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HOMOGENIZATION OF A CONDUCTIVE AND RADIATIVE HEATTRANSFER PROBLEM∗GRÉGOIRE ALLAIRE † AND KARIMA EL GANAOUI ‡Abstra
t. This paper is devoted to the homogenization of a heat 
ondu
tion problem in aperiodi
ally perforated domain with a nonlinear and nonlo
al boundary 
ondition modeling radiativeheat transfer in the perforations. Be
ause of the 
onsidered 
riti
al s
aling it is essential to use amethod of two-s
ale asymptoti
 expansions inside the variational formulation of the problem. Weobtain a nonlinear homogenized problem of heat 
ondu
tion with e�e
tive 
oe�
ients whi
h are
omputed via a 
ell problem featuring a radiative heat transfer boundary 
ondition. We rigorouslyjustify this homogenization pro
ess for the linearized problem by using two-s
ale 
onvergen
e. Weperform numeri
al simulations in 2-d: we re
onstru
t an approximate temperature �eld by addingto the homogenized temperature a 
orre
tor term. The 
omputed numeri
al errors agree with thetheoreti
al predi
ted errors and prove the e�e
tiveness of our method for multis
ale simulation of
ondu
tive and radiative heat transfer problems in periodi
ally perforated domains.Key words. Homogenization, two-s
ale 
onvergen
e, radiative transfer, heat 
ondu
tion.AMS subje
t 
lassi�
ations.1. Introdu
tion. The goal of this paper is to theoreti
ally and numeri
allystudy the homogenization of a 
ondu
tive and radiative heat transfer problem in aperforated periodi
 media. The motivation of this problem 
omes from the nu
learrea
tor industry: an alternative 
on
ept to the usual pressurized water rea
tors isthat of gas 
ooled rea
tors. Typi
ally, a graphite matrix (playing the role of neutronmoderator) is periodi
ally perforated by long 
hannels 
ontaining either the uraniumfuel or a gas 
oolant whi
h is helium. Re
all that the �ssion nu
lear rea
tions produ
ea large amount of heat whi
h should be removed from the rea
tor 
ore by a 
oolant inorder to a
tivate a steam generator (through a heat ex
hanger) and �nally to produ
eele
tri
ity. Here we fo
us only on the heat transfer problem in su
h an heterogeneousmedium. To simplify the exposition, we assume that the graphite and uranium matrixis already homogenized and 
an be 
onsidered as a single homogeneous material. In-side this matrix heat is transmitted by simple linear 
ondu
tion. On the other hand,the helium heat 
ondu
tivity is 
ompletely negligible with respe
t to the radiativetransfer taking pla
e inside the 
hannels. We therefore fa
e a 
oupled problem ofheat 
ondu
tion and radiation where the number of helium 
hannels is very large,typi
ally of the order of 104. For dimensioning purposes as well as safety studiesmany numeri
al simulations have to be performed for whi
h a dire
t approa
h (mesh-ing all the geometri
 details) is impossible, or at least mu
h too 
ostly. Therefore,homogenization is a ne
essary ingredient for the study of su
h devi
es.In this problem the goal of homogenization is twofold: �rst, it must yield a 
learde�nition of what is the homogenized problem, and se
ond, it has to give expli
itformulas for the e�e
tive parameters as well as a re
ipe to approximate the exa
tsolution. Indeed, sin
e the original model is a mixture of two di�erent type of equa-tions (
ondu
tion and radiative transfer), the pre
ise form of the homogenized systemis not 
lear a priori. Con
erning the se
ond point, the original problem is posedin a perforated medium while the homogenized problem is posed in a homogeneous
∗This work has been supported by the Fren
h Atomi
 Energy Commission, DEN/DM2S at CEASa
lay.
†CMAP, (gregoire.allaire�polyte
hnique.fr).
‡CMAP, (ganaoui�
map.polyte
hnique.fr). 1



2 G. ALLAIRE AND K. EL GANAOUImedium, so taking into a

ount 
orre
tor terms is of paramount importan
e if onewants a geometri
ally sound re
onstru
tion of an approximate solution.Let us 
ome ba
k to the physi
al modeling of the original problem. The trueproblem is three-dimensional but the helium 
hannels are long parallel tubes, so ho-mogenization takes pla
e only in the 
ross se
tion. Therefore, it is not a severerestri
tion to 
onsider only the two-dimensional homogenization of a 
ross se
tion ofthe geometry (see Figure 2.1) as we shall do below. As usual in homogenization wedenote by ε the period. The matrix perforated domain is Ωε where energy transferis done by 
ondu
tion. The tubes or holes are τε,i, with boundaries Γε,i whi
h aregrey-di�use surfa
es, and are �lled by helium, assumed to be a transparent mediawithout heat 
ondu
tion nor absorption of radiation. Under these assumptions, theradiation equation 
an be integrated inside ea
h hole τε,i to produ
e a 
ompli
ated(non linear and non lo
al) boundary 
ondition on the wall Γε,i. Se
tion 2.2 givesa pre
ise des
ription of this boundary 
ondition. Let us simply gives the 
ompletemodel when the emissivity is equal to one. For given bulk and surfa
e heat sour
eterms f and g, the temperature Tε is a solution of





−div(Kε∇Tε) = f in Ωε,

Kε∇Tε · n = g on ∂Ω,

−Kε∇Tε · n =
σ

ε

(
T 4

ε (x) −
∫

Γε,i

F (x, s)T 4
ε (s)dγ(s)

) on Γε,i,

(1.1)where F (x, s) is the so-
alled view fa
tor for the wall Γε,i. The s
aling ε−1 in theright hand side of the boundary 
ondition yields a perfe
t balan
e, in the limit as εgoes to zero, between the bulk heat 
ondu
tion and the surfa
e radiative transfer. Adi�erent s
aling was studied in [7℄.Sin
e the seminal paper [12℄ it is known that the use of two-s
ale asymptoti
expansions in perforated domains is sometimes deli
ate, espe
ially when the boundary
onditions are non linear and non lo
al as here. Indeed, the homogenization of (1.1)by the formal method of two-s
ale asymptoti
 expansions (as presented in [8℄, [9℄,[11℄, [21℄) is not 
ompletely obvious, all the more if one works with the strong from ofthe equations. As explained in Se
tion 3 it is mu
h simpler to perform the two-s
aleasymptoti
 expansions in the variational formulation of (1.1), symmetri
ally in theunknown and in the test fun
tion (following an idea of J.-L. Lions [16℄). As a resultwe obtain that the leading term T (x) in the ansatz of Tε(x) is the solution of thefollowing non linear homogenized problem
{

−div(K∗(T )∇T ) = mes(Y ∗)
mes(Y ) f in Ω,

K∗(T )∇T · n = g on ∂Ω,
(1.2)where K∗(T ) is the e�e
tive 
ondu
tivity, depending on the ma
ros
opi
 temperature

T , and de�ned through a lo
al 
ell problem (3.3) whi
h is a linearized 
ondu
tive andradiative transfer problem in the unit 
ell (see Proposition 3.1).In Se
tion 4 we give a rigorous justi�
ation of su
h an homogenization resultfor the linearized version of (1.1) (see Theorem 4.6). Our main tools are two-s
ale
onvergen
e [2℄, [20℄ and suitable Taylor expansions of the test fun
tion on ea
h holeboundary Γε,i in order to take advantage of the view fa
tor properties.Eventually Se
tion 5 is 
on
erned with numeri
al simulations for this problem.Following a 
lassi
al idea in periodi
 homogenization, we approximate the solution Tε



