y9,
b3 (y) - V5w — divg(DS(V;jwi + Ke;)) = K(b* —b%) -e; +r (xi — K 'w;)  on 0%°,
—D(Vyxi+e€;) ~n:n(xi—K_1wi) on 0X°,
Y — (Xiwi) Y — periodic.
(17)

Remark 4.4 In Proposition 4.3, the asymptotic profile ug is defined in a moving
frame of reference. Of course, one can go back to a fized frame of reference by

defining
b*t
o (t, ) = ug (t,:c )
€

Then, while ug was solution of the diffusion homogenized equation (14), g is now
solution of an homogenized convection-diffusion equation
Jtug 1, _ . o ~ . d
Ky 5 + gb - Vgto — divg (A*V,a0) =0 in (0,7) x R
which has a nicer physical interpretation since b* /e is clearly the homogenized ve-
locity.

Proof. Inserting the ansatz (8) and (9) in the equations (1) and (2) yields the
following cascade of equations.

b(y) - Vyuo — divy (D(y)Vyue) =0 in YV,

—DV,ug-n = b%(y) - ngo - divf(DS(y)ngo) a8)
=k (uo — K 'wy) on 00,

y — (uo(y),vo(y)) Y — periodic.

From Lemma 4.1 we deduce that the solution of (18) does not depend on y and
satisfy vo(t, ) = Kug(t, z).



At order e~ 1:
—b* - Vyuo + b(y) - (Vauo + Vyur) — divy (D(y) (Vaug + Vyui)) =0 in YO,
—b* - Vavo + b3 (y) - (Vg + V1) — divy (D5 (y) (Vv + Vivr))
= —D(y)(Vauo + Vyur) -n =k (uy — K~'v1) on 9%°,
y = (u(y),v1(y)) Y — periodic.
(19)
The compatibility condition (12) of Lemma 4.1 yields the desired value (13) of the

drift velocity b* in order to solve (19). By linearity of (19) we deduce that its
solution is given by

ui(t,x,y) = x(y) - Veup and vq (¢, z,y) = w(y) - Vauo

where (x,w) is the solution of the cell problem (17).
At order £°:

Lug —b* - Vour +b(y) - (Vaur + Vyug)

—div, (D(y)(Vauo + Vyur)) — divy(D(y)(Veur + Vyuz)) =0 in YO,
Lvg — b* - Vaur + b3(y) - (VSuy + Vius)

—div, (D% (y)(Vavo + Vyv1)) — divg(DS(y)(Vzvl + Vi)

= —D(y)(Vyuz + Vour) -n =k (ug — K 1vg) on 0%°,

y = (u2(y), v2(y)) Y — periodic.
(20)
On identifying (20) with (11) we get the following right hand sides

f=("=b) Vous + divy(D(Vaug + Vyur)) — 2% + div, (D(Vyu1)) in YO,

g=—-DVzu;-n on 0X°,
h=—20 4 b Vo — b (Vyu)

+divy (D% (Vv + Viv1)) + divy) (D5V,v1) on 9%°.

(21)

According to Lemma 4.1, there exists a solution (uq,v2) provided (12) holds true.
This compatibility condition leads to the homogenized problem

K 0up = div, (A*V,ug) in (0,T) x R?

where Ky = |Y°|+ K|0X°|4_1 and the entries of the dispersion tensor A* are given
by

1
Al = /Dei-ejdy—i— 3 /Dvyxj -eidy—l—/DVyxi-ejdy
yo 0 yo
1
+K / D%¢; - ejdo(y) + 5 / DSVij ce;do(y) + / DSV5wi ~e;do(y)
o%0 520 o320

s /(bf —bi(y) x5(v) der/(b}f — b)) xi(y) dy

2
s3] [ 0w et + [ 05 -50)ww
>0 930



Remark that we have symmetrized the dispersion tensor A* since only its contrac-
tion with the (symmetric) hessian matrix V2ug plays a role in the homogenized
equation. In other words its antisymmetric part (if any) cannot be deduced from
the above method of obtaining the homogenized equation. Testing the cell problem
(17) for (x:,w:) by (x;,w;) and vice-versa leads to the following relationship

1 . .
/Dvai'vaj dy+? / stgwi~v7§wj do(y)+k / [Xz‘ — ?] [Xj — ?} do(y)
Yo %0 axo

1
+§ /Dvyxj~eidy+/DVyxi~ej dy
0 YO

1

+ | [ D¥V5wi-eido(y) + [ DSV5wi-e;doly)
|/ /

:% /(b?—bi(y))Xj(y) dy+/(b;—bj(y)) xi(y) dy

0 Yo

1 . .
3| [ o=@ ewdt+ [ 065-50)w o
30 o%0
Adding the above equality to the previous expression for A* yields the desired

formula (15). To obtain the initial condition of the homogenized equation we use a
conservation property in the unit cell which says that

uo(0,z)dy + | vo(0,2)dy = [ w’(z)dy+ [ 0°(x)dy
/ / [ |

Yo %0 Yo %0

which leads to the desired initial condition upon recalling that vg = Kug. Let
us emphasize once again that this proof is purely formal since it is based on the
assumption (8)-(9) of a given ansatz for the solution (ue,v.) (and we don’t prove
that such a series is converging).

