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Homogenization of reactive flows in porous media

and competition between bulk and surface diffusion

G. Allaire ∗, H. Hutridurga ∗

Abstract

In this work, we study the convection and diffusion of a solute in a porous
medium in the presence of a linear chemical reaction of adsorption/desorption
on the pore surfaces. The mathematical model is a system of two coupled
convection-diffusion equations, one in the bulk of the saturated fluid flowing
in the porous medium, the other on the pore surface, at the interface with the
solid part of the porous medium. The coupling takes place through a linear
reaction term expressing the exchange of mass between the bulk concentration
and the surface concentration. By a method of two-scale asymptotic expan-
sion with drift we obtain the homogenized problem in a moving frame. We
rigorously justify our upscaling approach by using the notion of two-scale con-
vergence with drift. Some 2-d numerical tests are performed in order to study
the effect of variations of the adsorption rate constant and surface molecular
diffusion on the effective dispersion tensor.

AMS classification: 35B27, 76M50

1 Introduction

Transport of solutes through porous media, where there is an exchange of mass
at the interface between the bulk and the pore surface, has many applications in
chemical engineering or in soil sciences [10], [16]. We understand porous media
flows based on our knowledge of basic physical principles at the pore scale but most
experimental observations are made at the macroscale. Direct numerical simulation
for solving microscopic models are often impossible to handle with the available
computational resources and thus upscaling is a necessary tool in practice. The
method of multiscale asymptotic expansions is one of the most efficients to derive
effective models at a macroscopic scale and has the definite advantage that it can be
made mathematically rigorous through the theory of homogenization [17]. Disper-
sion phenomenon has attracted a lot of interest since the pioneering work of Taylor
[29]. Multiple scale expansions were employed to study dispersion phenomena in
presence of adsorption in many works including [4], [9], [12], [14], [18], [22], [23],
[28] (and references therein).

In the present paper we consider a single solute in an incompressible satu-
rated fluid flowing in a porous medium. A linear chemical reaction of adsorp-
tion/desorption can take place at the pore surfaces. Therefore, two unknown con-
centrations are taken into account: one in the bulk and the other on the liquid/solid
interfaces. The mathematical model is a system of two coupled convection-diffusion
equations, one in the bulk of the saturated fluid flowing in the porous medium, the
other on the pores surface. This model is a generalization of that in [4], [6]: the
novelty is the presence of convection and diffusion on the pores surface too (and
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not only in the bulk). In particular we study the possible competition between
surface and bulk molecular diffusion. Higher values of the surface diffusion may
favor a solute transport along the pore boundaries rather than in the bulk of the
fluid. Of course, our model can still be considered as a toy model since in most
applications one should consider multiple phase multi-component flow with more
complex adsorption isotherms of Langmuir type. This will be the topic of future
work [19].

Under a periodicity assumption on the porous media, our main result says that
the homogenized or upscaled limit of both surface and bulk concentrations is given
by the solution ũ0(t, x) of the following macroscopic convection-diffusion equation

Kd

∂ũ0
∂t

+
1

ε
b∗ · ∇ũ0 − div (A∗∇ũ0) = 0 ,

where Kd is the effective porosity, A∗ is the effective diffusion (or dispersion) tensor
and b∗/ε is the effective velocity. Note that, as usual, ε is the small positive param-
eter which is the ratio between the heterogeneities lengthscale and a characteristic
macroscopic lengthscale. Such a result is first obtained by the formal method of
two-scale asymptotic expansion with drift (see [8], [4], although it was anticipated
in [20], [26]) in Proposition 4.3 and Remark 4.4, which also deliver explicit formula
for the effective coefficients. A mathematically rigorous proof of our main result is
later given in Theorems 5.7 and 6.1 which rely on the notion of two-scale conver-
gence with drift introduced in [21] (see [3] for a pedagogical review). This notion
has also been applied to the homogenization of convection-diffusion equations in [8],
[6], [13].

The contents of this paper is the following. Section 2 describes the periodic
porous medium and the nondimensional microscopic model. Section 3 is devoted
to uniform a priori estimates and briefly review existence results. In section 4, we
apply the formal method of two-scale asymptotic expansion with drift to deduce
the homogenized limit. Section 5 is dedicated to the rigorous justification of the
upscaling process and it contains most of the definitions and results of two-scale
convergence theory. An improved convergence theorem (in the strong norm) is
proved in Section 6. Eventually, Section 7 is concerned with some 2 − d numerical
tests using the FreeFem++ package [27]. In particular we study the behavior of the
cell solutions and of the homogenized dispersion tensor with respect to variations of
various microscopic parameters like the local Péclet number, the reaction rate and
the surface molecular diffusion.

2 Description of the problem

We consider an ε-periodic infinite porous medium. Typically, this medium is built
out of Rd (d = 2 or 3, being the space dimension) by removing a periodic distribution
of solid obstacles which, after rescaling, are all similar to the unit obstacle Σ0. More
precisely, let Y = [0, 1]d be the unit periodicity cell. Let us consider a smooth
partition Y = Σ0 ∪Y 0 where Σ0 is the solid part and Y 0 is the fluid part. The unit
periodicity cell is identified with the flat unit torus Td. The fluid part is assumed
to be a smooth connected open subset whereas no particular assumptions are made
on the solid part.

For each multi-index j ∈ Z
d, we define Y j

ε = ε(Y 0 + j), Σj
ε = ε(Σ0 + j), Sj

ε =
ε(∂Σ0+j), the periodic porous medium Ωε = ∪j∈ZdY j

ε and the (d−1)−dimensional
surface ∂Ωε = ∪j∈ZdSj

ε .
We denote by n(y) the exterior unit normal to Y 0. Then, G(y) = Id−n(y)⊗n(y)

is the projection matrix on the tangent hyperplane to the surface ∂Y 0 = ∂Σ0. In
order to define a Laplace-Beltrami operator on this surface, we define the tangential
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gradient ∇S = G(y)∇ and the tangential divergence divSΨ = div(G(y)Ψ) for a
vector field defined from Y 0 into R

d.
We assume that the porous medium is saturated with an incompressible fluid,

the velocity of which is assumed to be independent of time, periodic in space and
given. The fluid cannot penetrate the solid obstacles but can slip on their surface.
Therefore, we consider two periodic vector fields: b(y), defined in the bulk Y 0, and
bS(y), defined on the surface ∂Σ0 and belonging at each point of ∂Σ0 to its tangent
hyperplane. Assuming that the fluid is incompressible and does not penetrate the
obstacles means that

divyb(y) = 0 in Y 0, b(y) · n(y) = 0 on ∂Σ0,

divSy b
S(y) = 0 on ∂Σ0.

In truth, bS(y) should be the trace of b(y) on ∂Σ0 but, since this property is not
necessary for our analysis, we shall not make such an assumption. Of course, some
regularity is required for these vector fields and we assume that b(y) ∈ L∞(Y 0;Rd),
bS(y) ∈ L∞(∂Σ0;Rd) and bS = GbS is always tangential to the surface.

We assume that the molecular diffusion is periodic, possibly anisotropic, varying
in space and different in the bulk and on the surface. In other words, we introduce
two periodic symmetric tensorsD(y) and DS(y), with entries belonging respectively
to L∞(Y 0) and to L∞(∂Σ0), which are assumed to be uniformly coercive, namely
there exists a constant C > 0 such that, for any ξ ∈ R

d,

D(y)ξ · ξ ≥ C|ξ|2 a.e. in Y 0, DS(y)ξ · ξ ≥ C|ξ|2 a.e. on ∂Σ0.

Without loss of generality, we also assume that DS acts only on the tangent hyper-
plane of Σ0, i.e., DS = GDSG.

Introducing the two positive constants κ (the adsorption rate) and K (the ad-
sorption equilibrium constant), for some positive final time T we consider the cou-
pled system

∂uε
∂t

+
1

ε
bε · ∇uε − div (Dε∇uε) = 0 in (0, T )× Ωε. (1)

−Dε

ε
∇uε ·n =

∂vε
∂t

+
1

ε
bSε ·∇Svε−divS

(

DS
ε ∇Svε

)

=
κ

ε2

[

uε −
vε
K

]

on (0, T )×∂Ωε.

(2)
uε(0, x) = u0(x) in Ωε, vε(0, x) = v0(x) on ∂Ωε (3)

where the initial data are chosen such that u0(x) ∈ L2(Rd) and v0(x) ∈ H1(Rd)
(so that its trace is well-defined on ∂Ωε). The notations for the coefficients are, as
usual, Dε(x) = D(x/ε), DS

ε (x) = DS(x/ε), bε(x) = b(x/ε) and bSε (x) = bS(x/ε).
It should be noted here that the divergence free assumption and the no-penetration

condition on the velocity field is not necessary as one can still homogenize the above
system in their absence, using a factorization principle to start with as is done in
[8].

The scaling of system (1)-(3), where some terms are very large of order ε−1 or
ε−2, should not be a surprise for the attentive reader. Indeed, it is obtained from an
adimensonalized system (without any ε factor) by the parabolic change of variables
(τ, y) → (ε−2t, ε−1x). In other words, one can claim that, even though the global
Péclet number is of the order of ε−1, the local Péclet number is just of order 1. We
recall that the presence of a large drift is classical in the literature [4], [9], [13], [21],
[22], [26], [28].