HOMOGENIZATION OF A CONDUCTIVE AND RADIATIVE PROBLEM 3of (1.1) by the two �rst terms of its ansatz, i.e., the homogenized solution T plus theso-
alled 
orre
tor term
Tε(x) ≈ T (x) + ε

d∑

i=1

ωi

(
T 3(x),

x

ε

) ∂T
∂xi

(x), (1.3)where ωi are the solutions of the 
ell problems. Sin
e T is de�ned in the full domain
Ω while Tε is merely de�ned in the perforated domain Ωε, the 
orre
tor term is
ru
ial for a good approximation. We make 
omparisons between the exa
t solution
Tε (or, at least, a 
onverged numeri
al approximation of it, when available) and there
onstru
tion (1.3). We obtain a numeri
al error estimate of the order of ε in L2(Ω),as predi
ted by homogenization theory [9℄. Of 
ourse, the gain in terms of CPUtime and memory storage is enormous when using (1.3) instead of solving the exa
tproblem (1.1) sin
e the homogenized problem (1.2) requires only a 
oarse mesh. Notehowever that the 
ell problem must be solved for di�erent values of the ma
ros
opi
temperature T . Finally let us mention that a slightly simpler model is studied in [6℄and that more details 
an be found in [14℄.2. Setting of the problem. The goal of this se
tion is to de�ne pre
isely thegeometry of the perforated periodi
 medium, to introdu
e the model of 
ondu
tiveand radiative heat transfer problem and to give some notations.

Figure 2.1. Referen
e 
ell and periodi
 domain2.1. Geometry. Let Ω be a smooth bounded open set in R
d (d = 2 or 3 in theappli
ations). We de�ne a periodi
 perforated domain Ωε, where ε denotes its period,by removing from Ω a 
olle
tion of holes (τε,k)k=1,...,M(ε) in a periodi
 manner. Ea
hhole τk

ε is equal, up to a translation, to the same unit hole τ res
aled at size ε. Thedomain Ω is also subdivided in N(ε) periodi
ity 
ells (Yε,i)i=1,...,N(ε), ea
h of thembeing equal, up to a translation, to the same unit 
ell Y =
∏d

j=1(0, ℓj). The numberof periodi
ity 
ells is not equal to the number of holes sin
e, in the appli
ation to gas
ooled rea
tors, there are several holes per 
ell (see Figure 2.1). We denote by Y ∗ the



4 G. ALLAIRE AND K. EL GANAOUIsolid part of Y , i.e., Y ∗ = Y \ τ , and by Γ the boundary of τ (by a slight abuse oflanguage we denote by τ an individual hole as well as all the holes 
ontained in theunit 
ell Y ). To avoid some unne
essary te
hni
alities (see [1℄ for details), we assumethat, if a periodi
ity 
ell 
uts the boundary of Ω, then it does not 
ontain any hole.The holes τε,k 
orrespond to helium 
hannels in our appli
ation where radiative heattransfer takes pla
e, while Ωε 
orresponds to the solid domain where 
ondu
tion takespla
e. In summary we have
Ωε = Ω \

M(ε)⋃

k=1

τε,k, ∂Ωε = ∂Ω ∪ Γε with Γε =

M(ε)⋃

k=1

∂τε,k =

N(ε)⋃

i=1

Γε,i, (2.1)where Γε,i denotes the boundaries of the holes τε,k inside the 
ell Yε,i. Denoting bymes the measure (surfa
e or volume, depending on the 
ontext) of a set, we re
all thefollowing identities
mes(Y ) εd =

mes(Ω)

N(ε)
(1+O(ε)), mes(Γε,i) = εd−1mes(Γ), mes(Yε,i) = εdmes(Y ).Denoting by dγ(x) the surfa
e measure on Γε, we de�ne the 
enter of mass x0,i of Γε,iby

x0,i =
1

mes(Γε,i)

∫

Γε,i

x dγ(x) or equivalently ∫

Γε,i

(x− x0,i)dγ(x) = 0.Similarly, y0 denotes the 
enter of mass of the unit hole boundary Γ. We re
all thefollowing obvious identities.Lemma 2.1. A smooth fun
tion f satis�es
∫

Γε,i

f
(x
ε

)
dx = εd−1

∫

Γ

f(y)dy,

∫

Γε,i

f
(x
ε

)
(x− x0,i)dx = εd

∫

Γ

f(y)(y − y0)dy,

∫

Γε,i

f
(x
ε

)
(x− x0,i) ⊗ (x− x0,i)dx = εd+1

∫

Γ

f(y)(y − y0) ⊗ (y − y0)dy,

ε

N(ε)∑

i=1

mes(Γε,i)f(x0,i) =
mes(Γ)

mes(Y )

∫

Ω

f(s)ds+ O(ε).2.2. Boundary 
onditions. As already said the holes are a
tually helium 
han-nels where radiative heat transfer takes pla
e. Sin
e helium is assumed to be trans-parent (no heat 
ondu
tion nor absorption of radiation), this pro
ess is modeled by aboundary 
ondition on the holes boundaries. Let us re
all the modeling of radiativeex
hanges between grey-di�use surfa
es [15, 17℄. A grey-di�use surfa
e emits andabsorbs radiation in the same manner in all dire
tions. Part of the re
eived radiations
an be re�e
ted: a surfa
e is thus 
hara
terized by its emissivity e whi
h takes val-ues between 0 (full re�e
tion) and 1 (no re�e
tion). Denoting by T the temperatureand by R the radiosity, i.e. the intensity of emitted radiation, we have the followingrelationship
R(x) = eσT 4(x) + (1 − e)J(x), (2.2)



HOMOGENIZATION OF A CONDUCTIVE AND RADIATIVE PROBLEM 5

Figure 2.2. Domain with a radiative 
avity Σwhere σ is the Stefan-Boltzmann 
onstant and J is given by
J(x) =

∫

Σ

F (x, s)R(s)dγ(s),where F (x, s) is the view fa
tor (a geometri
al quantity) between two di�erent points
x and s of a 
avity Σ (see Figure 2.2). Thus, the radiosity is given as the solutionof an integral equation in terms of the temperature. For our appli
ation, the expli
itformula of the view fa
tor in 2-d for a 
onvex 
avity is

F (x, s) =
ns · (x− s)nx · (s− x)

2|s− x|3where nz denotes the unit normal at the point z. However, our mathemati
al studydoes not rely on this spe
i�
 formula and we simply need the following properties ofthe kernel F : for any (x, s) ∈ Σ2, it satis�es
• F (x, s) ≥ 0,
• F (x, s) = F (x, s),
•
∫
Σ F (x, s)ds = 1.Let J be the operator going from Lp(Σ), 1 ≤ p ≤ +∞, into itself de�ned by

J(f)(x) =

∫

Σ

F (x, s)f(s)dγ(s). (2.3)Denoting by E the operator 
onsisting of multiplying by the emissivity value e, (2.2)
an be rewritten
R = (Id − (Id − E)J)

−1
EσT 4.On the 
avity wall the energy balan
e reads

q −R+ J = 0, (2.4)where q is the heat �ux transmitted by 
ondu
tion from the solid Ω to the 
avity Σ,from whi
h we dedu
e
q = G(σT 4),where G is a linear non-lo
al operator de�ned by

G(ϕ) = [Id − J] [Id − (Id − E)J]
−1

E(ϕ) ∀ϕ ∈ Lp(Σ). (2.5)