5 Two scale convergence with drift

The goal of this section is to rigorously justify the homogenized limit heuristically
established in the previous section. We shall use the notion of two-scale convergence
with drift introduced in [21] (see [3] for detailed proofs). It is a generalization of
the usual two-scale convergence defined in [2], [24].

Proposition 5.1 [21] Let V be a constant vector in RY. For any bounded sequence
of functions U.(t,x) € L*((0,T) x R?), i.e., satisfying

1UellL2¢(0,7) xRy < C,

there exists a limit Ug(t,z,y) € L*((0,T) x R? x T?) and one can extract a sub-
sequence (still denoted by e) which is said to two-scale converge with drift V, or



equivalently in moving coordinates (t,x) — (t,x — ?) to this limit, in the sense
that, for any ¢(t,z,y) € C§°((0,T) x R% x T?),

T T
t
lir%//UE(t,z) tva—fd dt = ///Uot:cy (t,z,y) dy dx dt.
e—
0 Rd 0 Rd Td
. 2— dmft
We denote this convergence by U, —Up.

Remark 5.2 Proposition 5.1 equally applies to a sequence uc(t,z) € L*((0,T) x
0.), merely defined in the perforated domain Q, and satisfying the uniform bound

luell L2 0,1y %00 < C.

Indeed, defining an extended function U.(t,x) = uc(t,z) in Qc and U.(t,xz) =0 in
RZ\ Q. , we obtain that

T

//ug(t,z) txfﬁfd di = // (t, )¢ tzfﬁ E)d dt
€

0 0.

0 R4

and the two-scale limit Ug(t,x,y) of U. vanishes in X0 so that

T
t

1in%//ug(t,ac) tgc—v—E dr dt = ///Uotacy (t,x,y) dy dx dt.

E—r

0 Q. 0 R4 YO
Proposition 5.1 can be generalized in several ways as follows.

Proposition 5.3 Let V be a constant vector in R? and let the sequence U. be
uniformly bounded in L?((0,T); H'(R?)). Then, there exists a subsequence, still de-
noted by e, and functions Uy(t,x) € L?((0,T); HY(RY)) and Uy (t,z,y) € L*((0,T) x

R?; HY(T?)) such that

2—drift
—_ N

U. Uy

and .
vu. 22N g 0y 4 v, U,

The proof of Proposition 5.3 is a combination of arguments from [21], [3] and
of the classical case without drift in [2], [24]. Two-scale convergence can also be
defined for sequences defined on a periodic surface (see [5], [25] for the case without
drift).

Proposition 5.4 Let V be a constant vector in R* and let W. be a sequence in
L2((0,T) x 09.) such that
T

5/ / |We.(t,2)|* do(x) dt < C.

0 99,

Then, there exists a subsequence, still denoted by e, and a function Wy(t,z,y) €
L2((0, T)xR4x9%°) such that We(t, ) two-scale converges with drift V to Wy (t, x,y)
in the sense that

Elig(l)s/T/Wg(t,x)qb(t,x—?,g)dag(x)dt:/T//Wo(t,x,y)qﬁ(t,x,y)da(y)dacdt

0 99, 0 R4 930

for any ¢(t, z,y) € C((0, T)xRIxT4). We denote this convergence by W 25mdrift,

Wo.
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Proposition 5.5 Let W.(t,x) € L?((0,T); H*(952:)) be such that

T
g// (Walt,2)? + VWL (t, 2)?) do.(z) di < C.
0 99,

There exist Wo(t,z) € L*((0,T); HY(R?)) and Wi (t,x,y) € L*((0,T)xR%; H(9%°))

such that
25 —drift

WE WO(tv :C)
VW, 22N Gl Wt 2) + VWA (L, 2, y)

where G(y) is the projection operator on the tangent plane of 0¥ at the point y.

The proofs of Propositions 5.4 and 5.5 are a slight modification of those in the
classical case without drift which are to be found in [5], [25].

Eventually we state a technical lemma which will play a key role in the conver-
gence analysis.

Lemma 5.6 Let ¢(t,z,y) € L*((0,T)xRIx9%°) be such that [ ¢(t,z,y)do(y) =
%0

0 for every (t,z) € (0,T) x RL. There exist two vector fields O(t, z,y) € [L?((0,T) x

R? x T and O(t,z,y) € [L*((0,T) x R x 9%°)]¢ such that

div,d =0 in YO,
0-n=¢ on OXY, (22)
divi@ =¢ on 0X°.

Proof. We choose 6 = V¢ with £ € Hy(Y?) a solution to
AE=0  in Y
{ Vyé-n=¢ on 9%, (23)

which admits a unique solution, up to an additive constant, since the compatibility
condition of (23) is satisfied. On similar lines, we choose © = V;jﬁ where [ is
the unique solution in H}(9%%)/R of AYB = ¢ on 9%° which is solvable because
| ¢do(y) =0.
%0
O

We now apply the above results on two-scale convergence with drift to the
homogenization of (1)-(3). Let us choose the drift V = b* given by formula (13).