Remark 2.1 When κ = 0, the equations for uε and vε are decoupled. So, we
always assume κ > 0. Formally, when κ tends to +∞, the two concentrations are
fully coupled in the sense that vε = Kuε.
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On the other hand, when K = 0, it formally yields that vε = 0 and the only
remaining unknown uε satisfies a homogeneous Neumann boundary condition on
∂Ωε. However, if K tends to +∞, then uε and vε are again decoupled in the limit,
with a Fourier-type boundary condition −Dε∇uε · n = κuε/ε on ∂Ωε.

Remark 2.2 A crucial assumption in our work, as in [4] and[6], is that all coeffi-
cients are purely periodic functions depending only on the fast variable y = x/ε and
not on the slow variable x. In particular, we are unable to treat the case of more
general velocity fields of the type bε(x) = b(x, x/ε) and bSε (x) = bS(x, x/ε) where
b(x, y) and bS(x, y) are smooth divergence-free (with respect to both variables) vector
fields. The main technical reason is that the homogenized drift b∗ would then depend
on x which cannot be handled by our method. Even more, we know from [7] that,
under special assumptions on the coefficients depending on x and y, a new local-
ization phenomenon can happen which is completely different from the asymptotic
behavior proved in the present work. There is still a lot to understand for general
velocity fields b(x, y) and bS(x, y) but we are lacking the adequate tools (even formal
ones) to guess the correct effective limit.

3 A Priori Estimates

The existence and uniqueness of solution to (1)-(3) is classical. One can either use
the argument of Galerkin approximation followed by a priori estimates as in [15]
(Chapter 7) or use a variant of the Lax-Milgram lemma due to Lions-Magenes (see,
if necessary, chapter 10 in [11]).

The variational formulation for (1)-(2) amounts to find (uε, vε) such that uε ∈
L2((0, T );H1(Ωε))∩C([0, T ];L2(Ωε)) and vε ∈ L2((0, T );H1(∂Ωε))∩C([0, T ];L2(∂Ωε))
satisfying, for any test function (φε, ψε) ∈ H1(Ωε)×H1(∂Ωε),

T
∫

0

∫

Ωε

[

∂uε
∂t

φε +
1

ε
bε · ∇uεφε +Dε∇uε · ∇φε

]

dx dt

+
ε

K

T
∫

0

∫

∂Ωε

[

∂vε
∂t

ψε +
1

ε
bSε · ∇Svεψε +DS

ε ∇Svε · ∇Sψε

]

dσε(x) dt

+

T
∫

0

∫

∂Ωε

[

κ

ε

(

uε −
vε
K

)

(

φε −
ψε

K

)]

dσε(x) dt = 0. (4)

From this variational formulation we deduce the following parabolic a priori esti-
mate.

Lemma 3.1 There exists a constant C, which is independent of ε, such that the
solution of (1)-(3) satisfies

‖uε‖L∞((0,T );L2(Ωε)) +
√
ε‖vε‖L∞((0,T );L2(∂Ωε))

+‖∇uε‖L2((0,T )×Ωε) +
√
ε‖∇Svε‖L2((0,T )×∂Ωε)

+
√
ε‖wε‖L∞((0,T );L2(∂Ωε)) ≤ C

(

‖u0‖L2(Rd) + ‖v0‖H1(Rd)

)

(5)

where wε = ε−1
(

uε −K−1vε
)

.
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Remark 3.2 Since the (d− 1)-dimensional measure of the periodic surface ∂Ωε is
of the order of ε−1, a bound of the type

√
ε‖zε‖L2(∂Ωε) ≤ C means that the sequence

zε is “bounded” on the surface ∂Ωε.

Proof. We first derive an energy equality for (1)-(3). We multiply (1) by uε and
then integrate over Ωε

1

2

d

dt

∫

Ωε

|uε|2 dx+

∫

Ωε

Dε∇uε · ∇uε dx+
κε

ε2

∫

∂Ωε

(

u2ε −
uεvε
K

)

dσε(x) = 0 (6)

where the integral of the convective term has disappeared since
∫

Ωε

1

ε
bε · ∇uεuε dx =

1

2

∫

Ωε

div(bε|uε|2) dx =
1

2

∫

∂Ωε

|uε|2bε · n dσε(x) = 0.

Multiply the second equality in (2) by K−1εvε and integrate over ∂Ωε to get

ε

2K

d

dt

∫

∂Ωε

|vε|2 dσε(x)+
ε

K

∫

∂Ωε

DS
ε ∇Svε·∇Svε dσε(x)+

εκ

ε2

∫

∂Ωε

(

v2ε
K2

− uεvε
K

)

dσε(x) = 0

(7)
where the integral of the convective term has also disappeared since bSε is divergence
free. Adding (6) and (7) results in the following energy equality

1

2

d

dt

∫

Ωε

|uε|2 dx+
ε

2K

d

dt

∫

∂Ωε

|vε|2 dσε(x) +
∫

Ωε

Dε∇uε · ∇uε dx

+
ε

K

∫

∂Ωε

DS
ε ∇Svε · ∇Svε dσε(x) +

εκ

ε2

∫

∂Ωε

(

uε −
vε
K

)2

dσε(x) = 0

Integrating it over the time interval (0, T ) leads to the desired estimate (5).

✷

4 Two Scale Expansions with drift

We homogenize the microscopic model (1)-(3) using the formal method of two-scale
asymptotic expansions with drift [4], [6], [8], [13], [26]. This method starts with the
assumption that uε and vε can be written in terms of an infinite series as

uε(t, x) =

∞
∑

i=0

εiui

(

t, x− b∗t

ε
,
x

ε

)

(8)

and

vε(t, x) =

∞
∑

i=0

εivi

(

t, x− b∗t

ε
,
x

ε

)

(9)

where ui(t, x, y) and vi(t, x, y) are functions of macroscopic variable x and the mi-
croscopic variable y = x

ε
∈ (0, 1)d. The drift b∗ ∈ R

d is unknown to start with. It
shall be determined along the process of homogenization. The idea is to plug (8)
and (9) in (1)-(2). We shall keep in mind the following chain rule differentiation:

∂

∂t

[

φ

(

t, x− b∗t

ε
,
x

ε

)]

=





∂φ

∂t
−

d
∑

j=1

b∗j
ε

∂φ

∂xj





(

t, x− b∗t

ε
,
x

ε

)

,

∂

∂xj

[

φ

(

t, x− b∗t

ε
,
x

ε

)]

=

[

∂φ

∂xj
+

1

ε

∂φ

∂yj

](

t, x− b∗t

ε
,
x

ε

)

.

(10)
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Inserting the asymptotic expansions of the solutions in the model, we identify the
coefficients of the various powers of ε to get a cascade of systems of equations. We
present a lemma that plays a crucial role in solving those systems of pde’s.

Lemma 4.1 For f ∈ L2(Y 0), g ∈ L2(∂Σ0) and h ∈ L2(∂Σ0), the following system
of equations































b(y) · ∇yu− divy(D(y)∇yu) = f in Y 0,

−D(y)∇yu · n+ g = κ
(

u− 1
K
v
)

on ∂Σ0,

bS(y) · ∇S
y v − divSy (D

S(y)∇S
y v)− h = κ

(

u− 1
K
v
)

on ∂Σ0,

y → (u(y), v(y)) Y − periodic,

(11)

admits a solution (u, v) ∈ H1
#(Y

0) × H1
#(∂Σ

0), unique up to the addition of a
constant multiple of (1,K), if and only if

∫

Y0

f dy +

∫

∂Σ0

(g + h) dσ(y) = 0. (12)

Remark 4.2 The subscript # indicates a space of Y -periodic functions. Recall
that Y 0 and Σ0 are thought as subsets of the unit cell Y , identified with the unit
flat torus, i.e., Y 0 and Σ0 are periodic subsets of Rd.

Proof. The variational formulation of (11) is
∫

Y 0

(b · ∇yu)φdy +

∫

Y 0

D(y)∇yu · ∇yφdy+

1

K

∫

∂Σ0

(

bS · ∇S
y v

)

ψ dy +
1

K

∫

∂Σ0

DS(y)∇S
y v · ∇S

yψ dσ(y)+

∫

∂Σ0

κ
[

u− v

K

]

[

φ− ψ

K

]

dσ(y) =

∫

Y0

fφ dy +

∫

∂Σ0

(

gφ+
h

K
ψ

)

dσ(y).

Taking (φ, ψ) = (1,K) we find the necessary condition (12). The left hand side of
the variational formulation is coercive on the space [H1

#(Y
0)×H1

#(∂Σ
0)]/[R(1,K)]

where the space R(1,K) is the set of constant vectors of the type (C,KC) when C
takes values in R. Lax-Milgram lemma yields the existence of a unique solution in
this space.