6 G. ALLAIRE AND K. EL GANAOUILet us re
all some properties of J de�ned by (2.3) (see [22℄).Lemma 2.2. The operator J going from Lp(Σ) to Lp(Σ), 1 ≤ p ≤ ∞, satis�es
• J(c) = c, ∀c ∈ R;
• ‖J‖ ≤ 1;
• J is non negative: ∀f ∈ Lp(Σ), f ≥ 0 ⇒ J(f) ≥ 0;
• J is symmetri
 (self-adjoint for p = 2) in the sense that

∫

Σ

J(ϕ)ψ =

∫

Σ

J(ψ)ϕ, ∀ϕ ∈ Lp(Σ), ψ ∈ Lp′

(Σ), with 1

p
+

1

p′
= 1.We easily dedu
e from Lemma 2.2 that (Id − ςJ), 0 ≤ ς < 1, is invertible (for

ς = 1, (Id− ςJ) is not invertible sin
e ker(Id− J) = R). In parti
ular we dedu
e that
G is well de�ned, symmetri
 and non negative (this is 
lear for 0 < e ≤ 1 and for
e = 0 we �nd G ≡ 0).Remark 2.3. The operators de�ned by (2.3), (2.5) will be denoted by Jε, Gεrespe
tively, if a
ting on Γε instead of Γ.2.3. Governing equations. Let K be the 
ondu
tivity tensor of the unit 
ell
Y ∗. We assume K to be symmetri
, uniformly 
oer
ive and bounded (in norm L∞),i.e., there exist two positive 
onstants 0 < α ≤ β su
h that

∀v ∈ R
d , for a.e. y ∈ Y ∗, α|v|2 ≤

d∑

i,j=1

Ki,j(y)vivj ≤ β|v|2 . (2.6)As usual, K(y) being a Y -periodi
 fun
tion, we de�ne its Yε-periodi
 extension
Kε(x) = K

(x
ε

)
.For given bulk and surfa
e sour
e terms f and g, we 
onsider the following mixedproblem of 
ondu
tion and radiative heat transfer for the unknown temperature Tε





−div(Kε∇Tε) = f in Ωε,
Kε∇Tε · n = g on ∂Ω,

−Kε∇Tε · n = 1
εGε(σT

4
ε ) on Γε,

(2.7)where G is the operator de�ned by (2.5). For non-negative sour
es, the boundaryvalue problem (2.7) admits a unique positive solution as was proved in [22℄. The maindi�
ulty in (2.7) is the non-linear and non-lo
al boundary 
ondition on Γε. Note alsothe ε−1 s
aling in the boundary 
ondition whi
h insures that the radiative 
onditionwill not disappear when passing to the limit ε → 0 and will be represented in thehomogenized model.2.4. Notations. The subs
ript # in the de�nition of fun
tional spa
es on theunit 
ell Y indi
ates that we 
onsider Y -periodi
 fun
tions. We denote by L2(Ω;C#(Y ))the spa
e of measurable and square summable fun
tions of x ∈ Ω with values in the Ba-na
h spa
e of 
ontinuous and Y -periodi
 fun
tions of y. We denote by L2(Ω;H1
#(Y ∗))the spa
e of measurable and square summable fun
tions of x ∈ Ω with values in theSobolev spa
e H1

#(Y ∗) of Y -periodi
 fun
tions de�ned only on Y ∗. We 
all 
ell-problem a problem that we solve only on the elementary 
ell of the periodi
 domain.Cell-problems usually take into a

ount the mi
rostru
ture behavior and 
ontributeto the e�e
tive parameters 
al
ulation. We denote by O(εp), p ∈ R a fun
tion of ε > 0su
h that there exists a 
onstant C not depending on ε so that we have |O(εp)| ≤ Cεpfor all ε > 0.



HOMOGENIZATION OF A CONDUCTIVE AND RADIATIVE PROBLEM 73. Asymptoti
 expansions. The mathemati
al theory of periodi
 homogeniza-tion is based on two-s
ale asymptoti
 analysis (see e.g. the books [3, 8, 9, 11, 21℄).Two variables have to be 
onsidered: the ma
ros
opi
 variable x and the mi
ros
opi
one y with y = x
ε . The starting point of the heuristi
 method of two-s
ale asymptoti
expansions is to assume that the solution Tε of the problem to homogenize is givenby the following series

Tε(x) =

∞∑

j=0

εjTj

(
x,
x

ε

) (3.1)where ea
h fun
tion Tj(x, y) is de�ned on Ω× Y and is Y -periodi
 with respe
t to y.The 
lassi
al method of homogenization pro
eeds by inje
ting the ansatz (3.1) in theequations of the problem (i.e., in the strong formulation of the problem). It turns outthat this approa
h fails here or is, at least, very di�
ult to properly a
hieve.Indeed, the 
ombination of the large s
aling ε−1 and of the non-lo
al 
hara
ter ofthe radiative boundary 
ondition on the perforations makes the pro
ess of identifyingsu

essive powers of ε in the 
as
ade of equations very involved, not to say tri
ky.Following an idea of J.-L. Lions [16℄, it is a
tually mu
h safer to perform the two-s
ale asymptoti
 expansion in the variational formulation (i.e., in the weak form ofthe problem). In parti
ular, the 
omparison between bulk and surfa
e terms is mu
hsimpler and, the ansatz being symmetri
 between the unknown and tests fun
tion, itis enough to stop it at �rst order. Furthermore, working dire
tly in the variationalformulation allows us to take advantage of the symmetry properties of J and yieldssome (most wel
ome) geometri
al simpli�
ations.Before we go into the numerous te
hni
al details, let us explain our main resultsobtained by applying this formal pro
edure. The homogenized problem for (2.7) is anon-linear 
ondu
tivity equation in a 
ontinuous domain with a 
ondu
tivity matrixdepending on the temperature of the medium.Proposition 3.1. The two �rst terms of the asymptoti
 expansion of the solution
Tε of (2.7) are given by

Tε(x) = T (x) + ε

d∑

i=1

ωi

(
T 3(x),

x

ε

) ∂T
∂xi

(x) + O(ε2),where T is the solution of the homogenized problem
{

−div(K∗(T )∇T ) = mes(Y ∗)
mes(Y ) f in Ω,

K∗(T )∇T · n = g on ∂Ω,
(3.2)with an homogenized 
ondu
tivity given by

K∗
ij(T ) =

1

mes(Y )

(∫

Y ∗

K(∇yωi + ei) · (∇yωj + ej) + 4σT 3

∫

Γ

G(ωi + yi)(ωj + yj)
)
,and (ωi(T

3(x), y))1≤i≤d are the solutions of the 
ell problems
{

−divy(K ∇y(ei + ωi)) = 0 in Y ∗,
−K ∇y(ei + ωi) · n = 4σT 3(x)G(ωi + yi) on Γ.