Theorem 5.7 The sequence of bulk and surface concentrations {u.} and {v:}, so-
lutions of system (1)-(3), two-scale converges with drift V, ase — 0, in the following
sense s
2mdrift, uo(t, x)
Ve 2S—drift KUO(t, SC)

2—dTift 24
Vue ——— Vauo(t, z) + Vy(x(y) - Vauo(t, x)) (24)

Vo, 257 drift, KG(y)Vyuo(t,z) + ng(y) - Vauo(t, x)

L (ue — £o.) 22T (\(y) — w(y)) - Vaeuo(t, z)

where ug(t, x) is the unique solution of the homogenized problem (14) and (x(y),w(y)) =
(Xi(y),wi(y))1<i<a are the solutions of the cell problem (17).

Ug
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Proof. Up to extracting a subsequence, the two scale convergence results (24) are
obvious consequences of the a priori estimates of Lemma 3.1 and of the previous
Propositions 5.3 and 5.5 (see [6] for similar computations, if necessary). The only
limit that deserves some attention is that for w, = % (us - K ’105). From Lemma
3.1 we know that it satisfies the uniform estimate

T

5/ / lwe (t, z)|* do.(z) dt < C,

0 0.

from which, by virtue of Proposition 5.4, we deduce, for a subsequence, that
25— dmft

we ————= q(t,z,y) for some q(t,z,y) € L*((0,T) x R% L?(9%°)). Let us choose
a test function ¢ as in Lemma 5.6, i.e., [ ¢(¢,z,y)do(y) = 0. To pass to the limit
%0
in
T
b*t x
li — -
813%(5/ / we(t,2)d (t,x - ,E) doe(x)dt

0 0.

we separate w, in a difference of two terms. In view of (22), the first one is

T
5/ / 1u€¢<t,zﬂ E) do.(x)dt = //dlv <u59 (t :cfbt z)) dx dt
€ € e e
0

€

T
://[Vug-e(t,x—bt x)—l—ug(dlvﬁ) (t,:c—bt xﬂ da dt
g g g g
0 Q.

T
Q_Sﬂ///{(vzu+vyul).9+udiv$9} dy dz dt

0 RIYO

:/T//m@-nda(y)dxdt:/T//ulqbda(y)dacdt.

0 R4 930 0 R4 930

Now, the second term is

b*t x b*t x
// oo — 0 (t T — ) do.(x)dt = // d1v @ <t T = ,g) do.(x)dt
0

0 99,
’ 1 b b
_ . .S _ “t z o _ *t x
_5/ / Ve |:le (@ (t,ac - ’5)) div, (GO) (t,x . ,€>} do.(x)dt
0 99,
’ 1 b b
_ t ow g . t x
_5/ / e [ @(t,ac . ,E) Vv, — div,, (GO) (t,ac - ,E)vg} dog(z)dt
0 99,
T
25-drift, Lo, (kaw)v V0, — div, (G()0) Kug| do(y)dad
— g[— (KG(y)Vauo + Vyor) —div, (G(y)®) Kuo| do(y)dz dt
0 R 930
///—vldlv O do(y) dx dt = ///—1}1(de ) dx dt
0 Rd 90 0 Rd 9x0

12



Subtracting the two terms, we have shown that

/T//Q¢d0(y)dxdt:/T//(ul_%)¢d0(y)d$dt

0 Rd 9330 0 Rd 930

for all ¢ such that [ ¢dy = 0. Thus,
o520

U1 (ta x, y)

% +1(t,x)

Q(ta €, y) = ul(ta €T, y) -
for some function [(¢,2) which does not depend on y. Since, u; and v; are also
defined up to the addition of a function solely dependent on (¢, x), we can get rid
of I(t,z) and we recover indeed the last line of (24).

The rest of the proof is now devoted to show that ug(t, ) is the solution of the
homogenized equation (14). For that goal, we shall pass to the limit in the coupled
variational formulation of (1)-(3),

/ / [a“€¢g+ “be - Vet + DoV, - w)s] dz dt (25)

/ / [a“5¢8+ ~b2 - V3uegpe + DIV, - sza] dos () dt

0 09,

with the test functions

b*t b*t
¢E¢<taz_)+€¢l<taz_a£>v
€ e e
z/zgqub(t,x— b t) t ey (t,x—b t,f).
€ e e

Here ¢(t,x), ¢1(t,x,y) and (¢, z,y) are smooth compactly supported functions
which vanish at ¢t = T'. Let us consider the convective terms in (25) and perform
integrations by parts:

//<au€ Zb, Vu5> ¢€dxdt+s// (ave lbf.vS%) Ve do.(z) dt
13
T b T b
—//u < — t> dxdt+l//ugb*~vz¢<, t) dz dt
19 19 13
0 Q. 0 Q.