✷

Proposition 4.3 Under the assumption (8)-(9), the solution (uε, vε) of (1)-(3)
formally satisfy

uε(t, x) ≈ u0

(

t, x− b∗t

ε

)

+ εu1

(

t, x− b∗t

ε
,
x

ε

)

vε(t, x) ≈ Ku0

(

t, x− b∗t

ε

)

+ εv1

(

t, x− b∗t

ε
,
x

ε

)

with the effective drift

b∗ =

∫

Y 0

b(y) dy +K

∫

∂Σ0

bS(y) dσ(y)

|Y 0|+K|∂Σ0|d−1

(13)
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and u0 the solution of the homogenized problem







Kd

∂u0
∂t

− divx (A
∗∇xu0) = 0 in (0, T )× R

d

Kd u0(0, x) = |Y 0|u0(x) + |∂Σ0|d−1v
0(x), x ∈ R

d

(14)

where Kd = |Y 0|+K|∂Σ0|d−1 and the dispersion tensor A∗ is given by

A∗
ij =

∫

Y 0

D(y) (∇yχi + ei) · (∇yχj + ej) dy + κ

∫

∂Σ0

(

χi −
ωi

K

)(

χj −
ωj

K

)

dσ(y)

+K−1

∫

∂Σ0

DS(y)
(

Kei +∇S
yωi

)

·
(

Kej +∇S
yωj

)

dσ(y)

(15)
with (χ, ω) = (χi, ωi)1≤i≤d being the solution of the cell problem such that

u1(t, x, y) = χ(y) · ∇xu0(t, x) , v1(t, x, y) = ω(y) · ∇xu0(t, x) , (16)

and the cell problem is















b(y) · ∇yχi − divy(D(∇yχi + ei)) = (b∗ − b) · ei in Y 0,

bS(y) · ∇S
yωi − divSy (D

S(∇S
yωi +Kei)) = K(b∗ − bS) · ei + κ

(

χi −K−1ωi

)

on ∂Σ0,
−D(∇yχi + ei) · n = κ

(

χi −K−1ωi

)

on ∂Σ0,
y → (χi, ωi) Y − periodic.

(17)

Remark 4.4 In Proposition 4.3, the asymptotic profile u0 is defined in a moving
frame of reference. Of course, one can go back to a fixed frame of reference by
defining

ũ0 (t, x) = u0

(

t, x− b∗t

ε

)

.

Then, while u0 was solution of the diffusion homogenized equation (14), ũ0 is now
solution of an homogenized convection-diffusion equation

Kd

∂ũ0
∂t

+
1

ε
b∗ · ∇xũ0 − divx (A

∗∇xũ0) = 0 in (0, T )× R
d

which has a nicer physical interpretation since b∗/ε is clearly the homogenized ve-
locity.

Proof. Inserting the ansatz (8) and (9) in the equations (1) and (2) yields the
following cascade of equations.































b(y) · ∇yu0 − divy(D(y)∇yu0) = 0 in Y 0,

−D∇yu0 · n = bS(y) · ∇S
y v0 − divSy (D

S(y)∇S
y v0)

= κ
(

u0 −K−1v0
)

on ∂Σ0,

y → (u0(y), v0(y)) Y − periodic.

(18)

From Lemma 4.1 we deduce that the solution of (18) does not depend on y and
satisfy v0(t, x) = Ku0(t, x).
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At order ε−1:






























−b∗ · ∇xu0 + b(y) · (∇xu0 +∇yu1)− divy(D(y)(∇xu0 +∇yu1)) = 0 in Y 0,

−b∗ · ∇xv0 + bS(y) · (∇S
xv0 +∇S

y v1)− divSy (D
S(y)(∇S

xv0 +∇S
y v1))

= −D(y)(∇xu0 +∇yu1) · n = κ
(

u1 −K−1v1
)

on ∂Σ0,

y → (u1(y), v1(y)) Y − periodic.
(19)

The compatibility condition (12) of Lemma 4.1 yields the desired value (13) of the
drift velocity b∗ in order to solve (19). By linearity of (19) we deduce that its
solution is given by

u1(t, x, y) = χ(y) · ∇xu0 and v1(t, x, y) = ω(y) · ∇xu0

where (χ, ω) is the solution of the cell problem (17).
At order ε0:


























































∂
∂t
u0 − b∗ · ∇xu1 + b(y) · (∇xu1 +∇yu2)

−divx(D(y)(∇xu0 +∇yu1)) − divy(D(y)(∇xu1 +∇yu2)) = 0 in Y 0,

∂
∂t
v0 − b∗ · ∇xv1 + bS(y) · (∇S

xu1 +∇S
y u2)

−divx(D
S(y)(∇xv0 +∇S

y v1))− divSy (D
S(y)(∇xv1 +∇S

y v2))

= −D(y)(∇yu2 +∇xu1) · n = κ
(

u2 −K−1v2
)

on ∂Σ0,

y → (u2(y), v2(y)) Y − periodic.
(20)

On identifying (20) with (11) we get the following right hand sides















f = (b∗ − b) · ∇xu1 + divx(D(∇xu0 +∇yu1))− ∂u0

∂t
+ divy(D(∇xu1)) in Y 0,

g = −D∇xu1 · n on ∂Σ0,

h = −∂v0
∂t

+ b∗ · ∇xv1 − bS · (∇xu1)

+divx(D
S(∇xv0 +∇S

y v1)) + divSy
(

DS∇xv1
)

on ∂Σ0.
(21)

According to Lemma 4.1, there exists a solution (u2, v2) provided (12) holds true.
This compatibility condition leads to the homogenized problem

Kd ∂tu0 = divx (A
∗∇xu0) in (0, T )× R

d

where Kd = |Y 0|+K|∂Σ0|d−1 and the entries of the dispersion tensor A∗ are given
by

A∗
ij =

∫

Y 0

Dei · ej dy +
1

2





∫

Y 0

D∇yχj · ei dy +
∫

Y 0

D∇yχi · ej dy





+K

∫

∂Σ0

DSei · ej dσ(y) +
1

2





∫

∂Σ0

DS∇S
yωj · ei dσ(y) +

∫

∂Σ0

DS∇S
yωi · ej dσ(y)





+
1

2





∫

Y 0

(b∗i − bi(y))χj(y) dy +

∫

Y 0

(

b∗j − bj(y)
)

χi(y) dy





+
1

2





∫

∂Σ0

(

b∗i − bSi (y)
)

ωj(y) dσ(y) +

∫

∂Σ0

(

b∗j − bSj (y)
)

ωi(y) dσ(y)




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Remark that we have symmetrized the dispersion tensor A∗ since only its contrac-
tion with the (symmetric) hessian matrix ∇2u0 plays a role in the homogenized
equation. In other words its antisymmetric part (if any) cannot be deduced from
the above method of obtaining the homogenized equation. Testing the cell problem
(17) for (χi, ωi) by (χj , ωj) and vice-versa leads to the following relationship

∫

Y 0

D∇yχi·∇yχj dy+
1

K

∫

∂Σ0

DS∇S
yωi·∇S

yωj dσ(y)+κ

∫

∂Σ0

[

χi −
ωi

K

] [

χj −
ωj

K

]

dσ(y)

+
1

2





∫

Y 0

D∇yχj · ei dy +
∫

Y 0

D∇yχi · ej dy





+
1

2





∫

∂Σ0

DS∇S
yωj · ei dσ(y) +

∫

∂Σ0

DS∇S
yωi · ej dσ(y)





=
1

2





∫

Y 0

(b∗i − bi(y))χj(y) dy +

∫

Y 0

(

b∗j − bj(y)
)

χi(y) dy





+
1

2





∫

∂Σ0

(

b∗i − bSi (y)
)

ωj(y) dσ(y) +

∫

∂Σ0

(

b∗j − bSj (y)
)

ωi(y) dσ(y)





Adding the above equality to the previous expression for A∗ yields the desired
formula (15). To obtain the initial condition of the homogenized equation we use a
conservation property in the unit cell which says that

∫

Y 0

u0(0, x) dy +

∫

∂Σ0

v0(0, x) dy =

∫

Y 0

u0(x) dy +

∫

∂Σ0

v0(x) dy

which leads to the desired initial condition upon recalling that v0 = Ku0. Let
us emphasize once again that this proof is purely formal since it is based on the
assumption (8)-(9) of a given ansatz for the solution (uε, vε) (and we don’t prove
that such a series is converging).

✷

5 Two scale convergence with drift

The goal of this section is to rigorously justify the homogenized limit heuristically
established in the previous section. We shall use the notion of two-scale convergence
with drift introduced in [21] (see [3] for detailed proofs). It is a generalization of
the usual two-scale convergence defined in [2], [24].

Proposition 5.1 [21] Let V be a constant vector in R
d. For any bounded sequence

of functions Uε(t, x) ∈ L2((0, T )× R
d), i.e., satisfying

‖Uε‖L2((0,T )×Rd) ≤ C,

there exists a limit U0(t, x, y) ∈ L2((0, T ) × R
d × T

d) and one can extract a sub-
sequence (still denoted by ε) which is said to two-scale converge with drift V, or

9



equivalently in moving coordinates (t, x) → (t, x − Vt
ε
), to this limit, in the sense

that, for any φ(t, x, y) ∈ C∞
0 ((0, T )× R

d × T
d),

lim
ε→0

T
∫

0

∫

Rd

Uε(t, x)φ(t, x − Vt
ε
,
x

ε
) dx dt =

T
∫

0

∫

Rd

∫

Td

U0(t, x, y)φ(t, x, y) dy dx dt.