(3.3)



8 G. ALLAIRE AND K. EL GANAOUIThe homogenized problem (3.2) is a nonlinear 
ondu
tion model with a 
ondu
-tivity matrix depending on the temperature. Radiative transfer is taken into a

ountat the mi
rostru
ture level in the 
ell problems whi
h are 
ondu
tion problems witha linearized radiative boundary 
ondition on the wall of the holes.The rigorous 
onvergen
e of the homogenization pro
ess for the non linear model(2.7) is an open problem. A
tually we are able to prove the 
onvergen
e of Tε to thehomogenized temperature T only for a linearized version of (2.7) (see se
tion 4). Themain di�
ulty for the non linear model is that it la
ks any property of 
onvexity orof monotony (whi
h are the usual simple assumptions required for homogenizing nonlinear problems). Another possibility would be to have at our disposal a 
omparisonprin
iple between two solutions whi
h will be uniform in ε. Indeed, we know thata maximum prin
iple applies to (2.7) (see [22℄) but it seems deli
ate to obtain a
omparison prin
iple whi
h is uniform in ε (at least we do not know how to pro
eed).The rest of this se
tion is devoted to the proof of proposition 3.1 whi
h is dividedin several subse
tions for the sake of 
larity.3.1. Ansatz. Be
ause of the boundary 
onditions imposed on the perforations,the homogenization of the strong form (2.7) is not simple. Therefore, to obtain thehomogenized problem for (2.7) we apply the formal two-s
ale asymptoti
 expansionmethod to its variational formulation
∫

Ωε

Kε∇Tε · ∇ϕε +
σ

ε

N(ε)∑

i=1

∫

Γε,i

(Id − Jε)(Id − (Id − E)Jε)
−1EσT4

εϕε =

=

∫

Ωε

fϕε +

∫

∂Ω

gϕε. (3.4)The boundary 
ondition on Γε is 
ompli
ated sin
e it requires the inversion of anoperator. To avoid this inversion, we introdu
e two auxiliary variables δε and χεgiven by
δε = (Id − (Id − E)Jε)

−1E(σT 4
ε ) and χε = (Id − (Id − E)Jε)

−1ϕε. (3.5)In parti
ular, this implies that G(σT 4
ε ) = (Id−Jε)δε. To simplify the writing we de�neon ea
h boundary Γε,i the operators Aε and Bε, going from Lp(Γε,i) into Lp(Γε,i), by

Aε = (Id − (Id − E)Jε) and Bε = (Id − Jε)(Id − (Id − E)Jε)Then, the variational formulations of (2.7) and (3.5) are given by
∫

Ωε

Kε∇Tε · ∇ϕε +
1

ε

N(ε)∑

i=1

∫

Γε,i

Bεχεδε =

∫

Ωε

fϕε +

∫

∂Ω

gϕε, (3.6)
∫

Γε,i

Aεδεψε = eσ

∫

Γε,i

T 4
ε ψε, (3.7)

∫

Γε,i

Aεχεζε =

∫

Γε,i

ϕεζε, (3.8)where ϕε, ψε and ζε are test fun
tions.Remark 3.2. A
tually χε is not really an unknown of (2.7) sin
e it depends solelyon the test fun
tion ϕε. However, introdu
ing the supplementary test fun
tion χε
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" variational formulation where the unknowns (Tε, δε)and the test fun
tions (ϕε, χε) play a symmetri
 role.Remark 3.3. The operators A and B, just de�ned, have similar properties tothose of J. In parti
ular, they are symmetri
, A(c) = ec and B(c) = 0 ∀c ∈ R, A isinvertible for 0 < e ≤ 1, and B is non negative.3.2. Homogenization results. We �rst 
onsider a two s
ale asymptoti
 ex-pansion of the unknowns and the test fun
tions
Tε(x) = T (x) + εT1

(
x,
x

ε

)
+ O(ε2), (3.9)

δε(x) = δ
(
x,
x

ε

)
+ εδ1

(
x,
x

ε

)
+ O(ε2), (3.10)

χε(x) = χ
(
x,
x

ε

)
+ εχ1

(
x,
x

ε

)
+ O(ε2), (3.11)

ϕε(x) = ϕ(x) + εϕ1

(
x,
x

ε

)
, (3.12)

ψε(x) = ψ
(
x,
x

ε

)
+ εψ1

(
x,
x

ε

)
, (3.13)

ζε(x) = ζ
(
x,
x

ε

)
+ εζ1

(
x,
x

ε

)
. (3.14)We dire
tly wrote T0(x, y) = T (x) sin
e we expe
t a ma
ros
opi
 behavior of thetemperature at its zero-th order. Then we perform a Taylor expansion of ea
h quantity

0,ix

x

i,H*Figure 3.1. Example of 2D 
avity with its 
enter of mass x0,inear the 
enter of mass x0 of the 
onsidered 
avity
T 4

ε (x) = T 4(x0) +4T 3(x0)∇T (x0) · (x− x0) +ε4T 3(x0)T1

(
x0,

x
ε

)
+O(ε2),

δε(x) = δ
(
x0,

x
ε

)
+∇xδ

(
x0,

x
ε

)
· (x− x0) +εδ1

(
x0,

x
ε

)
+O(ε2),

χε(x) = χ
(
x0,

x
ε

)
+∇xχ

(
x0,

x
ε

)
· (x− x0) +εχ1

(
x0,

x
ε

)
+O(ε2),

ϕε(x) = ϕ(x0) +∇ϕ(x0) · (x− x0) +εϕ1

(
x0,

x
ε

)
+O(ε2),

ψε(x) = ψ
(
x0,

x
ε

)
+∇xψ

(
x0,

x
ε

)
· (x− x0) +εψ1

(
x0,

x
ε

)
+O(ε2),

ζε(x) = ζ
(
x0,

x
ε

)
+∇xζ

(
x0,

x
ε

)
· (x− x0) +εζ1

(
x0,

x
ε

)
+O(ε2)Lemma 3.4. The �rst terms δ and χ of the asymptoti
 expansion (3.10) and(3.11) of δε and χε, respe
tively, are ma
ros
opi
 in the following sense

δ
(
x,
x

ε

)
≡ δ(x) = σT 4(x) and χ

(
x,
x

ε

)
≡ χ(x) =

1

e
ϕ(x),where T and ϕ are the �rst terms of the asymptoti
 expansion of Tε and ϕε, respe
-tively.



10 G. ALLAIRE AND K. EL GANAOUIProof. We inje
t the appropriate expansion in the variational formulation (3.7).Identifying its terms of order ε0 leads to
eσ

∫

Γ

T 4(x0)ψ(x0, y)dy =

∫

Γ

Aδ(x0, y)ψ(x0, y)dy,whi
h simply implies
Aδ(x0, y) = eσT 4(x0) ∀y ∈ Γ. (3.15)The operator A is 
oer
ive sin
e 0 < e ≤ 1 and ‖J‖ ≤ 1. Thus (3.15) admits a uniquesolution. Sin
e Ac = ec for any 
onstant c ∈ R, we dedu
e that the unique solution of(3.15) is δ(x0, y) = σT 4(x0). In the same manner we 
an get the relationship between

χ and ϕ.Taking into a

ount the results of lemma 3.4 we now obtainLemma 3.5. For any x in Ω, the fun
tions T , T1 and δ1 and ϕ, ϕ1 and χ1 arelinked by the relationships
A
(
δ1(x, y) + 4σT 3(x)∇T (x) · (y − y0)

)
= 4eσT 3(x) (T1(x, y) + ∇T (x) · (y − y0))(3.16)and

A

(
χ1(x, y) +

1

e
∇ϕ(x) · (y − y0)

)
= ϕ1(x, y) + ∇ϕ(x) · (y − y0) ∀x ∈ Ω. (3.17)Proof. We 
onsider the asymptoti
 expansions in the variational formulation (3.7).Thanks to the equality δ = σT 4, many terms disappear from both sides of (3.7). The

ε order terms yield
∫

Γ

A
(
δ1(x0, y) + 4σT 3(x0)∇T (x0) · (y − y0)

)
ψ(x0, y)dy

= 4eσT 3(x0)

∫

Γε,i

(T1(x0, y) + ∇T (x0) · (y − y0))ψ(x0, y)dy,
(3.18)whi
h is pre
isely the variational formulation of (3.16). The same arguments appliedto (3.8) lead to (3.17).We now 
onsider the main variational formulation (3.4) 
orresponding to theboundary value problem (2.7). For the moment we simply fo
us on its more deli
ateterm, involving the radiative boundary 
ondition