/ub* v ¢1< Lo 2t g) do dtf/ 0(2)6(0, 2) dz + O(e)

€
)ddt

+

S~

Q. Q.

R VR (P P (AN
0

Q. 0 Q.

ml»—l
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T

T
75/ / vg% <t,z %) do.(x) dtJr/ / vb" - Vi (t,:c bgt) doe(x)dt

0 Q. 0 0.
T
€ b*t =z 0
t vb* -V [t — gatie doe(x)dt —e | v°(2)p(0,z)do-(x) + O(e)
0 Q. 0.

T T
b*t b*t
—/ / vsbgvzqﬁ (t,z . ) do.(x) dtJr/ / %bf-vsvgm (t,:c . ,g) do.(x)dt.
0 90 0 99,

€

We cannot directly pass to the two-scale limit since there are terms which apparently
are of order e~ 1. We thus regroup them

//u (t *t) dxdt—i—/T / ve (0" = b2) V.0 (t,x— %) do.(z)dt

0 9Q.
(26)
T
://u v¢<, )dxdtJrK//ug b* —b2) V(;S(tz—)das(x)dt
0 Q. 0 29,
S * bt
+Ke us—— (b‘E —b") - Vauo [tz — do.(x)dt.
€
0 90,
We introduce an auxiliary problem
Aai(y) = bi(y) — b} in v,
Va;-n=K(bf —bi(y)) on dx°, (27)
Q; is Y — periodic,

which admits a unique solution (up to an additive constant) since, by definition of
b*, the source terms in (27) are in equilibrium. Defining af(z) = a(z/e), thanks to
(27), the e~ 1-order term (26) is equal to

z d
R b*t
//EZVai-V(amiqﬁ(t,x— E)UE) dz dt

00 =1

+K€/ / U — (bS —b*) Vo <t,z — b?) do.(z) dt

0 09,

for which we can pass to the two-scale limit.
In a first step, we choose ¢ = 0, i.e., we consider only the terms involving ¢
and 91 in the variational formulation (25)
b*t =z
, ) dx dt
€

T . T

//ugb*.vqul(, bt,g) d:udt—i—//ba .Vugqbl(,
0 Q.

T

0 Q.
b r b
w4 4
—i—//DgVug-quﬁl (t,x— f) dxdt+i/ / 0eb* Vb (t,x— f) do.(z) dt
€€ K €€

0 Q. 0 09,

14



T
b*t b*t
Jr/ / bS V0.1 <t T — z> do.(z) dt+— //DSVSUE V51/11 (t T — ’
€€ ee
0 99.

0 0Q.

+5// ug— (¢1 wl)daa()dtzo.

0 09,

Passing to the two-scale limit with drift, we obtain

)dM )dt

//b Vauo(t,z)o1 (¢, x,y dydxdtJr// (Vauo(t,z) + Vyui(t,z,y)) ¢1(t, z,y) dy de dt

Rd YO Rd YO
//dlvy ) (Vauo(t,z) + Vyua(t, z,y))) ¢1(t, z,y) dy dz dt
Re YO
f/ / b* - Vayuo(t, x)yr (t, x,y) do(y) de dt
R4 930
K/ / b3 (y (KGVuo(t, z) + VS, (t, = Y)Ytz y) do(y) de di
R4 %0

7}1{ / / div, (D% (y) (KGVuo(t, x) + Vivi(t,2,9))) ¥1(t, z,y) do(y) dz dt

Rd 930
/ / u; — (qﬁl — ﬂ) do(y)dxdt =0

Rd 90
The above expression is precisely the variational formulation of (19) which leads to

the cell problem (17).
In a second step we choose ¢1 =0 and ¢; = 0 in (25), i.e., we consider only the
terms involving ¢

T
//ug%<t, b>ddt+//DVu€V¢<tzbt)dzdt
ot € €
0

0 Q.

T T
75/ / UE% (t,x b t) dog(x)dtJre/ / D3V, V5 <t,z ﬂ) do.(z) dt
19 13
0 090, 0 e

T d
E b*t
+//EZV% ~v<ami¢ <t,x - >u> d dt
0 =1
I 1 b
. “t
+K€/ / - (us - %) (bf 7[,*) V) <t,z - ?> do.(x)dt

0 Q.
- /uo(ac)qb(O,x) de — e / v2(2)$(0, x) do. (z) = 0.
Q. 0.

Taking into account formula (16) for u; and vy, passing to the two-scale limit with
drift yields

|Y0|/—¢>d dtf// Z Dij(y gbdzdt

Rd YO 1,j=1
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d d
O%uy Ix;(y)
_|Y0|/ (0, x d:c—// SN Daly) i) 4o dt
Rd yo Gi=11=1 dx;0x; Oy

2
+K|82°|/ qubdxdt—//KZ ZD )G (9) = do(y) da dt

6 i@xj
R 950 i,7=11=1
?ug 0°w;(y)
— 0 — 0 7 Wily)
K|0% |/ (0, x) dx // Z Z (9%8:0] o ¢pdo(y)dxdt
R 930 i,7=11=1
4 w 0%u
— B (b5 () — b 0
K/ / > (XJ K) (b3 (y) — b7) S doty) do
R px0 HI=1

doy(y) 0 02
Z Z i(y) Oxi(y) 0o oo ar — o,
ayl Oy Oz;0z;
Rd YO 1,j=11=1
Introducing K4 = |Y°| + K|9%°]4_1, the above equation is just the variational
formulation of the homogenized problem

K4 0yug = div, (A*V,ug) in (0,7) x RY
(28)
Kgup(0,2) = |YOul(z) +10%°)4-10°(z), = €R?