We denote this convergence by Uε
2−drift−−−−⇀ U0.

Remark 5.2 Proposition 5.1 equally applies to a sequence uε(t, x) ∈ L2((0, T ) ×
Ωε), merely defined in the perforated domain Ωε, and satisfying the uniform bound

‖uε‖L2((0,T )×Ωε) ≤ C.

Indeed, defining an extended function Uε(t, x) = uε(t, x) in Ωε and Uε(t, x) = 0 in
R

d \ Ωε, we obtain that

T
∫

0

∫

Ωε

uε(t, x)φ(t, x − Vt
ε
,
x

ε
) dx dt =

T
∫

0

∫

Rd

Uε(t, x)φ(t, x − Vt
ε
,
x

ε
) dx dt

and the two-scale limit U0(t, x, y) of Uε vanishes in Σ0 so that

lim
ε→0

T
∫

0

∫

Ωε

uε(t, x)φ(t, x − Vt
ε
,
x

ε
) dx dt =

T
∫

0

∫

Rd

∫

Y 0

U0(t, x, y)φ(t, x, y) dy dx dt.

Proposition 5.1 can be generalized in several ways as follows.

Proposition 5.3 Let V be a constant vector in R
d and let the sequence Uε be

uniformly bounded in L2((0, T );H1(Rd)). Then, there exists a subsequence, still de-
noted by ε, and functions U0(t, x) ∈ L2((0, T );H1(Rd)) and U1(t, x, y) ∈ L2((0, T )×
R

d;H1(Td)) such that

Uε
2−drift−−−−⇀ U0

and

∇Uε
2−drift−−−−⇀ ∇xU0 +∇yU1.

The proof of Proposition 5.3 is a combination of arguments from [21], [3] and
of the classical case without drift in [2], [24]. Two-scale convergence can also be
defined for sequences defined on a periodic surface (see [5], [25] for the case without
drift).

Proposition 5.4 Let V be a constant vector in R
d and let Wε be a sequence in

L2((0, T )× ∂Ωε) such that

ε

T
∫

0

∫

∂Ωε

|Wε(t, x)|2 dσε(x) dt ≤ C.

Then, there exists a subsequence, still denoted by ε, and a function W0(t, x, y) ∈
L2((0, T )×R

d×∂Σ0) such thatWε(t, x) two-scale converges with drift V toW0(t, x, y)
in the sense that

lim
ε→0

ε

T
∫

0

∫

∂Ωε

Wε(t, x)φ(t, x−
Vt
ε
,
x

ε
) dσε(x) dt =

T
∫

0

∫

Rd

∫

∂Σ0

W0(t, x, y)φ(t, x, y) dσ(y) dx dt

for any φ(t, x, y) ∈ C∞
0 ((0, T )×R

d×T
d). We denote this convergence byWε

2S−drift−−−−−⇀
W0.
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Proposition 5.5 Let Wε(t, x) ∈ L2((0, T );H1(∂Ωε)) be such that

ε

T
∫

0

∫

∂Ωε

(

|Wε(t, x)|2 + |∇SWε(t, x)|2
)

dσε(x) dt ≤ C.

There existW0(t, x) ∈ L2((0, T );H1(Rd)) andW1(t, x, y) ∈ L2((0, T )×R
d;H1

#(∂Σ
0))

such that

Wε
2S−drift−−−−−⇀W0(t, x)

∇SWε
2S−drift−−−−−⇀ G(y)∇xW0(t, x) +∇S

yW1(t, x, y)

where G(y) is the projection operator on the tangent plane of ∂Σ0 at the point y.

The proofs of Propositions 5.4 and 5.5 are a slight modification of those in the
classical case without drift which are to be found in [5], [25].

Eventually we state a technical lemma which will play a key role in the conver-
gence analysis.

Lemma 5.6 Let φ(t, x, y) ∈ L2((0, T )×R
d×∂Σ0) be such that

∫

∂Σ0

φ(t, x, y) dσ(y) =

0 for every (t, x) ∈ (0, T )×R
d. There exist two vector fields θ(t, x, y) ∈ [L2((0, T )×

R
d × T

d)]d and Θ(t, x, y) ∈ [L2((0, T )× R
d × ∂Σ0)]d such that

divyθ = 0 in Y 0,

θ · n = φ on ∂Σ0,

divSyΘ = φ on ∂Σ0.

(22)

Proof. We choose θ = ∇yξ with ξ ∈ H1
#(Y

0) a solution to

{

∆yξ = 0 in Y 0,
∇yξ · n = φ on ∂Σ0,

(23)

which admits a unique solution, up to an additive constant, since the compatibility
condition of (23) is satisfied. On similar lines, we choose Θ = ∇S

y β where β is

the unique solution in H1
#(∂Σ

0)/R of ∆S
y β = φ on ∂Σ0 which is solvable because

∫

∂Σ0

φdσ(y) = 0.

✷

We now apply the above results on two-scale convergence with drift to the
homogenization of (1)-(3). Let us choose the drift V = b∗ given by formula (13).

Theorem 5.7 The sequence of bulk and surface concentrations {uε} and {vε}, so-
lutions of system (1)-(3), two-scale converges with drift V, as ε→ 0, in the following
sense



































uε
2−drift−−−−⇀ u0(t, x)

vε
2S−drift−−−−−⇀Ku0(t, x)

∇uε
2−drift−−−−⇀ ∇xu0(t, x) +∇y(χ(y) · ∇xu0(t, x))

∇Svε
2S−drift−−−−−⇀KG(y)∇xu0(t, x) +∇S

yω(y) · ∇xu0(t, x)
1
ε

(

uε − 1
K
vε
) 2S−drift−−−−−⇀ (χ(y)− ω(y)) · ∇xu0(t, x)

(24)

where u0(t, x) is the unique solution of the homogenized problem (14) and (χ(y), ω(y)) =
(χi(y), ωi(y))1≤i≤d are the solutions of the cell problem (17).
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Proof. Up to extracting a subsequence, the two scale convergence results (24) are
obvious consequences of the a priori estimates of Lemma 3.1 and of the previous
Propositions 5.3 and 5.5 (see [6] for similar computations, if necessary). The only
limit that deserves some attention is that for wε = 1

ε

(

uε −K−1vε
)

. From Lemma
3.1 we know that it satisfies the uniform estimate

ε

T
∫

0

∫

∂Ωε

|wε(t, x)|2 dσε(x) dt ≤ C,

from which, by virtue of Proposition 5.4, we deduce, for a subsequence, that

wε
2S−drift−−−−−⇀ q(t, x, y) for some q(t, x, y) ∈ L2((0, T )× R

d;L2(∂Σ0)). Let us choose
a test function φ as in Lemma 5.6, i.e.,

∫

∂Σ0

φ(t, x, y) dσ(y) = 0. To pass to the limit

in

lim
ε→0

ε

T
∫

0

∫

∂Ωε

wε(t, x)φ

(

t, x− b∗t

ε
,
x

ε

)

dσε(x) dt

we separate wε in a difference of two terms. In view of (22), the first one is

ε

T
∫

0

∫

∂Ωε

1

ε
uεφ

(

t, x− b∗t

ε
,
x

ε

)

dσε(x) dt =

T
∫

0

∫

Ωε

div

(

uεθ

(

t, x− b∗t

ε
,
x

ε

))

dx dt

=

T
∫

0

∫

Ωε

[

∇uε · θ
(

t, x− b∗t

ε
,
x

ε

)

+ uε (divxθ)

(

t, x− b∗t

ε
,
x

ε

)]

dx dt

2S−drift−−−−−⇀
T
∫

0

∫

Rd

∫

Y 0

[

(∇xu+∇yu1) · θ + udivxθ
]

dy dx dt

=

T
∫

0

∫

Rd

∫

∂Σ0

u1θ · n dσ(y) dx dt =
T
∫

0

∫

Rd

∫

∂Σ0

u1φdσ(y) dx dt.

Now, the second term is

ε

T
∫

0

∫

∂Ωε

1

Kε
vεφ

(

t, x− b∗t

ε
,
x

ε

)

dσε(x) dt =

T
∫

0

∫

∂Ωε

1

K
vε

(

divSyΘ
)

(

t, x− b∗t

ε
,
x

ε

)

dσε(x) dt

= ε

T
∫

0

∫

∂Ωε

1

K
vε

[

divS
(

Θ

(

t, x− b∗t

ε
,
x

ε

))

− divx (GΘ)

(

t, x− b∗t

ε
,
x

ε

)]

dσε(x) dt

= ε

T
∫

0

∫

∂Ωε

1

K

[

−Θ

(

t, x− b∗t

ε
,
x

ε

)

· ∇Svε − divx (GΘ)

(

t, x− b∗t

ε
,
x

ε

)

vε

]

dσε(x) dt

2S−drift−−−−−⇀
T
∫

0

∫

Rd

∫

∂Σ0

1

K

[

−Θ ·
(

KG(y)∇xu0 +∇S
y v1

)

− divx (G(y)Θ)Ku0
]

dσ(y) dx dt

=

T
∫

0

∫

Rd

∫

∂Σ0

1

K
v1div

S
yΘ dσ(y) dx dt =

T
∫

0

∫

Rd

∫

∂Σ0

1

K
v1φdσ(y) dx dt
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Subtracting the two terms, we have shown that

T
∫

0

∫

Rd

∫

∂Σ0

qφ dσ(y) dx dt =

T
∫

0

∫

Rd

∫

∂Σ0

(

u1 −
v1
K

)

φdσ(y) dx dt

for all φ such that
∫

∂Σ0

φdy = 0. Thus,

q(t, x, y) = u1(t, x, y)−
v1(t, x, y)

K
+ l(t, x)

for some function l(t, x) which does not depend on y. Since, u1 and v1 are also
defined up to the addition of a function solely dependent on (t, x), we can get rid
of l(t, x) and we recover indeed the last line of (24).