1

ε

N(ε)∑

i=1

∫

Γε,i

Bεχεδε.For this term only we need to be a little bit more pre
ise in our asymptoti
 expansions,pushing then to the se
ond order in ε. The reader should not be afraid by thisseemingly 
ontradi
tion with our previous argument that �rst order ansatz are enough:a
tually the se
ond order terms will disappear in the limit. Thus we repla
e (3.10)and (3.11) (after Taylor expansion) by
χε(x) =

1

e
ϕ(x0) +

1

e
∇ϕ(x0) · (x− x0) + εχ1

(
x0,

x

ε

)
+ ε2χ̃2,ε(x) + O(ε3),

δε(x) = σT 4(x0) + 4σT 3(x0)∇T (x0) · (x − x0) + εδ1

(
x0,

x

ε

)
+ ε2δ̃2,ε(x) + O(ε3),



HOMOGENIZATION OF A CONDUCTIVE AND RADIATIVE PROBLEM 11where we do not give any details on the se
ond-order terms χ̃2,ε and δ̃2,ε be
ause theywill disappear after this stage. We 
ompute
Bεχεδε =

Bε
1

e
ϕ(x0)

[
σT 4(x0) + 4σT 3(x0)∇T (x0) · (x− x0) + εδ1

(
x0,

x

ε

)
+ ε2δ̃2,ε(x)

]

+ Bε

(
1

e
∇ϕ(x0) · (x− x0)

)[
σT 4(x0) + 4σT 3(x0)∇T (x0) · (x− x0) + εδ1

(
x0,

x

ε

) ]

+ εBεχ1

(
x0,

x

ε

) [
σT 4(x0) + 4σT 3(x0)∇T (x0) · (x − x0) + εδ1

(
x0,

x

ε

) ]

+ ε2Bεχ̃2,ε(x)σT
4(x0) + O(ε3). (3.19)Be
ause Bε is symmetri
 and its kernel is R (the 
onstants), the terms in (3.19) whi
h
ontain χ̃2 and δ̃2 will disappear when integrating on Γε,i. Remark also that, afterintegration and summation over all 
ells, we obtain a remainder term given by

1

ε

N(ε)∑

i=1

mes (Γε,i)O(ε3) = O(ε−d)O(εd−1)O(ε2) = O(ε)whi
h 
an safely be negle
ted. Thus, integrating on Γε,i, multiplying by ε−1, summingon i and using lemma 2.1, we obtain the following limit
1

ε

N(ε)∑

i=1

∫

Γε,i

Bεχεδε =

1

mes(Y )

[ ∫

Ω

∫

Γ

B

(
1

e
∇ϕ(x) · (y − y0)

)
4σT 3(x)∇T (x) · (y − y0) dy dx

+

∫

Ω

∫

Γ

B
1

e
∇ϕ(x) · (y − y0)δ1(x, y) dy dx

+

∫

Ω

∫

Γ

Bχ1(x, y)4σT
3(x)∇T (x) · (y − y0) dy dx

+

∫

Ω

∫

Γ

Bχ1(x, y)δ1(x, y) dy dx
]

+ O(ε).

(3.20)
It is mu
h easier to pass to the limit in the other terms of the variational formulation(3.6) (so we skip the details) and we eventually obtain the following limit

1

mes(Y )

[ ∫

Ω

∫

Y ∗

K(y)(∇T (x) + ∇yT1(x, y)) · (∇ϕ(x) + ∇yϕ1(x, y)) dy dx

+

∫

Ω

4σT 3(x)

∫

Γ

(Id − J)
1

e
∇ϕ(x) · (y − y0)A [∇T (x) · (y − y0)] dy dx

+

∫

Ω

∫

Γ

(Id − J)
1

e
∇ϕ(x) · (y − y0)Aδ1(x, y)dy dx

+

∫

Ω

∫

Γ

(Id − J)χ1(x, y)A
[
4σT 3(x)∇T (x) · (y − y0)

]
dy dx

+

∫

Ω

∫

Γ

(Id − J)χ1(x, y)Aδ1(x, y)dy dx
]

=
mes(Y ∗)

mes(Y )

∫

Ω

fϕ dx+

∫

∂Ω

gϕ dγ(x). (3.21)



12 G. ALLAIRE AND K. EL GANAOUIFrom (3.17) and the equality G = (Id − J)A−1 we dedu
e
(Id − J)χ1 =

1

e
Gϕ1 +

1

e
G∇ϕ · (y − y0) − (Id − J)

1

e
∇ϕ · (y − y0). (3.22)Now we substitute in (3.21) formula (3.16) for Aδ1 and formula (3.22) for (Id− J)χ1.After some simpli�
ations we obtain

1

mes(Y )

( ∫

Ω

∫

Y ∗

K(y) (∇T (x) + ∇yT1(x, y)) · (∇ϕ(x) + ∇yϕ1(x, y))

+ 4σ

∫

Ω

T 3(x)

∫

Γ

[
ϕ1(x, y) + ∇ϕ(x) · (y − y0)

]

G
[
T1(x, y) + ∇T (x) · (y − y0)

])

=
mes(Y ∗)

mes(Y )

∫

Ω

f(x)ϕ(x) +

∫

∂Ω

g(x)ϕ(x), (3.23)whi
h is just a variational formulation for the unknown (T, T1) with a test fun
tion
(ϕ,ϕ1).Taking ϕ = 0 in (3.23) yields the 
ell problem

∫

Ω

∫

Y ∗

K(∇T + ∇yT1) · ∇yϕ1 + 4σ

∫

Ω

T 3

∫

Γ

Gϕ1

[
T1 + ∇T · (y − y0)

]
= 0whi
h is the variational formulation of

{
−divy(K(∇T + ∇yT1)) = 0 in Y ∗,

−K(∇T + ∇yT1) · n = 4σT 3(x)G
(
T1 + ∇T · (y − y0)

) on Γ,
(3.24)from whi
h we dedu
e a formula for T1 in terms of T

T1(x, y) =

d∑

i=1

ωi(T
3(x), y)

∂T

∂xi
(x). (3.25)Taking ϕ1 = 0 in (3.23) and using (3.25) yields the variational formulation of thehomogenized problem (3.2) with the e�e
tive 
ondu
tivity tensor as announ
ed inproposition 3.1.4. Rigorous homogenization for a linear model. In this se
tion we givea rigorous homogenization result for the linearized version of (2.7) using two-s
ale
onvergen
e [2, 20℄. To simplify further the exposition we fo
us on the 
ase of so-
alled bla
k walls, i.e., we assume that e = 1. It allows us to avoid the use of theadditional unknowns δε and χε. However, our method 
an extend without further
on
eptual di�
ulty to the 
ase 0 < e < 1. Although the non-linear problem (2.7)admits a unique solution, it is not the 
ase of its linearized version whi
h admits asolution, unique up to the addition of a 
onstant. Therefore, to ensure the uniquenessof the solution, we repla
e the Neumann 
ondition on ∂Ω by a Diri
hlet one. In otherwords, we now 
onsider






−div(Kε∇Tε) = f in Ωε,
Tε = 0 on ∂Ω,

−Kε∇Tε · n = 1
ε (Id − Jε)(σ̃Tε) on Γε,

(4.1)where σ̃ = σT 3
0 with T0 a positive 
onstant referen
e temperature. Re
all that, sin
e

e = 1, we have G = (Id − J).