The only difficulty is to recognize that the above cell average for A* coincides with
formula (15). To check this point, one needs to test with x; the boundary value
problem (27) for o which yields

/Z a(gyl a;(gyl Lay - /(b: = 0i(y)) x5 (v) d?/+K/ (7 = 07 (%) x5(y) do(y).

Yo Hn0

We safely leave the other details of checking the formula for A* to the reader.

Finally, although we proved convergence only for a subsequence (following the
statements of Propositions 5.3 and 5.5), the uniqueness of the homogenized solution
uo(t,x) to (28) implies that the entire sequence {u.,v.} converge.

6 Strong convergence

In the previous section, we proved the (weak) two-scale convergence with drift of
(te,ve) to (ug, Kup). In this section, we improve Theorem 5.7 by proving that the
convergence is actually strong, in a sense which is made precise in the following
Theorem.

Theorem 6.1 Let (u.,v:) be the solution to (1)-(3). Then, u.(t,z)lq, strongly
two-scale converges with drift towards Tyoug(t,z) and v.(t,x)Msq, strongly two-
scale converges with drift on surfaces towards K Tgsou(t, ), in the sense that

b*
us(t, ) — ug (t,ac - —t)

€

pr— 0’
L2((0,T)xS2)

b*
ve(t, ) — Kug (t,x — —t)

g

lim
e—0

(29)
lim /e

e—0

=0.
L2((0,T)x %)
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Our proof of Theorem 6.1 is based on the following result about strong two-scale
convergence (see Theorem 1.8 in [2] or Proposition 9.1 in [3]).

Proposition 6.2 Let (U.).~o be a sequence in L?((0,T) x RY) which two-scale
converges with drift to a limit Ug(t, z,y) € L2((0,T) x R? x T4). It satisfies

lim [|Uell 20,7y xRy 2 100l 2((0.7) xR x9)-
Assume further that
lim [[Ue | 2 ((0.1) ) = [1Uoll2((0,7) x et xm) - (30)

Then, it is said to two-scale converges with drift strongly and it satisfies

T
lim
e—0 0 R

if Uo(t,x,y) is smooth, say Uo(t,z,y) € L? ((0,T) x R% C(T?)).

2
drdt =0,

U(t,z) — Uy (t, N 5)
13 13

Proof of Theorem 6.1. To begin with, we treat the case of well-prepared initial
data, that is, v*(z) = Ku’(z) € H'(RY). Later we shall consider more general
initial data. The energy equality of (1)-(3) for a time interval (0,¢) is

t

1 €
3 [ue ()1 720,y + §||Ue(t)|\%2(aszg)} +//stus(5a$) - Vue(s,z) dv ds
0 0.

t
Jr%/ / D3VSu. (s, x) - Vv, (s, z) do.(x) ds
0 99,

¢
ER v 2 1 €
45 [ ] (uets) - ) doords = 5 [0y + 10 Boon,)
0 909,
Following the lead of [6] we do not expect a pointwise (in time) strong convergence
of the sequence (uc,v.). Thus, we integrate once more with respect to time the
above energy equality to obtain

T t

T
g
[ ety + loeOloas] it [ [ [ DTucts.a) Fues ) dodsa
0

0 0 Q.

|~

/ / vasvg(s, x) - Vv, (s,z)do.(x)dsdt
0

T t
ER Ve \ 2 T €
+€_2 // (Ua - KE) dO'E(.’L') dsdt = 5 (HU’OH%Z(QE) + ?HUOH%Z(BQE))
0 0

In the previous section, we established that all terms in the above formula have
actually (weak) two-scale limits. Since the corresponding norms are lower semicon-
tinuous with respect to the (weak) two-scale convergence, we deduce

T

| € 1
timigt 3 [ [0,y + 2 l0eOlE 00, dt 2 5 (VO] + K1) ol e oy
0
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hmlnf///D Vue(s,x) - Vue(s,x)drdsdt

hmlnf—// / D3V, (s, ) - Vv (s, x) do.(x) ds dt

0 0 99,

T
> 1 0/ 0/ / / D3 ()| K G(y) Vo (s,2) + V5 (w(y) - Vauo(s, 2)) |2 do(y) da ds dt,

> 5 / / [ [ 16) = Ko@) - Vauo(s. ) doy) dads dr

0 R4 9x0
On the other hand we have

0%
lv

tim (61320, + = 1002200,y ) = [¥OH0 I Faea) + 110 ey

Summing up those limits and recognizing the formula for A* yields the inequality

1
5 (|Y°] + K[0x°)) ||UOHL2(R,1><(O ™) +///A Vauo(s,x) - Vyuo(s,z) drdsdt
0 Re

T

o0
< 5 (Y0l +

—|v°|Lz<Rd>> (31)