The rest of the proof is now devoted to show that u0(t, x) is the solution of the
homogenized equation (14). For that goal, we shall pass to the limit in the coupled
variational formulation of (1)-(3),

T
∫

0

∫

Ωε

[

∂uε
∂t

φε +
1

ε
bε · ∇uεφε +Dε∇uε · ∇φε

]

dx dt (25)

+ε

T
∫

0

∫

∂Ωε

1

K

[

∂vε
∂t

ψε +
1

ε
bSε · ∇Svεψε +DS

ε ∇Svε · ∇Sψε

]

dσε(x) dt

+

T
∫

0

∫

∂Ωε

[

κ

ε

(

uε −
vε
K

)

(

φε −
ψε

K

)]

dσε(x) dt = 0,

with the test functions

φε = φ

(

t, x− b∗t

ε

)

+ εφ1

(

t, x− b∗t

ε
,
x

ε

)

,

ψε = Kφ

(

t, x− b∗t

ε

)

+ εψ1

(

t, x− b∗t

ε
,
x

ε

)

.

Here φ(t, x), φ1(t, x, y) and ψ1(t, x, y) are smooth compactly supported functions
which vanish at t = T . Let us consider the convective terms in (25) and perform
integrations by parts:

T
∫

0

∫

Ωε

(

∂uε
∂t

+
1

ε
bε · ∇uε

)

φε dx dt+ ε

T
∫

0

∫

∂Ωε

1

K

(

∂vε
∂t

+
1

ε
bSε · ∇Svε

)

ψε dσε(x) dt

= −
T
∫

0

∫

Ωε

uε
∂φ

∂t

(

t, x− b∗t

ε

)

dx dt+
1

ε

T
∫

0

∫

Ωε

uεb
∗ · ∇xφ

(

t, x− b∗t

ε

)

dx dt

+

T
∫

0

∫

Ωε

uεb
∗ · ∇xφ1

(

t, x− b∗t

ε
,
x

ε

)

dx dt−
∫

Ωε

u0(x)φ(0, x) dx +O(ε)

−1

ε

T
∫

0

∫

Ωε

uεbε · ∇xφ

(

t, x− b∗t

ε

)

dx dt+

T
∫

0

∫

Ωε

bε · ∇uεφ1
(

t, x− b∗t

ε
,
x

ε

)

dx dt
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−ε
T
∫

0

∫

∂Ωε

vε
∂φ

∂t

(

t, x− b∗t

ε

)

dσε(x) dt+

T
∫

0

∫

∂Ωε

vεb
∗ · ∇xφ

(

t, x− b∗t

ε

)

dσε(x) dt

+
ε

K

T
∫

0

∫

∂Ωε

vεb
∗ · ∇xψ1

(

t, x− b∗t

ε
,
x

ε

)

dσε(x) dt− ε

∫

∂Ωε

v0(x)φ(0, x) dσε(x) +O(ε)

−
T
∫

0

∫

∂Ωε

vεb
S
ε ·∇xφ

(

t, x− b∗t

ε

)

dσε(x) dt+

T
∫

0

∫

∂Ωε

ε

K
bSε ·∇Svεψ1

(

t, x− b∗t

ε
,
x

ε

)

dσε(x) dt.

We cannot directly pass to the two-scale limit since there are terms which apparently
are of order ε−1. We thus regroup them

T
∫

0

∫

Ωε

uε
b∗ − bε
ε

·∇xφ

(

t, x− b∗t

ε

)

dx dt+

T
∫

0

∫

∂Ωε

vε
(

b∗ − bSε
)

·∇xφ

(

t, x− b∗t

ε

)

dσε(x) dt

(26)

=

T
∫

0

∫

Ωε

uε
b∗ − bε
ε

·∇xφ

(

t, x− b∗t

ε

)

dx dt+K

T
∫

0

∫

∂Ωε

uε
(

b∗ − bSε
)

·∇xφ

(

t, x− b∗t

ε

)

dσε(x) dt

+Kε

T
∫

0

∫

∂Ωε

1

ε

(

uε −
vε
K

)

(

bSε − b∗
)

· ∇xφ

(

t, x− b∗t

ε

)

dσε(x) dt.

We introduce an auxiliary problem







∆αi(y) = bi(y)− b∗i in Y 0,
∇αi · n = K(b∗i − bsi (y)) on ∂Σ0,
αi is Y − periodic,

(27)

which admits a unique solution (up to an additive constant) since, by definition of
b∗, the source terms in (27) are in equilibrium. Defining αε(x) = α(x/ε), thanks to
(27), the ε−1-order term (26) is equal to

T
∫

0

∫

Ωε

ε

d
∑

i=1

∇αε
i · ∇

(

∂xi
φ

(

t, x− b∗t

ε

)

uε

)

dx dt

+Kε

T
∫

0

∫

∂Ωε

1

ε

(

uε −
vε
K

)

(

bSε − b∗
)

· ∇xφ

(

t, x− b∗t

ε

)

dσε(x) dt

for which we can pass to the two-scale limit.
In a first step, we choose φ ≡ 0, i.e., we consider only the terms involving φ1

and ψ1 in the variational formulation (25)

T
∫

0

∫

Ωε

uεb
∗ · ∇xφ1

(

t, x− b∗t

ε
,
x

ε

)

dx dt+

T
∫

0

∫

Ωε

bε · ∇uεφ1
(

t, x− b∗t

ε
,
x

ε

)

dx dt

+

T
∫

0

∫

Ωε

Dε∇uε·∇yφ1

(

t, x− b∗t

ε
,
x

ε

)

dx dt+
ε

K

T
∫

0

∫

∂Ωε

vεb
∗·∇xψ1

(

t, x− b∗t

ε
,
x

ε

)

dσε(x) dt

14



+

T
∫

0

∫

∂Ωε

ε

K
bSε ·∇Svεψ1

(

t, x− b∗t

ε
,
x

ε

)

dσε(x) dt+
ε

K

T
∫

0

∫

∂Ωε

DS
ε ∇Svε·∇S

yψ1

(

t, x− b∗t

ε
,
x

ε

)

dσε(x) dt

+ε

T
∫

0

∫

∂Ωε

κ

ε

(

uε −
vε
K

)

(

φ1 −
ψ1

K

)

dσε(x) dt = 0.

Passing to the two-scale limit with drift, we obtain

−
∫

Rd

∫

Y 0

b∗·∇xu0(t, x)φ1(t, x, y) dy dx dt+

∫

Rd

∫

Y 0

b(y)·(∇xu0(t, x) +∇yu1(t, x, y))φ1(t, x, y) dy dx dt

−
∫

Rd

∫

Y 0

divy (D(y) (∇xu0(t, x) +∇yu1(t, x, y)))φ1(t, x, y) dy dx dt

−
∫

Rd

∫

∂Σ0

b∗ · ∇xu0(t, x)ψ1(t, x, y) dσ(y) dx dt

+
1

K

∫

Rd

∫

∂Σ0

bS(y) ·
(

KG∇xu0(t, x) +∇Sv1(t, x, y)
)

ψ1(t, x, y) dσ(y) dx dt

− 1

K

∫

Rd

∫

∂Σ0

divsy
(

DS(y)
(

KG∇xu0(t, x) +∇Sv1(t, x, y)
))

ψ1(t, x, y) dσ(y) dx dt

+

∫

Rd

∫

∂Σ0

κ
(

u1 −
v1
K

)

(

φ1 −
ψ1

K

)

dσ(y) dx dt = 0

The above expression is precisely the variational formulation of (19) which leads to
the cell problem (17).

In a second step we choose φ1 ≡ 0 and ψ1 ≡ 0 in (25), i.e., we consider only the
terms involving φ

−
T
∫

0

∫

Ωε

uε
∂φ

∂t

(

t, x− b∗t

ε

)

dx dt+

T
∫

0

∫

Ωε

Dε∇uε · ∇xφ

(

t, x− b∗t

ε

)

dx dt

−ε
T
∫

0

∫

∂Ωε

vε
∂φ

∂t

(

t, x− b∗t

ε

)

dσε(x) dt+ε

T
∫

0

∫

∂Ωε

DS
ε ∇Svε·∇Sφ

(

t, x− b∗t

ε

)

dσε(x) dt

+

T
∫

0

∫

Ωε

ε

d
∑

i=1

∇αε
i · ∇

(

∂xi
φ

(

t, x− b∗t

ε

)

uε

)

dx dt

+Kε

T
∫

0

∫

∂Ωε

1

ε

(

uε −
vε
K

)

(

bSε − b∗
)

· ∇xφ

(

t, x− b∗t

ε

)

dσε(x) dt

−
∫

Ωε

u0(x)φ(0, x) dx − ε

∫

∂Ωε

v0(x)φ(0, x) dσε(x) = 0.