HOMOGENIZATION OF A CONDUCTIVE AND RADIATIVE PROBLEM 134.1. Well-posedness and a priori estimates. First we dis
uss the existen
eand uniqueness of the solution of (4.1), then we derive a priori estimates. The varia-tional formulation of (4.1) is, for any ϕε ∈ H1(Ωε) su
h that ϕε = 0 on ∂Ω,
∫

Ωε

Kε∇Tε · ∇ϕε + σ̃
1

ε

∑

k

∫

Γε,k

(Id − Jε)(ϕε)Tε =

∫

Ωε

fϕε, (4.2)where we have used the symmetri
 
hara
ter of (Id − Jε). The operator (Id − Jε)is non-negative, so the linear problem (4.1) is 
oer
ive and has a unique solution in
H1(Ωε) by appli
ation of the Lax-Milgram lemma.We now re
all a 
onvenient extension lemma due to [12℄.Lemma 4.1. There exists a 
ontinuous linear extension Pε from H1(Ωε) to H1(Ω)su
h that

∀ϕε ∈ H1(Ωε) Pε(ϕε)|Ωε
= ϕε (4.3)and there exists a 
onstant C > 0, whi
h does not depend on ε, su
h that

‖Pε(ϕε)‖H1(Ω) ≤ C‖ϕε‖H1(Ωε) ∀ϕε ∈ H1(Ωε).We also re
all a 
lassi
al lemma.Lemma 4.2. There exists a 
onstant C > 0, not depending on ε, su
h that
ε1/2‖ϕε‖L2(Γε) ≤ C‖ϕε‖H1(Ωε) ∀ϕε ∈ H1(Ωε). (4.4)We are ready to give the a priori estimate.Proposition 4.3. Let Tε be the solution of (4.1) (extended to Ω). There existsa 
onstant C independent on ε su
h that

‖Tε‖H1(Ω) ≤ C (4.5)and
ε

∫

Γε

| Tε(x) |2 dγε(x) ≤ C. (4.6)Proof. Using the properties of the extension Pε and the Poin
aré inequality in Ω,we easily �nd the estimate (4.5). Using lemma 4.2 and (4.5) we dedu
e (4.6).We �nally re
all the de�nition and main results of two-s
ale 
onvergen
e [2, 20℄.Definition 4.4. A bounded sequen
e uε in L2(Ω) is said to two-s
ale 
onvergeto a fun
tion u0(x, y) ∈ L2(Ω × Y ) if there exists a subsequen
e still denoted by uεsu
h that
lim
ε→0

∫

Ω

uε(x)ψ
(
x,
x

ε

)
dx =

1

mes(Y )

∫

Ω

∫

Y

u0(x, y)ψ(x, y)dx dy (4.7)for any Y -periodi
 test fun
tion ψ(x, y) ∈ L2(Ω;C#(Y )).A notion of two-s
ale 
onvergen
e on periodi
 surfa
es was also introdu
ed in[5, 19℄. We re
all its ne
essary results.Proposition 4.5. Let uε be a sequen
e of L2(Γε) su
h that
ε

∫

Γε

| uε(x) |2 dγε(x) ≤ C. (4.8)



14 G. ALLAIRE AND K. EL GANAOUIThere exists a subsequen
e, still denoted by uε and a fun
tion u0 ∈ L2(Ω;L2(Γ)) su
hthat uε(x) two-s
ale 
onverge to u0(x, y) in the following sens
lim
ε→0

ε

∫

Γε

uε(x)ψ
(
x,
x

ε

)
dx =

1

mes(Y )

∫

Ω

∫

Γ

u0(x, y)ψ(x, y)dxdγ(y) (4.9)for any Y -periodi
 test fun
tion ψ(x, y) ∈ L2(Ω;C#(Y )).4.2. Homogenization results in the linear 
ase. The method of two-s
aleasymptoti
 expansions, as explained for the non-linear 
ase in se
tion 3, 
an also beapplied to the linear 
ase. There are some slight di�eren
es in the results that we nowbrie�y summarize. The homogenized problem is the following linear equation
{

−div(K∗∇T ) = mes(Y ∗)
mes(Y ) f in Ω,

T = 0 on ∂Ω,
(4.10)where the homogenized 
ondu
tivity is given by

K∗
ij =

1

mes(Y )

∫

Y ∗

K(∇yωi +ei) · (∇yωj +ej)+ σ̃

∫

Γ

(Id−J)(ωi +yi)(ωj +yj), (4.11)and the 
ell problems are




−divy(K(ei + ∇yωi)) = 0 in Y ∗,
−K(ei + ∇yωi) · n = σ̃(Id − J)(ωi + yi) on Γ,

y 7→ ωi(y) is Y -periodi
. (4.12)Clearly, (4.10) admits a unique solution T ∈ H1
0 (Ω) and (4.12) a unique solution

ωi ∈ H1
#(Y ∗), up to an additive 
onstant (whi
h does not play any role in the sequel).We de�ne a 
orre
tor fun
tion T1(x, y) ∈ L2(Ω;H1

#(Y ∗)) by
T1(x, y) =

d∑

i=1

ωi(y)
∂T

∂xi
(x). (4.13)Our main result in this se
tion is the followingTheorem 4.6. Let Tε be the sequen
e of solutions of (4.1). Let T be the solutionof the homogenized problem (4.10) and T1 be the fun
tion de�ned by (4.13). Then, Tεand ∇Tε, extended to the entire domain Ω, two-s
ale 
onverge to T and ∇xT +∇yT1,respe
tively.Proof. The a priori estimate (4.5) implies that Tε is bounded in H1(Ω). Thus,we 
an extra
t a subsequen
e whi
h 
onverges weakly to a fun
tion T in H1(Ω) and,a

ording to Proposition 1.14 in [2℄, the subsequen
e ∇Tε two-s
ale 
onverges to

∇T (x) + ∇yT1(x, y) for some fun
tion T1 ∈ L2(Ω;H1
#(Y )). Similarly, a

ording toproposition 4.5, up to another subsequen
e, Tε two-s
ale 
onverges on the periodi
surfa
e Γε to the limit T (x).In the variational formulation (4.2) we 
hoose an os
illating test fun
tion ϕεde�ned by

ϕε(x) = ϕ(x) + εϕ1

(
x,
x

ε

) with ϕ1(x, y) =

d∑

i=1

∂ϕ

∂xi
(x)ωi(y)
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c (Ω) and ωi are the solutions of 
ell problems (4.12). In order to evaluate

(Id − Jε)(ϕε), we write a Taylor expansion of ϕε around xε,k, the 
enter of mass of
Γε,k,
ϕε(x) = ϕ(xε,k)+∇ϕ(xε,k)·(x−xε,k)+

1

2
∇∇ϕ(xε,k)(x−xε,k)·(x−xε,k)+εϕ1

(
xε,k,

x

ε

)

+ ε∇xϕ1

(
xε,k,

x

ε

)
· (x− xε,k) + O(ε3). (4.14)Remark that ∇ϕ(xε,k) is 
onstant, so it 
an be fa
torized out when applying theoperator Jε to ϕε. After applying Jε to (4.14), in order to re
over 
ontinuous fun
tionswe shall apply the following Taylor expansion

∂ϕ

∂xi
(xε,k) =

∂ϕ

∂xi
(x) −∇ ∂ϕ

∂xi
(x) · (x− xε,k) + O(ε2).Therefore, we obtain

1

ε
(Id − Jε)(ϕε)(x) = ε

(
ψ1,ε(x) + ψ2,ε(x) + O(ε)

