A. Martinez-antonio and J. Collado-vides, Identifying global regulators in transcriptional regulatory networks in bacteria, Current Opinion in Microbiology, vol.6, issue.5, pp.482-489, 2003.
DOI : 10.1016/j.mib.2003.09.002

S. Shen-orr, R. Milo, S. Mangan, and U. Alon, Network motifs in the transcriptional regulation network of Escherichia coli, Nature Genetics, vol.31, issue.1, pp.64-68, 2002.
DOI : 10.1038/ng881

S. Istrail, S. De-leon, and E. Davidson, The regulatory genome and the computer, Developmental Biology, vol.310, issue.2, pp.187-195, 2007.
DOI : 10.1016/j.ydbio.2007.08.009

H. Ochman, J. Lawrence, and E. Groisman, Lateral gene transfer and the nature of bacterial innovation, Nature, vol.405, issue.6784, pp.299-304, 2000.
DOI : 10.1038/35012500

. Thomas, Paradigms of plasmid organization, Molecular Microbiology, vol.21, issue.3, pp.485-491, 2000.
DOI : 10.1046/j.1365-2958.2000.02006.x

R. Haft, J. Mittler, and B. Traxler, Competition favours reduced cost of plasmids to host bacteria, The ISME Journal, vol.86, issue.7, pp.761-769, 2009.
DOI : 10.1038/ismej.2009.22

E. Top, D. Springael, and N. Boon, Catabolic mobile genetic elements and their potential use in bioaugmentation of polluted soils and waters, FEMS Microbiology Ecology, vol.42, issue.2, pp.199-208, 2002.
DOI : 10.1111/j.1574-6941.2002.tb01009.x

F. De-la-cruz and J. Davies, Horizontal gene transfer and the origin of species: lessons from bacteria, Trends in Microbiology, vol.8, issue.3, pp.128-133, 2000.
DOI : 10.1016/S0966-842X(00)01703-0

R. Fulthorpe and R. Wyndham, Transfer and expression of the catabolic plasmid pBRC60 in wild bacterial recipients in a freshwater ecosystem

J. Herrick, K. Stuart-keil, W. Ghiorse, and E. Madsen, Natural horizontal transfer of a naphthalene dioxygenase gene between bacteria native to a coal tar-contaminated field site, Appl Environ Microbiol, vol.63, issue.6, pp.2330-2337, 1997.

H. Nojiri, M. Shintani, and T. Omori, Divergence of mobile genetic elements involved in the distribution of xenobiotic-catabolic capacity, Applied Microbiology and Biotechnology, vol.64, issue.2, pp.154-174, 2004.
DOI : 10.1007/s00253-003-1509-y

M. Romine, L. Stillwell, K. Wong, S. Thurston, E. Sisk et al., Complete sequence of a 184- kilobase catabolic plasmid from Sphingomonas aromaticivorans F199, J Bacteriol, vol.181, issue.5, pp.1585-1602, 1999.

M. Shields, M. Reagin, R. Gerger, R. Campbell, and C. Somerville, TOM, a new aromatic degradative plasmid from Burkholderia (Pseudomonas) cepacia G4, Appl Environ Microbiol, vol.61, issue.4, pp.1352-1356, 1995.

J. Van-der-meer and V. Sentchilo, Genomic islands and the evolution of catabolic pathways in bacteria, Current Opinion in Biotechnology, vol.14, issue.3, pp.248-254, 2003.
DOI : 10.1016/S0958-1669(03)00058-2

J. Ramos, S. Marques, and K. Timmis, TOL PLASMID CATABOLIC OPERONS IS ACHIEVED THROUGH AN INTERPLAY OF HOST FACTORS AND PLASMID-ENCODED REGULATORS, Annual Review of Microbiology, vol.51, issue.1, pp.341-373, 1997.
DOI : 10.1146/annurev.micro.51.1.341

C. Cowles, N. Nichols, and C. Harwood, BenR, a XylS Homologue, Regulates Three Different Pathways of Aromatic Acid Degradation in Pseudomonas putida, Journal of Bacteriology, vol.182, issue.22, pp.6339-6346, 2000.
DOI : 10.1128/JB.182.22.6339-6346.2000

R. Silva-rocha, J. Tamames, V. Santos, and V. De-lorenzo, The logicome of environmental bacteria: merging catabolic and regulatory events with Boolean formalisms, Environmental Microbiology, vol.6, issue.6, pp.2389-2402, 2011.
DOI : 10.1111/j.1462-2920.2011.02455.x

J. Hasty, D. Mcmillen, F. Isaacs, and J. Collins, Computational studies of gene regulatory networks: in numero molecular biology, Nature Reviews Genetics, vol.2, issue.4, pp.268-279, 2001.
DOI : 10.1038/35066056

H. De-jong, Modeling and Simulation of Genetic Regulatory Systems: A Literature Review, Journal of Computational Biology, vol.9, issue.1, pp.67-103, 2002.
DOI : 10.1089/10665270252833208