Taking into account formula (16) for u1 and v1, passing to the two-scale limit with
drift yields

|Y 0|
∫

Rd

∂u0
∂t

φ dx dt−
∫

Rd

∫

Y 0

d
∑

i,j=1

Dij(y)
∂2u

∂xi∂xj
φdx dt

15



−|Y 0|
∫

Rd

u0(x)φ(0, x) dx −
∫

Rd

∫

Y 0

d
∑

i,j=1

d
∑

l=1

Dil(y)
∂2u0
∂xi∂xj

∂χj(y)

∂yl
φdx dt

+K|∂Σ0|
∫

Rd

∂u0
∂t

φ dx dt −
∫

Rd

∫

∂Σ0

K

d
∑

i,j=1

d
∑

l=1

DS
il(y)Glj(y)

∂2u0
∂xi∂xj

φdσ(y) dx dt

−K|∂Σ0|
∫

Rd

u0(x)φ(0, x) dx −
∫

Rd

∫

∂Σ0

d
∑

i,j=1

d
∑

l=1

DS
il(y)

∂2u0
∂xi∂xj

∂Sωj(y)

∂yl
φdσ(y) dx dt

−K
∫

Rd

∫

∂Σ0

d
∑

i,j=1

(

χj −
ωj

K

)

(

bSi (y)− b∗i
) ∂2u0
∂xi∂xj

φdσ(y) dx dt

−
∫

Rd

∫

Y 0

d
∑

i,j=1

d
∑

l=1

∂αi(y)

∂yl

∂χj(y)

∂yl

∂2u0
∂xi∂xj

φdy dx dt = 0.

Introducing Kd = |Y 0| + K|∂Σ0|d−1, the above equation is just the variational
formulation of the homogenized problem







Kd ∂tu0 = divx (A
∗∇xu0) in (0, T )× R

d

Kd u0(0, x) = |Y 0|u0(x) + |∂Σ0|d−1v
0(x), x ∈ R

d

(28)

The only difficulty is to recognize that the above cell average for A∗ coincides with
formula (15). To check this point, one needs to test with χj the boundary value
problem (27) for α which yields

∫

Y 0

d
∑

l=1

∂αi(y)

∂yl

∂χj(y)

∂yl
dy =

∫

Y 0

(b∗i − bi(y))χj(y) dy +K

∫

∂Σ0

(

b∗i − bSi (y)
)

χj(y) dσ(y).

We safely leave the other details of checking the formula for A∗ to the reader.
Finally, although we proved convergence only for a subsequence (following the

statements of Propositions 5.3 and 5.5), the uniqueness of the homogenized solution
u0(t, x) to (28) implies that the entire sequence {uε, vε} converge.

✷

6 Strong convergence

In the previous section, we proved the (weak) two-scale convergence with drift of
(uε, vε) to (u0,Ku0). In this section, we improve Theorem 5.7 by proving that the
convergence is actually strong, in a sense which is made precise in the following
Theorem.

Theorem 6.1 Let (uε, vε) be the solution to (1)-(3). Then, uε(t, x)1IΩε
strongly

two-scale converges with drift towards 1IY 0u0(t, x) and vε(t, x)1I∂Ωε
strongly two-

scale converges with drift on surfaces towards K1I∂Σ0u0(t, x), in the sense that

lim
ε→0

∥

∥

∥

∥

uε(t, x)− u0

(

t, x− b∗

ε
t

)∥

∥

∥

∥

L2((0,T )×Ωε)

= 0,

lim
ε→0

√
ε

∥

∥

∥

∥

vε(t, x)−Ku0

(

t, x− b∗

ε
t

)∥

∥

∥

∥

L2((0,T )×∂Ωε)

= 0.

(29)
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Our proof of Theorem 6.1 is based on the following result about strong two-scale
convergence (see Theorem 1.8 in [2] or Proposition 9.1 in [3]).

Proposition 6.2 Let (Uε)ε>0 be a sequence in L2((0, T ) × R
d) which two-scale

converges with drift to a limit U0(t, x, y) ∈ L2((0, T )× R
d × T

d). It satisfies

lim
ε→0

‖Uε‖L2((0,T )×Rd) ≥ ‖U0‖L2((0,T )×Rd×Td).

Assume further that

lim
ε→0

‖Uε‖L2((0,T )×Rd) = ‖U0‖L2((0,T )×Rd×Td). (30)

Then, it is said to two-scale converges with drift strongly and it satisfies

lim
ε→0

∫ T

0

∫

Rd

∣

∣

∣

∣

Uε(t, x) − U0

(

t, x− V
ε
t,
x

ε

)∣

∣

∣

∣

2

dx dt = 0,

if U0(t, x, y) is smooth, say U0(t, x, y) ∈ L2
(

(0, T )× R
d;C(Td)

)

.

Proof of Theorem 6.1. To begin with, we treat the case of well-prepared initial
data, that is, v0(x) = Ku0(x) ∈ H1(Rd). Later we shall consider more general
initial data. The energy equality of (1)-(3) for a time interval (0, t) is

1

2

[

‖uε(t)‖2L2(Ωε)
+

ε

K
‖vε(t)‖2L2(∂Ωε)

]

+

t
∫

0

∫

Ωε

Dε∇uε(s, x) · ∇uε(s, x) dx ds

+
ε

K

t
∫

0

∫

∂Ωε

DS
ε ∇Svε(s, x) · ∇Svε(s, x) dσε(x) ds

+
εκ

ε2

t
∫

0

∫

∂Ωε

(

uε(s, x)−
vε
K

(s, x)
)2

dσε(x) ds =
1

2

[

‖u0‖2L2(Ωε)
+

ε

K
‖v0‖2L2(∂Ωε)

]

Following the lead of [6] we do not expect a pointwise (in time) strong convergence
of the sequence (uε, vε). Thus, we integrate once more with respect to time the
above energy equality to obtain

1

2

T
∫

0

[

‖uε(t)‖2L2(Ωε)
+

ε

K
‖vε(t)‖2L2(∂Ωε)

]

dt+

T
∫

0

t
∫

0

∫

Ωε

Dε∇uε(s, x)·∇uε(s, x) dx ds dt

+
ε

K

T
∫

0

t
∫

0

∫

∂Ωε

DS
ε ∇Svε(s, x) · ∇Svε(s, x) dσε(x) ds dt

+
εκ

ε2

T
∫

0

t
∫

0

∫

∂Ωε

(

uε −
vε
K

)2

dσε(x) ds dt =
T

2

(

‖u0‖2L2(Ωε)
+

ε

K
‖v0‖2L2(∂Ωε)

)

In the previous section, we established that all terms in the above formula have
actually (weak) two-scale limits. Since the corresponding norms are lower semicon-
tinuous with respect to the (weak) two-scale convergence, we deduce

lim inf
ε→0

1

2

T
∫

0

[

‖uε(t)‖2L2(Ωε)
+

ε

K
‖vε(t)‖2L2(∂Ωε)

]

dt ≥ 1

2

(

|Y 0|+K|∂Σ0|
)

‖u0‖2L2(Rd×(0,T )),

17



lim inf
ε→0

T
∫

0

t
∫

0

∫

Ωε

Dε∇uε(s, x) · ∇uε(s, x) dx ds dt

≥
T
∫

0

t
∫

0

∫

Rd

∫

Y 0

D(y)|∇xu0(s, x) +∇y (χ(y) · ∇xu0(s, x)) |2 dy dx ds dt,

lim inf
ε→0

ε

K

T
∫

0

t
∫

0

∫

∂Ωε

DS
ε ∇Svε(s, x) · ∇Svε(s, x) dσε(x) ds dt

≥ 1

K

T
∫

0

t
∫

0

∫

Rd

∫

∂Σ0

DS(y)|KG(y)∇xu0(s, x) +∇S
y (ω(y) · ∇xu0(s, x)) |2 dσ(y) dx ds dt,

lim inf
ε→0

εκ

ε2

T
∫

0

t
∫

0

∫

∂Ωε

(

uε −
vε
K

)2

dσε(x) ds dt

≥ κ

T
∫

0

t
∫

0

∫

Rd

∫

∂Σ0

|
(

χ(y)−K−1ω(y)
)

· ∇xu0(s, x)|2 dσ(y) dx ds dt.

On the other hand we have

lim
ε→0

(

‖u0‖2L2(Ωε)
+

ε

K
‖v0‖2L2(∂Ωε)

)

= |Y 0|‖u0‖2L2(Rd) +
|∂Σ0|
K

‖v0‖2L2(Rd).