)with
ψ1,ε(x) =

1

ε

d∑

i=1

(Id − Jε)

(
ωi

(x
ε

)
+
xi − xi

ε,k

ε

)(
∂ϕ

∂xi
(x) −∇ ∂ϕ

∂xi
(x) · (x− xε,k)

)
,

ψ2,ε(x) =
1

ε2

(1

2
∇∇ϕ(x)(Id − Jε)

(
(x− xε,k) · (x− xε,k)

)

+ ε

d∑

i=1

∇ ∂ϕ

∂xi
(x) · (Id − Jε)

(
(x− xε,k)ωi

(x
ε

)))
,where xi

ε,k denotes the ith 
omponent of xε,k. Remark that ψ2,ε(x) = ψ2

(
x, x

ε

) so
ψ2,ε(x) two-s
ale 
onverges to ψ2(x, y) given by
ψ2(x, y) =

1

2
∇∇ϕ(x)(Id−J) [(y − y0) · (y − y0)]+

d∑

i=1

∇ ∂ϕ

∂xi
(x)·(Id−J) [(y − y0)ωi(y)] .By virtue of proposition 4.5 we have

lim
ε→0

ε

N(ε)∑

k=1

∫

Γε,k

ψ2,εTε =
mes(Γ)

mes(Y )

∫

Ω

T (x)

∫

Γ

ψ2(x, y)dy dx = 0, (4.15)sin
e
∫

Γ

ψ2(x, y) dy = 0.Con
erning the term 
ontaining ψ1,ε we use the 
lassi
al "
ompensated 
ompa
tness"tri
k of H-
onvergen
e [18℄ whi
h relies on a 
omparison with the variational for-mulation of the the 
ell problems (4.12). More pre
isely, after res
aling (4.12) wehave
∫

Γε

σ̃(Id − Jε)
(
ωi

(x
ε

)
+
xi

ε

)(
T
∂ϕ

∂xi

)
= −ε

∫

Ωε

Kε∇
(
ωi

(x
ε

)
+
xi

ε

)
· ∇
(
T
∂ϕ

∂xi

)
.
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σ̃ε

∫

Γε

ψ1,ε(x)Tε(x) = −
d∑

i=1

∫

Ωε

Kε(∇yωi + ei) · ∇
(
Tε
∂ϕ

∂xi

)

− σ̃ε
d∑

i=1

∫

Γε

(Id − Jε)

(
ωi

(x
ε

)
+
xi − xi

ε,k

ε

)
∇ ∂ϕ

∂xi
(x) · (x − xε,k)

ε
Tε.(4.16)Passing to the two-s
ale limit leads to

lim
ε→0

σ̃ε

∫

Γε

ψ1,ε(x)Tε(x) = − 1

mes(Y )

∫

Ω

∫

Y ∗

K(∇yωi + ei) ·
(
∇
(
T
∂ϕ

∂xi

)
+
∂ϕ

∂xi
∇yT1

)
dx dy

− σ̃
1

mes(Y )

∫

Ω

∫

Γ

(Id − J)(ωi + yi)y · ∇
∂ϕ

∂xi
T dy dx. (4.17)In addition to the 
onvergen
es given in (4.15) and (4.17) we have also the �usual�
onvergen
e

lim
ε→0

∫

Ωε

K∇Tε · ∇ϕε =
1

mes(Y )

d∑

i=1

∫

Ω

∫

Y ∗

K(∇T + ∇yT1) · (∇yωi + ei)
∂ϕ

∂xi
dx dy.(4.18)So taking into a

ount (4.15), (4.17), (4.18) and also the fa
t that

∣∣∣∣ε
∫

Γε

O(ε)Tε

∣∣∣∣ ≤ Cε‖Tε‖H1(Ω) sin
e ‖O(ε)‖L∞(Ω) ≤ Cε,the limit of the whole variational formulation is given by
−
∫

Ω

d∑

i,j=1

[∫

Y ∗

K(∇yωi + ei) · ej + σ̃

∫

Γ

(Id − J)(ωi + yi)y · ej

]
ej · ∇

∂ϕ

∂xi
T dy dx

= mes(Y ∗)

∫

Ω

fϕ, (4.19)whi
h is nothing else than an ultra weak variational formulation of the homogenizedproblem (4.10). We re
over the Diri
hlet boundary 
ondition for T be
ause, as thelimit of a sequen
e Tε in H1
0 (Ω), it belongs to H1

0 (Ω). Sin
e (4.10) has a uniquesolution in H1
0 (Ω), the whole sequen
e Tε 
onverges to T and not only a subsequen
e.5. Numeri
al simulations. In order to show the e�
ien
y of our homogeniza-tion approa
h and to validate it, we perform some numeri
al simulations for the nonlinear problem (2.7) in a 2D periodi
 perforated domain. We use the �nite element
ode CAST3M [10℄ developed at the Fren
h Atomi
 Energy Commission (CEA). We
ompare the numeri
al solution of the �exa
t� model (2.7) with the �re
onstru
ted�solution of the homogenized model (i.e., in
luding 
orre
tors, see below) for smallerand smaller values of ε. We evaluate the error in the L2-norm for the temperature�eld and its gradient whi
h allows us to 
ompute numeri
al rates of 
onvergen
e forthe homogenization pro
ess.Let us note in passing that, in numeri
al pra
ti
e, our asymptoti
 analysis doesnot follow the usual mathemati
al pro
edure (whi
h amounts to let ε goes to 0 in a



HOMOGENIZATION OF A CONDUCTIVE AND RADIATIVE PROBLEM 17�xed domain Ω) but rather the following engineering approa
h. The periodi
 
ellshave a �xed unit size and their number goes to in�nity whi
h implies that the sizeof the ma
ros
opi
 domain goes to in�nity like ε−1. In other words, we res
ale theproblem by applying the 
hange of variables x → x/ε. In any 
ase, this pro
edureis 
ompletely transparent from the point of view of the numeri
al results presentedhere.5.1. Geometries and meshes. The geometry 
orresponds to a 
ross-se
tion ofa typi
al fuel assembly for a gas-
ooled nu
lear rea
tor (see [14℄ for further referen
es).The unit 
ell is made of two 
ir
ular holes in a re
tangle (see Figures 5.6, 5.2). Typi
almeshes of the perforated domain Ωε and homogenized domain Ω are displayed onFigure 5.1. They 
orrespond to the largest value of ε: more periodi
ity 
ells will beadded for smaller values of ε, and ea
h 
ell will have the same mesh as one 
ell inFigure 5.1.