D. Ropers, V. Baldazzi, and H. De-jong, Model Reduction Using Piecewise-Linear Approximations Preserves Dynamic Properties of the Carbon Starvation Response in Escherichia coli, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.8, issue.1, pp.166-181, 2011.
DOI : 10.1109/TCBB.2009.49

URL : https://hal.archives-ouvertes.fr/hal-00793034

H. De-jong, J. Geiselmann, C. Hernandez, and M. Page, Genetic Network Analyzer: qualitative simulation of genetic regulatory networks, Bioinformatics, vol.19, issue.3, pp.336-344, 2003.
DOI : 10.1093/bioinformatics/btf851

URL : https://hal.archives-ouvertes.fr/inria-00072325

M. Abril, M. Buck, and J. Ramos, Activation of the Pseudomonas TOL plasmid upper pathway operon. Identification of binding sites for the positive regulator XylR and for integration host factor protein, J Biol Chem, issue.24, pp.26615832-15838, 1991.

N. Mermod, J. Ramos, A. Bairoch, and K. Timmis, The xylS gene positive regulator of TOL plasmid pWWO: Identification, sequence analysis and overproduction leading to constitutive expression of meta cleavage operon, MGG Molecular & General Genetics, vol.124, issue.2-3, pp.349-354, 1987.
DOI : 10.1007/BF00331600

P. Dominguez-cuevas, P. Marin, S. Busby, J. Ramos, and S. Marques, Roles of Effectors in XylS-Dependent Transcription Activation: Intramolecular Domain Derepression and DNA Binding, Journal of Bacteriology, vol.190, issue.9, pp.3118-3128, 2008.
DOI : 10.1128/JB.01784-07

I. Cases and V. De-lorenzo, Promoters in the environment: transcriptional regulation in its natural context, Nature Reviews Microbiology, vol.65, issue.2, pp.105-118, 2005.
DOI : 10.1046/j.1365-2958.2002.03065.x

F. Rojo, Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and interactions with the environment, pp.658-684

R. Moreno, P. Fonseca, and F. Rojo, The Crc Global Regulator Inhibits the Pseudomonas putida pWW0 Toluene/Xylene Assimilation Pathway by Repressing the Translation of Regulatory and Structural Genes, Journal of Biological Chemistry, vol.285, issue.32, pp.28524412-24419, 2010.
DOI : 10.1074/jbc.M110.126615

R. Silva-rocha and V. De-lorenzo, A composite feed-forward loop I4-FFL involving IHF and Crc stabilizes expression of the XylR regulator of Pseudomonas putida mt-2 from growth phase perturbations, Molecular BioSystems, vol.2, issue.11, pp.2982-2990, 2011.
DOI : 10.1111/j.1462-2920.2011.02455.x

S. Marques, M. Gallegos, M. Manzanera, A. Holtel, K. Timmis et al., Activation and repression of transcription at the double tandem divergent promoters for the xylR and xylS genes of the TOL plasmid of Pseudomonas putida, J Bacteriol, issue.11, pp.1802889-2894, 1998.

M. Koutinas, M. Lam, A. Kiparissides, R. Silva-rocha, M. Godinho et al., The regulatory logic of m-xylene biodegradation by Pseudomonas putida mt-2 exposed by dynamic modelling of the principal node Ps/Pr of the TOL plasmid, Environmental Microbiology, vol.36, issue.6, pp.1705-1718, 2010.
DOI : 10.1111/j.1462-2920.2010.02245.x

S. Inouye, A. Nakazawa, and T. Nakazawa, Expression of the regulatory gene xylS on the TOL plasmid is positively controlled by the xylR gene product., Proceedings of the National Academy of Sciences, vol.84, issue.15, pp.5182-5186, 1987.
DOI : 10.1073/pnas.84.15.5182

M. Gonzalez-perez, J. Ramos, and S. Marques, Cellular XylS Levels Are a Function of Transcription of xylS from Two Independent Promoters and the Differential Efficiency of Translation of the Two mRNAs, Journal of Bacteriology, vol.186, issue.6, pp.1898-1901, 2004.
DOI : 10.1128/JB.186.6.1898-1901.2003

F. Franklin, M. Bagdasarian, M. Bagdasarian, and K. Timmis, Molecular and functional analysis of the TOL plasmid pWWO from Pseudomonas putida and cloning of genes for the entire regulated aromatic ring meta cleavage pathway., Proceedings of the National Academy of Sciences, vol.78, issue.12, pp.787458-7462, 1981.
DOI : 10.1073/pnas.78.12.7458

V. Baldazzi, D. Ropers, Y. Markowicz, D. Kahn, J. Geiselmann et al., The Carbon Assimilation Network in Escherichia coli Is Densely Connected and Largely Sign-Determined by Directions of Metabolic Fluxes, PLoS Computational Biology, vol.11, issue.6, p.1000812, 2010.
DOI : 10.1371/journal.pcbi.1000812.s003