However, if we write the same type of time integral of the energy equality for the
homogenized equation (14), we get an equality with the same left hand side but a
different right hand side

T t
1 *
5 [|YO| +K|820H HUOH%Z(RdX(O,T)) + ///A VUO(S,Z') . V’LLO(S,ZL'> dzdsdt
0 0 Rd
- L [1Y01u® + 0002 (32)
2(]Y°] + K[ox0]) “ vl )

It is easy to check that the two right hand sides in (31) and (32) coincide if and
only if
[u® — K™% 72gay = 0,

which is precisely our assumption of well prepared initial data. Therefore, under
this assumption we deduce that (31) is not an inequality but rather an equality,
which in turn implies that all the previous lower semicontinuity of norm sequences
are actually exact convergence. We can thus apply Proposition 6.2 and conclude to
a strong convergence (see [6] for details if necessary).
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We now turn to the case of general initial data (u®,v%) € L*(R%) x H'(R?).
Let us consider a small §; > 0, to be chosen precisely at the end of the proof.
Due to Lemma 3.1 on a priori estimates, by a contradiction argument, it follows
that there exists a time sequence {d.}, p/2 < 6. < 8y, converging to some limit &,
80/2 < 6 < o, and a positive constant C, which does not depend on & or on & (but
only on the initial data), such that

”Us(-v(Ss)H?ql(Qs) < C/bo, 5””&(-755)”%11(595) < C/éo,
(33)
el Kue(., 6e) — vE('a(SE)H%Z(aQE) < C'52/50-

We now follow an idea of [6] which amounts to consider system (1)-(3) on a smaller
time interval (0.,T") where 0. > dp/2 > 0 is such that the initial data at this time
should be almost well-prepared because of parabolic dissipation on the earlier time
interval (0, d.). We decompose the solution (u.,v.) of (1)-(3) as

Ue(t, ) = ure(t, ) +use(t,x) and v (t,x) =v1 (¢ x) + v2c(t, ),

in such way that the initial data are well prepared for the first problem while the
solution of the second one will converge strongly to zero

0 1

&Ul,g + Ebg -Vug e —div (D:Vuq ) =0 in (6:,7) x Q,
Da _ 0 1 S S - S S S

—?VULE = VL + gba V501 —div® (DZV7v1.)  on (6:,T) x 0,
D, K 1

7?VU175 n = = [uLE - K vl,s} on (0:,T) x OS2,

u1,€(5€az> :U€(5E,$), 1)175(58,1') = KUE((SEaZ‘)a

(34)
and
0 1 . .
arl2e + gbg -Vug,e —div (D-Vug:) =0 in (0¢,T) x Qe,
D, 0 1.5 o5 .S (1SS
—?Vuzg M=ol + gba Vg —div’ (D2V vs.)  on (0.,T) x 0%,
D, K 1
7?VUQ75 n = = |:u21€ - K 1}275} on (0:,T) x OS2,
U2:(0e,2) =0,  v2.:(0e,2) = v (0, ) — Kuc(dg, x).
(35)

Since (35) is similar in structure to (1)-(3), the standard a priori estimate of Lemma
3.1, together with estimate (33) for the initial data at time ., yields for any ¢ > §.

lu.e (D122 + ellvze (5 Ol Z200.) < C/b.

Thus, the sequence (ugz ¢, vs,.) strongly converges to 0. The initial data in (34) are
well prepared but we cannot apply directly our previous results because the initial
time 6. # 0 is varying with €. The new difficulty is to prove that the initial data of
(34) strongly two scale converge with drift to some limit.

Let us recall the existence of a uniformly bounded extension operator [1] from
H(.) into H'(RY). Thus, the sequence u. (., z) can be thought of being defined
in the whole space R? and, by virtue of (33) it satisfies the bound ||u.(d., x) Hill(]R'i) <

C'/dp. Shifting the sequence does not change its bound, so we have

[ue(8e, 2 + (0% /€)8e) 71 (ray < C/d0. (36)
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Together with Lemma 6.3 which says that the L2-norm of u. (0., z + (b*/€)d.) does
not escape at infinity, we deduce from (36) that this sequence is (pre-)compact in
L?(R9). Therefore, up to a subsequence, u. (8., = + (b*/¢)d.) converges strongly to
some limit @°(x) in L2(RY).

Thus we can use the same arguments as in the case of well-prepared initial data
to conclude that uq . and vy . strongly two-scale converge with drift to @(t, z) and
Ku(t, z) respectively where @ satisfies the following limit equation of (34)

{ Kq 0 = div, (A*V,a) in (6,T) x R?