Figure 5.1. Initial 
omputational meshes Ωε (perforated domain) and Ω (solid domain).5.2. Computational parameters. We enfor
e homogeneous Neumann bound-ary 
onditions (adiabati
 walls) on the verti
al boundaries of Ωε and Ω, and nonhomogeneous Diri
hlet ones on the horizontal ones. The imposed temperatures are
Tsup = 1300K on the upper wall and Tinf = 600K on the lower wall. The 
ondu
-tivity tensor is assumed to be isotropi
 with 
ondu
tivity equal to 30W. m−1. K−1.The emissivity of the holes boundaries is equal to e = 0.8. The thermal sour
es f and
g are set to zero.5.3. Algorithm. Our numeri
al 
omputations are done a

ording to the follow-ing steps:1. solve the 
ell problems (3.3) for a range of ma
ros
opi
 temperature values T ,2. 
ompute a range of homogenized 
ondu
tivity 
oe�
ients K∗

ij(T
3) using theprevious 
ell solutions,



18 G. ALLAIRE AND K. EL GANAOUI3. solve the nonlinear homogenized problem (3.2) on the non perforated domain
Ω; the non-linearity is solved by a �xed-point iterative algorithm,4. evaluate the �u
tuation or 
orre
tor term

εT1(x,
x

ε
) = ε

2∑

i=1

∂T

∂xi
(x)ωi

(
T 3(x),

x

ε

)
;this step is not straightforward to implement sin
e the result T1 is de�ned on theperforated domain mesh while T lives on the domain mesh and ωi on the 
ell mesh,5. re
onstru
t approximations of the temperature Tε and of the temperaturegradient ∇Tε on the perforated mesh Ωε, T (x) + εT1(x,

x
ε ) and ∇T (x) + ∇yT1(x,

x
ε ),respe
tively,6. plot the relative errors Err(T) and Err(∇T) given by

Err(T) =

∥∥Tε(x) −
[
T (x) + εT1

(
x, x

ε

)]∥∥
L2(Ωε)

‖T (x)‖L2(Ω)
, (5.1)

Err(∇T) =

∥∥∇
[
Tε(x) − T (x) − εT1

(
x, x

ε

)]∥∥
L2(Ωε)

‖∇T (x)‖L2(Ω)
. (5.2)This pro
edure is repeated for various values of ε → 0 by using larger and largermeshes.5.4. Simulation results and dis
ussion. We �rst 
ompute the the solutionsof the 
ell-problem (4.11) for di�erent temperatures: T = 0, 1500, 15.E3, 15.E6K.Figure 5.2 displays the solutions in the horizontal dire
tion, e1, and the verti
al di-re
tion, e2, whi
h are not equivalent by a 90 degrees rotation. In Figure 5.3 we plotthe two diagonal 
omponents K∗

11 and K∗
22 of the homogenized 
ondu
tivity tensor

K∗ in terms of the ma
ros
opi
 temperature in the range 500K to 1500K. Note thatthese diagonal 
omponents have 
lose values so the homogenized medium seems al-most isotropi
 at low temperatures. However, the medium is not isotropi
 at very hightemperatures sin
e the e�e
t of radiation is more important (this will be 
on�rmedbelow by an asymptoti
 analysis as T tends to in�nity). Figure 5.4 makes a visual
omparison between a numeri
ally 
onverged temperature �eld Tε (obtained by dire
tsimulation on a �ne mesh) and the re
onstru
ted �eld T + εT1 whi
h is the output ofthe homogenization pro
ess.In Table 5.4 we display the relative errors on temperature Err(T) and Err(∇T).On Figure 5.5 we 
ompare these errors with the period ε and it squared root √
ε,respe
tively. The slopes are in very good agreement. This was theoreti
ally predi
tedfor linear 
ondu
tion (without radiation): the relative error Err(T) behaves like ε,while the relative error Err(∇T) s
ales like √ε (be
ause of boundary layer e�e
ts, see[4, 9℄).5.5. High temperature asymptoti
. As part of the validation pro
ess of ourhomogenization algorithm, it is interesting to study the limit of the 
ell problems andof the homogenized 
oe�
ients when the ma
ros
opi
 temperature goes to in�nity. Aformal and simple asymptoti
 analysis of the 
ell problems shows that

lim
T→+∞

ωi(T
3, y) = ω0

i (y),whi
h leads to a limit of homogenized 
ondu
tivity given by
lim

T→+∞
K∗

ij(T ) = K0
ij =

∫

Y ∗

K(∇yω
0
i + ei) · (∇yω

0
j + ej), (5.3)
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Figure 5.2. Cell-problem solutions for in
reasing temperatures
N(ε) ε Err(T) √

ε Err(∇ T)8 3.5355 10−1 2.33 10−3 5.946 10−1 3.92 10−218 2.357 10−1 1.32 10−3 4.854 10−1 3.15 10−232 1.7678 10−1 8.88 10−4 4.204 10−1 2.41 10−272 1.1785 10−1 5.22 10−4 3.432 10−1 2.20 10−298 1.0102 10−1 4.26 10−4 3.178 10−1 2.03 10−2128 8.84 10−2 3.68 10−4 2.973 10−1 1.89 10−2Table 5.1Relative errors (5.1) and (5.2) in terms of the number N(ε) of periodi
ity 
ells.where ω0
i , for 1 ≤ i ≤ d, are the solutions of 
ell problems in the limit T → +∞. Itis easily seen that the limit boundary 
ondition is of Diri
hlet type, i.e.,

{
−divy(K(ei + ∇yω

0
i )) = 0 in Y ∗,

ω0
i + yi = C on Γ,

(5.4)
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Figure 5.3. Diagonal entries K∗
11

and K∗
22

of the homogenized 
ondu
tivity tensor

Figure 5.4. Comparison between the re
onstru
ted temperature T + εT1 and the dire
t resolu-tion Tεwhere C is any 
onstant (its value does not matter sin
e only the gradient of ω0
i playsa role in the formula for the limit 
ondu
tivity K0). In Figure 5.6 we plot the two
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Epsilon

E
R

R
(T

)

-110-28. 10 -29. 10 -12. 10 -13. 10

-310

-43. 10

-44. 10

-45. 10

-46. 10

-47. 10

-48. 10

-49. 10

-32. 10

-33. 10

ERR(T)      
epsilon*0.01

Epsilon

E
R

R
(g

ra
d 

T
)

-110-28. 10 -29. 10 -12. 10 -13. 10 -14. 10

-210
-39. 10

-22. 10

-23. 10

-24. 10

-25. 10

-26. 10

-27. 10

ERR(grad T)      
0.1*sqrt(Epsilon)Figure 5.5. Convergen
e of the relative error on the temperature (left) and its gradient (right)solutions of (5.4) whi
h are indeed very similar to the last line of Figure 5.2. The
orresponding limit 
ondu
tivity is

K0 =

(
54.021 21.797
21.797 79.217

) (5.5)whi
h is highly anisotropi
. In Figures 5.7, 5.8 and 5.9 we plot the three di�erent en-tries of the homogenized 
ondu
tivity K∗ and 
he
k that, for very high temperatures,they rea
h the theoreti
ally predi
ted asymptoti
 behavior (5.3).

Figure 5.6. High-temperature limit of the 
ell solutions6. Con
lusion. We have studied the homogenization of a model of 
ombined
ondu
tion and radiative heat transfer problem in a perforated domain. By a formalmethod of two-s
ale asymptoti
 expansions we obtained the homogenized problemwhi
h is a non-linear 
ondu
tivity equation posed in a non-perforated domain. Itshomogenized 
oe�
ients are 
omputed through a 
ell problem of linearized radiativeheat transfer. We rigorously proved the 
onvergen
e of the homogenization pro
ess bythe method of two-s
ale 
onvergen
e for a linearization of this model. We exploit thehomogenization results to devise a numeri
al algorithm for the fast 
omputation ofapproximate re
onstru
ted solutions. This yields a 
onsiderable saving in CPU time
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Figure 5.7. Asymptoti
 behavior of K∗
11 Figure 5.8. Asymptoti
 behavior of K∗

22

Figure 5.9. Asymptoti
 behavior of K∗
12and memory requirement sin
e only a 
oarse mesh of the ma
ros
opi
 domain (andof the unit 
ell) is required. A numeri
al validation of our homogenization pro
esshas been done for not too small values of ε. Of 
ourse, our algorithm will be used inpra
ti
e for mu
h smaller values of ε. Future work will 
on
ern the 
oupling of thismodel with a helium �ow model in the 
hannels and with a neutroni
 di�usion model.A
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