URL : https://hal.archives-ouvertes.fr/hal-00793021

S. Fraile, F. Roncal, L. Fernandez, and V. De-lorenzo, Monitoring Intracellular Levels of XylR in Pseudomonas putida with a Single-Chain Antibody Specific for Aromatic-Responsive Enhancer-Binding Proteins, Journal of Bacteriology, vol.183, issue.19, pp.1835571-5579, 2001.
DOI : 10.1128/JB.183.19.5571-5579.2001

M. Ronen, R. Rosenberg, B. Shraiman, and U. Alon, Assigning numbers to the arrows: Parameterizing a gene regulation network by using accurate expression kinetics, Proceedings of the National Academy of Sciences, vol.99, issue.16, pp.9910555-10560, 2002.
DOI : 10.1073/pnas.152046799

S. Kalir, J. Mcclure, K. Pabbaraju, C. Southward, R. M. Leibler et al., Ordering Genes in a Flagella Pathway by Analysis of Expression Kinetics from Living Bacteria, Science, vol.292, issue.5524, pp.2922080-2083, 2001.
DOI : 10.1126/science.1058758

M. Abril, C. Michan, K. Timmis, and J. Ramos, Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway., Journal of Bacteriology, vol.171, issue.12, pp.1716782-6790, 1989.
DOI : 10.1128/jb.171.12.6782-6790.1989

E. Rescalli, S. Saini, C. Bartocci, L. Rychlewski, V. De-lorenzo et al., Novel Physiological Modulation of the Pu Promoter of TOL Plasmid: NEGATIVE REGULATORY ROLE OF THE TURA PROTEIN OF PSEUDOMONAS PUTIDA IN THE RESPONSE TO SUBOPTIMAL GROWTH TEMPERATURES, Journal of Biological Chemistry, vol.279, issue.9, pp.2797777-7784, 2004.
DOI : 10.1074/jbc.M310580200

E. Vitale, A. Milani, F. Renzi, E. Galli, E. Rescalli et al., Transcriptional wiring of the TOL plasmid regulatory network to its host involves the submission of the sigma 54-promoter Pu to the response regulator PprA, Mol Microbiol, issue.3, pp.69698-713, 2008.

M. Worsey and P. Williams, Metabolism of toluene and xylenes by Pseudomonas putida (arvilla) mt-2: evidence for a new function of the TOL plasmid, J Bacteriol, vol.124, issue.1, pp.7-13, 1975.

R. Milo, S. Shen-orr, S. Itzkovitz, N. Kashtan, D. Chklovskii et al., Network Motifs: Simple Building Blocks of Complex Networks, Science, vol.298, issue.5594, pp.298824-827, 2002.
DOI : 10.1126/science.298.5594.824

S. Mangan and U. Alon, Structure and function of the feed-forward loop network motif, Proceedings of the National Academy of Sciences, vol.100, issue.21, pp.11980-11985, 2003.
DOI : 10.1073/pnas.2133841100

F. Rojo, D. Pieper, K. Engesser, H. Knackmuss, and K. Timmis, Assemblage of ortho cleavage route for simultaneous degradation of chloro- and methylaromatics, Science, vol.238, issue.4832, pp.1395-1398, 1987.
DOI : 10.1126/science.3479842

L. Glass and S. Kauffman, The logical analysis of continuous, non-linear biochemical control networks, Journal of Theoretical Biology, vol.39, issue.1, pp.103-129, 1973.
DOI : 10.1016/0022-5193(73)90208-7

D. Jong, H. Gouze, J. Hernandez, C. Page, M. Sari et al., Qualitative simulation of genetic regulatory networks using piecewiselinear models, Bull Math Biol, vol.66, issue.2, pp.301-340, 2004.
URL : https://hal.archives-ouvertes.fr/inria-00072181

V. De-lorenzo and K. Timmis, [31] Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived minitransposons, Methods Enzymol, vol.235, pp.386-405, 1994.
DOI : 10.1016/0076-6879(94)35157-0

K. Choi, J. Gaynor, K. White, C. Lopez, C. Bosio et al., A Tn7-based broad-range bacterial cloning and expression system, Nature Methods, vol.76, issue.6, pp.443-448, 2005.
DOI : 10.1128/AEM.67.4.1865-1873.2001

A. Holtel, K. Timmis, and J. Ramos, TOL plasmid, Nucleic Acids Research, vol.20, issue.7, pp.1755-1762, 1992.
DOI : 10.1093/nar/20.7.1755

. Silva-rocha, The logic layout of the TOL network of Pseudomonas putida pWW0 plasmid stems from a metabolic amplifier motif (MAM) that optimizes biodegradation of m-xylene, BMC Systems Biology, vol.5, issue.1, 20115.
DOI : 10.1093/nar/20.7.1755

URL : https://hal.archives-ouvertes.fr/hal-00784415