Kq ’&’(Sa ‘T) = |Y0|’€LO((E) + |8§]0|d_1a0($), r R4 (37)

where K4 = |Y°] + K|0X°|4—1 and A* is given by (15). In particular,
ig% Hu1,8||2L2((65,T)><QE) = |YO|||,ELH%2((S7T)><RL1)

and
2

. 2 2 [SXRTISA
Ehj%EHUl,aHm((JE,T)xaQE) = K702 all% 57y xmay:

Of course, since u. was converging weakly to ug, we deduce that u(t,z) = ug(t, x)
for t > 6, and

?_%HUEHQLQ((&E,T)XQE) = |YO|||UO||§‘2((51T)XR(L)
(38)
iiE)%EH'UEH%Z((JE,T)XBQE) = K2|620|||u0||i2((51T)XR.1)'

Now, let us assume that there is a lack of strong two-scale convergence for (ue,v:),
namely that the L2-norm of this sequence is not continuous (as required by (30) in
Proposition 6.2). In other words, either

lim [ uellZ2(0.myx0.) > 1Y lluollZ2@ax 0,1y (39)

or
&11_13% €Hvs||2L2((o,T)xaQE) > K?|0%°| ||U0||2L2(]Rdx(o,T))- (40)

Lemma 3.1 implies that Hue(t)H%z(Qa) + EHUE(t)H%Q(aQE) < C uniformly in time. So,
we can find a small Jg > 0 such that, the same strict inequalities hold true on a
smaller time interval, namely, either

lim inf el Zzo.m)x0.) > 1Y Ollluoll 7207y xmay  for any 0 <6 < do, (41)
or

liggf5||U6||2L2((6,T)x695) > K2|8EO|||u0||%2((O,T)XRd) for any 0 < d < dp. (42)

Obviously, (41) or (42) contradicts (38). Therefore, there must be continuity of
the L%-norm of (u.,v:) and both (39) and (40) must be equalities. Thus, we have
proved the strong two-scale convergence with drift in case of a general initial data.

d

Lemma 6.3 Let uc(t,z) be the solution of (1)-(3). For any 6 > 0 there is R(6) > 0
such that, for anyt € [0,T],

*

b
lue(z + —t, D)l 2.0 o2 RE)p) < 0
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Proof. We again follow an idea of [6]. Let ¢ € C°(R) be a cut—off function
such that 0 < ¢(r) < 1, ¢ =0forr <1, ¢ = 1 for r > 2. For z € R? denote
or(z) = ¢(|z|/R) and ¢%(t,x) = ¢r(x — b*t/e). In the variational formulation (4)
of system (1)-(2) we take the test function {u.(t,x)¢%(t, ), ve(t, )% (¢, )} and
we integrate by parts the time and convective derivatives (calculations are shown
one term at a time)

// ot ”“E”WR”dsdw—//— Vn(s,7)(ue(s, x)) ds da

0 Q.

+/¢‘}L(t,z)(u5(t,z))2 dx—/¢R(x)(uO(z))2 dz,
Q. Q.

//— Ve (s, 2)us(s, ©)¢% (s, z) dsdr = — //— Vo5 (s, ) (u(s,x))* ds da,

0 Q.

//avgqﬁRvgdst // V5 (ve)? ds do ()

0 09, 0 0Q.

i [ Gl do) - £ [ on@) @) doo)
0. Q.

t
K/ / be - V0% ds do(x //(UE)Qbf-VquaRdsda(x).
0 99,

0 9Q.
This yields

t
%/qﬁ%(ﬁ,x)(ug(t,x))z dx+//DEVu5-vug¢;dsdx

Q. 0 Q.
¢
2K / % (t, ) (ve (t, x))? do(x //DESVSUE-VSvgqﬁ%deU(x)
00, 0 o0,

¢
+Z—§/ / 0% (ue —Kﬁlvg)st do(x)

0 09,

t t
= —//uaDEVug-v¢§dsdx—%/ / veDEVv, - V995 ds do(z)

0 Q. 0 09,

tlf*.EUQle 2)(u?(2))? dz
+O/Q/E(b€ b)v¢R(€)dd+29/¢>R()( (z))"d

/ [ 5 02 =8) - Vo dsdota) + o [ on@)@ @) dota)  (43)

0 99, 6(2E

Due to the a priori estimate of Lemma 3.1 and the definition of ¢g, the first and
second integrals on the right hand side of (43) are uniformly bounded by C/R. The
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terms involving the initial data (u®(z),v°(z)) do not depend on € and tend to zero
as R tends to co. To get a bound on the remaining (convective) terms on the right
hand side of (43), we rely again on the auxiliary problem (27) which allows us to
remove the ¢! singularity of the convective terms

// (be — b*) - Vo5 (u.) dsd:c—i—// ) - V95 (v:)%ds do(z) (44)

0 Q. 0 09,

5

=19 0. 0 9.

j/w 9 ((we)?0, ng)dsdzﬂf//ws b*—b5) ((u2)? — K~2(v.)?) ds do(z).
0

Since (u2 — K~202) = (ue + K 'v:)(ue — K~ 'v.) and eVas (z) = (Vya,) (z/€), the
a priori estnnates of Lemma 3.1 nnply that (44) is uniformly bounded by C/R too,
which yields the desired statement.

