G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal, vol.23, issue.6, pp.1482-1518, 1992.
URL : https://hal.archives-ouvertes.fr/hal-01111805

G. Allaire, Numerical Analysis and Optimization. An Introduction to Mathematical Modelling and Numerical Simulation, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01242950

G. Allaire and M. Palombaro, Localization for the Schrödinger equation in a locally periodic medium, SIAM J. Math Anal, vol.38, pp.127-142, 2006.

G. Allaire, M. Palombaro, and J. Rauch, Diffractive behavior of the wave equation in periodic media: weak convergence analysis, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00784060

G. Allaire, M. Palombaro, and J. Rauch, Diffractive Geometric Optics for Bloch Wave Packets, 2008.

G. Allaire and A. Piatnitsky, Uniform spectral asymptotics for singularly perturbed locally periodic operators Comm, Partial Differential Equations, vol.27, pp.705-725, 2002.

P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev, vol.109, pp.1492-1505, 1958.

H. Benisty and C. Weisbuch, Photonic crystals, Progress in Optics 49, pp.177-313, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00084804

A. Bensoussan, J. L. Lions, and G. Papanicolaou, Asymptotic Analysis in Periodic Structures, 1978.

H. Brézis, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, 1973.

R. Carmona and J. Lacroix, Spectral Theory of Random Schrödinger Operators, 1990.

C. Conca, J. Planchard, and M. Vanninathan, Fluids and periodic structures, RMA 38, 1995.

P. Donnat, J. Joly, G. Metivier, and J. Rauch, Diffractive nonlinear geometric optics, Séminaire sur les Equations aux Dérivées Partielles, 1995.

A. Figotin and A. Klein, Localization of classical waves. I. Acoustic waves, Comm. Math. Phys, vol.180, issue.2, pp.439-482, 1996.

G. Francfort and F. Murat, Oscillations and energy densities in the wave equation, Comm. Partial Differential Equations, vol.17, pp.1785-1865, 1992.

P. Gérard, Mesures semi-classiques et ondes de Bloch, Séminaire sur les equations aux Dérivées Partielles, 1990.

P. Gérard, P. Markowich, N. Mauser, and F. Poupaud, Homogenization limits and Wigner transforms, Comm. Pure Appl. Math, vol.50, issue.4, pp.323-379, 1997.

T. Kato, Perturbation Theory for Linear Operators, 1980.

C. Martin-de-sterke and J. Sipe, Envelope-function approach for the electrodynamics of nonlinear periodic structures, Phys. Rev. A, vol.38, pp.5149-5165, 1998.

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal, vol.20, issue.3, pp.608-623, 1989.

A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol.44, 1983.

M. Reed and B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis, II. Fourier Analysis and Self-Adjointness, III. Scattering Theory, IV. Analysis of Operators

P. Russell and . J. St, Photonic crystal fibers, J. Lightwave. Technol, vol.24, issue.12, pp.4729-4749, 2006.

J. Sipe and H. Winful, Nonlinear Schrödinger solitons in a periodic structure, Optics Letters, vol.13, pp.132-133, 1988.