FMRI Analysis of Cocaine Addiction Using K-Support Sparsity

Abstract : In this paper, we explore various sparse regularization techniques for analyzing fMRI data, such as LASSO, elastic net and the recently introduced k-support norm. Employing sparsity regularization allow us to handle the curse of dimensionality, a problem commonly found in fMRI analysis. We test these methods on real data of both healthy subjects as well as cocaine addicted ones and we show that although LASSO has good prediction, it lacks interpretability since the resulting model is too sparse, and results are highly sensitive to the regularization parameter. We find that we can improve prediction performance over the LASSO using elastic net or the k-support norm, which is a convex relaxation to sparsity with an L2 penalty that is tighter than the elastic net. Elastic net and k-support norm overcome the problem of overly sparse solutions, resulting in both good prediction and interpretable solutions, while the k-support norm gave better prediction performance. Our experimental results support the general applicability of the k-support norm in fMRI analysis, both for prediction performance and interpretability.
Type de document :
Communication dans un congrès
International Symposium on Biomedical Imaging, Apr 2013, San Francisco, United States. 2013
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00784386
Contributeur : Katerina Gkirtzou <>
Soumis le : lundi 4 février 2013 - 12:42:44
Dernière modification le : lundi 1 octobre 2018 - 18:26:01
Document(s) archivé(s) le : lundi 17 juin 2013 - 18:32:32

Fichier

fMRIkSupport.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00784386, version 1

Collections

Citation

Katerina Gkirtzou, Jean Honorio, Dimitris Samaras, Rita Goldstein, Matthew Blaschko. FMRI Analysis of Cocaine Addiction Using K-Support Sparsity. International Symposium on Biomedical Imaging, Apr 2013, San Francisco, United States. 2013. 〈hal-00784386〉

Partager

Métriques

Consultations de la notice

610

Téléchargements de fichiers

461