7 Numerical study

This section is devoted to the numerical computation of the cell problems and of
the homogenized coefficients, given by Proposition 4.3, and to the study of their
variations according to various parameters in the microscopic model. Our numer-
ical simulations are performed with the FreeFem++ package [27]. We have used
Lagrange P1 finite elements with 33586 vertices (degrees of freedom) with charac-
teristic Galerkin method for the convective term. The periodicity cell is the unit
square and the solid obstacle is a disk. Table 1 gives the adimensionalized values
of the parameters utilized in our simulations.

Parameters Values

Radius of the obstacle r 0.2

Equilibrium constant K 1

Porosity : YV =1—r%n 0.874357

Tortuosity : [0X°] = 27r 1.25664

K factor : Y9 + K|0XY] 2.13099

Surface velocity b° 0

Mean velocity [ b(y)dy (0.0385, —2.67 x 1079)
YU

Adsorption rate kg 1

Bulk molecular diffusion D 1

Surface molecular diffusion D% | 1

Table 1: Parameter values

The velocity profile b(y) is generated by solving the following Stokes problem in
the fluid part Y0 of the unit cell.

Vyp—Ayb=e inY"

divyb =0 in YO,
b=0 on 9%°, (45)
p,b Y — periodic.

The drift velocity b* is then calculated using (13): we found b* = (0.0180, —1.25 %
107°).
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Figure 1: Behavior of the longitudinal dispersion with respect to Pej,. for various
values of the surface molecular diffusion D%.

In a first experiment we study the behavior of the longitudinal dispersion with
respect to the local Péclet number Pej,. (we simply multiply the velocity field b(y)
by an increasing factor) for various values of D® (see Figure 1). As can be expected
the dispersion increases with Pej,.. Clearly the dispersion increases with D® too.
However, as shown by Figure 2, the dispersion reaches a limit as D goes to infinity.
This can be explained formally by the fact that, in such a case, the cell solution
satisfies in the limit that (w; + Ky;) is constant on the pore surface 9%°. In this
limit, the bulk correctors y; satisfy the following limit problem

b(y) - Vyxi — divy (D(Vyxi +e;)) = (b* —b)-e; in Y7,
—D(Vyxi+e) n+ Kb =
K <Xi +y; — 03071 / (xi + yi)da(y)) on 0%°,
ox0
y — Xi(y) Y — periodic.
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Figure 2: Behavior of the effective dispersion with respect to D®: longitudinal
dispersion (left), transverse dispersion (right).

In a second experiment we study the behavior of the longitudinal dispersion
with respect to the reaction rate x. Interestingly enough, we observe an inversion
phenomenon on the bulk corrector x; (see Figure 3 where the grey scale goes from
smaller values in white to larger values in black). A similar inversion is exhibited
by x2 too. However, this inversion phenomenon doesn’t appear in the absence of
surface molecular diffusion, i.e., when D = 0. For a given positive value of D,
increasing « implies that it may be more favorable for the solute to “travel” close
to the pore surface by using the surface diffusion. Therefore, the solid pores may
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be seen as obstacles for small x or attractors for large . It is probably easier to
interpret this inversion phenomenon on the “reconstructed” solution (x1(y) + 1)
rather than on just on the cell solution yi(y) (see Figure 4). Indeed, (x1(y) + v1)
corresponds to a local linearization of the two first terms of the ansatz of u. as given
in Proposition 4.3. As the reaction rate increases, the isolines of this reconstructed
concentration start to grace off the obstacle, which implies that the orthogonal
current lines of the concentration flux are more and more attracted by the obstacle.
It should be remarked here that this is a handicap of performing only 2—d numerical
simulations. Indeed, it is only in 3 — d that both the fluid phase and the solid
structure can be connected, which only permits a fair comparison between surface
and bulk molecular diffusions.

Figure 3: The cell solution x;: Left top, reference value x = x°; Right top x = 5x°;
Left bottom s = 6x°; Right bottom x = 8x°.

In Figures 5 and 6 we plot the dispersion in two asymptotic regimes: £ — 0 and
Kk — 00. Once again when k — 0o we get an asymptote for the dispersion, corre-
sponding to a limit cell problem where Ky; = w;. In this limit, the corresponding
system satisfied by the bulk corrector x; is

b(y) - Vyxi — divy (D(Vyxi +e;)) = (b* = b)-e;  in Y7,
—K7ID(Vyxi + ) -n+ (0" = b%) - e; =
.S
b3 (y) - Vixi — divy (DS (V5xi +e;)) on 9%,
y = xi(y) Y — periodic.

(47)

Of course, the transverse dispersion is always smaller than the longitudinal disper-
sion. Figures 5 and 6 show the blow-up behavior of both longitudinal and transverse
dispersions when x — 0. This is due to the ill-posedness of the cell problem (17) in
the limit k — 0.
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Figure 4: The reconstructed solution x1(y) + y1: Left top, Reference value x = x;

Right top & = 6k°; Left bottom x = 12x°; Right bottom & = 19x°
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Figure 5: Behavior of the longitudinal dispersion with respect to x: when x goes to
0 (left), when & goes to infinity (right).
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