Summing up those limits and recognizing the formula for A∗ yields the inequality

1

2

(

|Y 0|+K|∂Σ0|
)

‖u0‖2L2(Rd×(0,T )) +

T
∫

0

t
∫

0

∫

Rd

A∗∇xu0(s, x) · ∇xu0(s, x) dx ds dt

≤ T

2

(

|Y 0|‖u0‖2L2(Rd) +
|∂Σ0|
K

‖v0‖2L2(Rd)

)

. (31)

However, if we write the same type of time integral of the energy equality for the
homogenized equation (14), we get an equality with the same left hand side but a
different right hand side

1

2

[

|Y 0|+K|∂Σ0|
]

‖u0‖2L2(Rd×(0,T )) +

T
∫

0

t
∫

0

∫

Rd

A∗∇u0(s, x) · ∇u0(s, x) dx ds dt

=
T

2(|Y 0|+K|∂Σ0|)‖|Y
0|u0 + |∂Σ0|v0‖2L2(Rd). (32)

It is easy to check that the two right hand sides in (31) and (32) coincide if and
only if

‖u0 −K−1v0‖2L2(Rd) = 0,

which is precisely our assumption of well prepared initial data. Therefore, under
this assumption we deduce that (31) is not an inequality but rather an equality,
which in turn implies that all the previous lower semicontinuity of norm sequences
are actually exact convergence. We can thus apply Proposition 6.2 and conclude to
a strong convergence (see [6] for details if necessary).

18



We now turn to the case of general initial data (u0, v0) ∈ L2(Rd) × H1(Rd).
Let us consider a small δ0 > 0, to be chosen precisely at the end of the proof.
Due to Lemma 3.1 on a priori estimates, by a contradiction argument, it follows
that there exists a time sequence {δε}, δ0/2 ≤ δε ≤ δ0, converging to some limit δ,
δ0/2 ≤ δ ≤ δ0, and a positive constant C, which does not depend on δ0 or on ε (but
only on the initial data), such that







‖uε(., δε)‖2H1(Ωε)
≤ C/δ0, ε‖vε(., δε)‖2H1(∂Ωε)

≤ C/δ0,

ε‖Kuε(., δε)− vε(., δε)‖2L2(∂Ωε)
≤ Cε2/δ0.

(33)

We now follow an idea of [6] which amounts to consider system (1)-(3) on a smaller
time interval (δε, T ) where δε ≥ δ0/2 > 0 is such that the initial data at this time
should be almost well-prepared because of parabolic dissipation on the earlier time
interval (0, δε). We decompose the solution (uε, vε) of (1)-(3) as

uε(t, x) = u1,ε(t, x) + u2,ε(t, x) and vε(t, x) = v1,ε(t, x) + v2,ε(t, x),

in such way that the initial data are well prepared for the first problem while the
solution of the second one will converge strongly to zero















































∂

∂t
u1,ε +

1

ε
bε · ∇u1,ε − div (Dε∇u1,ε) = 0 in (δε, T )× Ωε,

−Dε

ε
∇u1,ε · n =

∂

∂t
v1,ε +

1

ε
bSε · ∇Sv1,ε − divS

(

DS
ε ∇Sv1,ε

)

on (δε, T )× ∂Ωε,

−Dε

ε
∇u1,ε · n =

κ

ε2
[

u1,ε −K−1v1,ε
]

on (δε, T )× ∂Ωε,

u1,ε(δε, x) = uε(δε, x), v1,ε(δε, x) = Kuε(δε, x),
(34)

and














































∂

∂t
u2,ε +

1

ε
bε · ∇u2,ε − div (Dε∇u2,ε) = 0 in (δε, T )× Ωε,

−Dε

ε
∇u2,ε · n =

∂

∂t
v2,ε +

1

ε
bSε · ∇Sv2,ε − divS

(

DS
ε ∇Sv2,ε

)

on (δε, T )× ∂Ωε,

−Dε

ε
∇u2,ε · n =

κ

ε2
[

u2,ε −K−1v2,ε
]

on (δε, T )× ∂Ωε,

u2,ε(δε, x) = 0, v2,ε(δε, x) = vε(δε, x)−Kuε(δε, x).
(35)

Since (35) is similar in structure to (1)-(3), the standard a priori estimate of Lemma
3.1, together with estimate (33) for the initial data at time δε, yields for any t ≥ δε

‖u2,ε(., t)‖2L2(Ωε)
+ ε‖v2,ε(., t)‖2L2(∂Ωε)

≤ Cε2/δ0.

Thus, the sequence (u2,ε, v2,ε) strongly converges to 0. The initial data in (34) are
well prepared but we cannot apply directly our previous results because the initial
time δε 6= 0 is varying with ε. The new difficulty is to prove that the initial data of
(34) strongly two scale converge with drift to some limit.

Let us recall the existence of a uniformly bounded extension operator [1] from
H1(Ωε) into H

1(Rd). Thus, the sequence uε(δε, x) can be thought of being defined
in the whole space Rd and, by virtue of (33) it satisfies the bound ‖uε(δε, x)‖2H1(Rd) ≤
C/δ0. Shifting the sequence does not change its bound, so we have

‖uε(δε, x+ (b∗/ε)δε)‖2H1(Rd) ≤ C/δ0. (36)
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Together with Lemma 6.3 which says that the L2-norm of uε(δε, x+ (b∗/ε)δε) does
not escape at infinity, we deduce from (36) that this sequence is (pre-)compact in
L2(Rd). Therefore, up to a subsequence, uε(δε, x+ (b∗/ε)δε) converges strongly to
some limit ũ0(x) in L2(Rd).

Thus we can use the same arguments as in the case of well-prepared initial data
to conclude that u1,ε and v1,ε strongly two-scale converge with drift to ũ(t, x) and
Kũ(t, x) respectively where ũ satisfies the following limit equation of (34)

{

Kd ∂tũ = divx (A
∗∇xũ) in (δ, T )× R

d

Kd ũ(δ, x) = |Y 0|ũ0(x) + |∂Σ0|d−1ũ
0(x), x ∈ R

d (37)

where Kd = |Y 0|+K|∂Σ0|d−1 and A∗ is given by (15). In particular,

lim
ε→0

‖u1,ε‖2L2((δε,T )×Ωε)
= |Y 0|‖ũ‖2

L2((δ,T )×Rd)

and
lim
ε→0

ε‖v1,ε‖2L2((δε,T )×∂Ωε)
= K2|∂Σ0|‖ũ‖2

L2((δ,T )×Rd)
.

Of course, since uε was converging weakly to u0, we deduce that ũ(t, x) = u0(t, x)
for t ≥ δ, and

lim
ε→0

‖uε‖2L2((δε,T )×Ωε)
= |Y 0|‖u0‖2L2((δ,T )×Rd)

lim
ε→0

ε‖vε‖2L2((δε,T )×∂Ωε)
= K2|∂Σ0|‖u0‖2L2((δ,T )×Rd)

.
(38)

Now, let us assume that there is a lack of strong two-scale convergence for (uε, vε),
namely that the L2-norm of this sequence is not continuous (as required by (30) in
Proposition 6.2). In other words, either

lim
ε→0

‖uε‖2L2((0,T )×Ωε)
> |Y 0|‖u0‖2L2(Rd×(0,T )) (39)

or
lim
ε→0

ε‖vε‖2L2((0,T )×∂Ωε)
> K2|∂Σ0|‖u0‖2L2(Rd×(0,T )). (40)

Lemma 3.1 implies that ‖uε(t)‖2L2(Ωε)
+ ε‖vε(t)‖2L2(∂Ωε)

≤ C uniformly in time. So,
we can find a small δ0 > 0 such that, the same strict inequalities hold true on a
smaller time interval, namely, either

lim inf
ε→0

‖uε‖2L2((δ,T )×Ωε)
> |Y 0|‖u0‖2L2((0,T )×Rd) for any 0 < δ < δ0, (41)

or

lim inf
ε→0

ε‖vε‖2L2((δ,T )×∂Ωε)
> K2|∂Σ0|‖u0‖2L2((0,T )×Rd) for any 0 < δ < δ0. (42)

Obviously, (41) or (42) contradicts (38). Therefore, there must be continuity of
the L2-norm of (uε, vε) and both (39) and (40) must be equalities. Thus, we have
proved the strong two-scale convergence with drift in case of a general initial data.

✷

Lemma 6.3 Let uε(t, x) be the solution of (1)-(3). For any δ > 0 there is R(δ) > 0
such that, for any t ∈ [0, T ],

‖uε(x+
b∗

ε
t, t)‖L2(Ωε∩{x≥R(δ)}) ≤ δ.
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Proof. We again follow an idea of [6]. Let φ ∈ C∞(R) be a cut–off function
such that 0 ≤ φ(r) ≤ 1, φ = 0 for r ≤ 1, φ = 1 for r ≥ 2. For x ∈ R

d, denote
φR(x) = φ(|x|/R) and φεR(t, x) = φR(x− b∗t/ε). In the variational formulation (4)
of system (1)-(2) we take the test function {uε(t, x)φεR(t, x), vε(t, x)φεR(t, x)} and
we integrate by parts the time and convective derivatives (calculations are shown
one term at a time)

2

t
∫

0

∫

Ωε

∂uε
∂t

(s, x)uε(s, x)φ
ε
R(s, x) ds dx =

t
∫

0

∫

Ωε

b∗

ε
· ∇φεR(s, x)(uε(s, x))2 ds dx

+

∫

Ωε

φεR(t, x)(uε(t, x))
2 dx−

∫

Ωε

φR(x)(u
0(x))2 dx,

2

t
∫

0

∫

Ωε

bε
ε
· ∇uε(s, x)uε(s, x)φεR(s, x) ds dx = −

t
∫

0

∫

Ωε

bε
ε
· ∇φεR(s, x)(uε(s, x))2 ds dx,

2ε

K

t
∫

0

∫

∂Ωε

∂vε
∂t

φεRvε ds dσ(x) =

t
∫

0

∫

∂Ωε

b∗

K
· ∇φεR(vε)2 ds dσ(x)

+
ε

K

∫

∂Ωε

φεR(vε)
2 dσ(x) − ε

K

∫

∂Ωε

φR(x)(v
0(x))2 dσ(x),

2

K

t
∫

0

∫

∂Ωε

bSε · ∇Svεvεφ
ε
R ds dσ(x) = − 1

K

t
∫

0

∫

∂Ωε

(vε)
2bSε · ∇SφεR ds dσ(x).

This yields

1

2

∫

Ωε

φεR(t, x)(uε(t, x))
2 dx+

t
∫

0

∫

Ωε

Dε∇uε · ∇uεφεR ds dx

+
ε

2K

∫

∂Ωε

φεR(t, x)(vε(t, x))
2 dσ(x) +

ε

K

t
∫

0

∫

∂Ωε

DS
ε ∇Svε · ∇Svεφ

ε
R ds dσ(x)

+
κε

ε2

t
∫

0

∫

∂Ωε

φεR
(

uε −K−1vε
)2
ds dσ(x)

= −
t

∫

0

∫

Ωε

uεDε∇uε · ∇φεR ds dx− ε

K

t
∫

0

∫

∂Ωε

vεD
S
ε ∇Svε · ∇SφεR ds dσ(x)

+

t
∫

0

∫

Ωε

1

ε
(bε − b∗) · ∇φεR (uε)

2ds dx +
1

2

∫

Ωε

φR(x)(u
0(x))2 dx

+

t
∫

0

∫

∂Ωε

1

K

(

bSε − b∗
)

· ∇SφεR(vε)
2ds dσ(x) +

ε

2K

∫

∂Ωε

φR(x)(v
0(x))2 dσ(x) (43)

Due to the a priori estimate of Lemma 3.1 and the definition of φR, the first and
second integrals on the right hand side of (43) are uniformly bounded by C/R. The
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terms involving the initial data (u0(x), v0(x)) do not depend on ε and tend to zero
as R tends to ∞. To get a bound on the remaining (convective) terms on the right
hand side of (43), we rely again on the auxiliary problem (27) which allows us to
remove the ε−1 singularity of the convective terms

t
∫

0

∫

Ωε

1

ε
(bε − b∗) · ∇φεR(uε)2ds dx+

t
∫

0

∫

∂Ωε

1

K

(

bSε − b∗
)

· ∇SφεR(vε)
2ds dσ(x) (44)

= ε
d

∑

i=1

t
∫

0

∫

Ωε

∇αε
i ·∇

(

(uε)
2∂xi

φεR

)

ds dx+K

t
∫

0

∫

∂Ωε

∇φεR·
(

b∗−bSε
) (

(uε)
2 −K−2(vε)

2
)

ds dσ(x).

Since (u2ε −K−2v2ε ) = (uε+K−1vε)(uε −K−1vε) and ε∇αε
i (x) = (∇yαi) (x/ε), the

a priori estimates of Lemma 3.1 imply that (44) is uniformly bounded by C/R too,
which yields the desired statement.

✷

7 Numerical study

This section is devoted to the numerical computation of the cell problems and of
the homogenized coefficients, given by Proposition 4.3, and to the study of their
variations according to various parameters in the microscopic model. Our numer-
ical simulations are performed with the FreeFem++ package [27]. We have used
Lagrange P1 finite elements with 33586 vertices (degrees of freedom) with charac-
teristic Galerkin method for the convective term. The periodicity cell is the unit
square and the solid obstacle is a disk. Table 1 gives the adimensionalized values
of the parameters utilized in our simulations.

Parameters Values
Radius of the obstacle r 0.2
Equilibrium constant K 1
Porosity : |Y 0| = 1− r2π 0.874357
Tortuosity : |∂Σ0| = 2πr 1.25664
Kd factor : |Y 0|+K|∂Σ0| 2.13099
Surface velocity bS 0
Mean velocity

∫

Y 0

b(y) dy (0.0385,−2.67× 10−5)

Adsorption rate κ0 1
Bulk molecular diffusion D 1
Surface molecular diffusion DS 1

Table 1: Parameter values

The velocity profile b(y) is generated by solving the following Stokes problem in
the fluid part Y 0 of the unit cell.















∇yp−∆yb = e1 in Y 0,
divyb = 0 in Y 0,
b = 0 on ∂Σ0,
p, b Y − periodic.

(45)

The drift velocity b∗ is then calculated using (13): we found b∗ = (0.0180,−1.25 ∗
10−5).
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Figure 1: Behavior of the longitudinal dispersion with respect to Peloc for various
values of the surface molecular diffusion DS .

In a first experiment we study the behavior of the longitudinal dispersion with
respect to the local Péclet number Peloc (we simply multiply the velocity field b(y)
by an increasing factor) for various values of DS (see Figure 1). As can be expected
the dispersion increases with Peloc. Clearly the dispersion increases with DS too.
However, as shown by Figure 2, the dispersion reaches a limit as DS goes to infinity.
This can be explained formally by the fact that, in such a case, the cell solution
satisfies in the limit that (ωi + Kyi) is constant on the pore surface ∂Σ0. In this
limit, the bulk correctors χi satisfy the following limit problem























b(y) · ∇yχi − divy(D(∇yχi + ei)) = (b∗ − b) · ei in Y 0,
−D(∇yχi + ei) · n+Kb∗i =

κ

(

χi + yi − |∂Σ0|−1

∫

∂Σ0

(χi + yi)dσ(y)

)

on ∂Σ0,

y → χi(y) Y − periodic.

(46)
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Figure 2: Behavior of the effective dispersion with respect to DS : longitudinal
dispersion (left), transverse dispersion (right).

In a second experiment we study the behavior of the longitudinal dispersion
with respect to the reaction rate κ. Interestingly enough, we observe an inversion
phenomenon on the bulk corrector χ1 (see Figure 3 where the grey scale goes from
smaller values in white to larger values in black). A similar inversion is exhibited
by χ2 too. However, this inversion phenomenon doesn’t appear in the absence of
surface molecular diffusion, i.e., when DS = 0. For a given positive value of DS ,
increasing κ implies that it may be more favorable for the solute to “travel” close
to the pore surface by using the surface diffusion. Therefore, the solid pores may
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be seen as obstacles for small κ or attractors for large κ. It is probably easier to
interpret this inversion phenomenon on the “reconstructed” solution (χ1(y) + y1)
rather than on just on the cell solution χ1(y) (see Figure 4). Indeed, (χ1(y) + y1)
corresponds to a local linearization of the two first terms of the ansatz of uε as given
in Proposition 4.3. As the reaction rate increases, the isolines of this reconstructed
concentration start to grace off the obstacle, which implies that the orthogonal
current lines of the concentration flux are more and more attracted by the obstacle.
It should be remarked here that this is a handicap of performing only 2−d numerical
simulations. Indeed, it is only in 3 − d that both the fluid phase and the solid
structure can be connected, which only permits a fair comparison between surface
and bulk molecular diffusions.

Figure 3: The cell solution χ1: Left top, reference value κ = κ0; Right top κ = 5κ0;
Left bottom κ = 6κ0; Right bottom κ = 8κ0.

In Figures 5 and 6 we plot the dispersion in two asymptotic regimes: κ→ 0 and
κ → ∞. Once again when κ → ∞ we get an asymptote for the dispersion, corre-
sponding to a limit cell problem where Kχi = ωi. In this limit, the corresponding
system satisfied by the bulk corrector χi is















b(y) · ∇yχi − divy(D(∇yχi + ei)) = (b∗ − b) · ei in Y 0,
−K−1D(∇yχi + ei) · n+ (b∗ − bS) · ei =

bS(y) · ∇S
yχi − divSy (D

S(∇S
yχi + ei)) on ∂Σ0,

y → χi(y) Y − periodic.

(47)

Of course, the transverse dispersion is always smaller than the longitudinal disper-
sion. Figures 5 and 6 show the blow-up behavior of both longitudinal and transverse
dispersions when κ→ 0. This is due to the ill-posedness of the cell problem (17) in
the limit κ→ 0.
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Figure 4: The reconstructed solution χ1(y) + y1: Left top, Reference value κ = κ0;
Right top κ = 6κ0; Left bottom κ = 12κ0; Right bottom κ = 19κ0
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Figure 5: Behavior of the longitudinal dispersion with respect to κ: when κ goes to
0 (left), when κ goes to infinity (right).
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0 (left), when κ goes to infinity (right).
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