
HAL Id: hal-00784416
https://inria.hal.science/hal-00784416

Submitted on 4 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Genome dedoubling by DCJ and reversal
Antoine Thomas, Jean-Stéphane Varré, Aïda Ouangraoua

To cite this version:
Antoine Thomas, Jean-Stéphane Varré, Aïda Ouangraoua. Genome dedoubling by DCJ and reversal.
BMC Bioinformatics, 2011, 12 (Suppl 9), pp.S20. �10.1186/1471-2105-12-S9-S20�. �hal-00784416�

https://inria.hal.science/hal-00784416
https://hal.archives-ouvertes.fr


PROCEEDINGS Open Access

Genome dedoubling by DCJ and reversal
Antoine Thomas, Jean-Stéphane Varré*, Aïda Ouangraoua*

From Ninth Annual Research in Computational Molecular Biology (RECOMB) Satellite Workshop on Com-

parative Genomics

Galway, Ireland. 8-10 October 2011

Abstract

Background: Segmental duplications in genomes have been studied for many years. Recently, several studies have

highlighted a biological phenomenon called breakpoint-duplication that apparently associates a significant

proportion of segmental duplications in Mammals, and the Drosophila species group, to breakpoints in

rearrangement events.

Results: In this paper, we introduce and study a combinatorial problem, inspired from the breakpoint-duplication

phenomenon, called the Genome Dedoubling Problem. It consists of finding a minimum length rearrangement

scenario required to transform a genome with duplicated segments into a non-duplicated genome such that

duplications are caused by rearrangement breakpoints. We show that the problem, in the Double-Cut-and-Join

(DCJ) and the reversal rearrangement models, can be reduced to an APX-complete problem, and we provide

algorithms for the Genome Dedoubling Problem with 2-approximable parts. We apply the methods for the

reconstruction of a non-duplicated ancestor of Drosophila yakuba.

Conclusions: We present the Genome Dedoubling Problem, and describe two algorithms solving the problem in

the DCJ model, and the reversal model. The usefulness of the problems and the methods are showed through an

application to real Drosophila data.

Introduction

Gene duplication is an important source of variations in

genomes. Recently, several studies have highlighted bio-

logical evidence for abundant segmental duplications

that occur around breakpoints of rearrangement events

in the evolution of eukaryotes.

In mammals, an evidence for a strong association

between duplications, genomic instability and large-scale

chromosomal rearrangements in primate evolution was

first reported in [1]. Later in [2], a study of all evolu-

tionary rearrangement breakpoints between human and

mouse genomes reported that 53% of the breakpoints

were associated with segmental duplications, as com-

pared to 18% expected in a random assignment of

breaks. In [3], a first study of the human-mouse rearran-

gement breakpoints, considering only synteny blocks of

length larger than 100Kb and duplicated sequences of

length larger than 10Kb, showed that 25% (122/461) of

the breakpoints contained duplicated sequences of

length greater than 10kb.

The association between segmental duplications and

regions of breaks of synteny was also reported in the

Drosophila species group. In [4], an analysis of the

breakpoints of Drosophila yakuba compared to two

related species, Drosophila simulans and Drosophila

melanogaster, revealed that the breakpoint regions of

59% of the reversals (17/29) were associated with

inverted duplications of genes or other nonrepetitive

sequences. Further evidences of the recurrent presence

of repetitive sequences near breakpoints of rearrange-

ment in the evolution of Drosophila were also reported

in [5-7].

A rearrangement event is an operation that modifies

the organization of a given genome by cutting the gen-

ome at some points called breakpoints to glue the

exposed extremities in a different way. The biological
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phenomenon called breakpoint-duplication results in the

presence of the same genomic segment on both extre-

mities of a breakpoint in a rearrangement. Several biolo-

gical models have been presented to explain the

presence of duplicated sequences at rearrangement

breakpoint regions. These models are based on DNA

breaks repairs that produce duplicated segments because

of staggered Single-Strand-Breaks [3,4], or non-recipro-

cal genetic exchange in Double-Strand-Breaks [5]. Most

of these biological models support a nonrandom model

of chromosomal evolution that implicates a predomi-

nance of recurrent small-scale duplications and large-

scale evolutionary rearrangements within specific fragile

regions. Moreover, the genetic instability of such regions

is often suggested to be the cause rather than the

consequence of duplicated genomic architecture [3,8].

Interestingly, a growing number of the breakpoint-dupli-

cations detected in Supra-primates evolution have also

been linked to recurrent chromosomal rearrangements

associated with common diseases in the human popula-

tion [1-3,8,9]. In [10], breakpoint-duplications were also

identified in humam sex chromosomes, allowing to

order rearrangement events in time, based on the degree

of divergence of the breakpoint-duplicated sequences.

In this paper, we are interested in using the segmental

duplications of a given present-day genome that has

undergone breakpoint-duplication rearrangements, in

order to reconstruct a non-duplicated ancestral genome.

We formally define the breakpoint-duplication phenom-

enon, and introduce a combinatorial problem called the

Genome Dedoublíng problem. Given a genome that has

undergone breakpoint-duplication rearrangements, pos-

sibly with other rearrangements events, the problem

asks to find an ancestral genome such that the number

of rearrangement events needed to tranform the ances-

tor into the given genome is minimal. Note that the

Genome Dedoubling problem asks to find a non-

dupliated ancestor of a given duplicated genomes, as the

Genome Halving problem introduced in [11] that con-

sists of, given a genome that has undergone a whole-

genome duplication followed by rearrangement events,

finding the ancestral genome that was present right

before the whole-genome duplication event. However,

the two problems and their solutions are different as

they aim at recovering different types of duplication

events, breakpoint-duplications and whole-genome

duplications. As the Genome Halving problem is moti-

vated by the whole-genome duplication events in mole-

cular evolution, the Genome Dedoubling problem is

motivated by breakpoint-duplication events in molecular

evolution. Both problems are useful for the comparison

of genomes with duplicated segments.

In the following, we study the Genome Dedoubling

problem under the Double-Cut-and-Join (DCJ) and the

reversal rearrangement models. In Section Methods, we

formally present breakpoint-duplication (BD) rearrange-

ments and the Genome Dedoubling Problem. We show

that the problem can always be regarded as a Dedou-

bling Problem on totally duplicated genomes. In Section

Genome dedoubling by DCJ, we study the problem

under the DCJ model, on multichromosomal then uni-

chromosomal genomes. We prove the NP-completeness

of the problems by reduction to an APX-complete

problem, and provide algorithms with a linear time

complexity, except for an APX-complete part that is

2-approximable. In Section Genome dedoubling by

reversal, we study the problem under the reversal

model on oriented genomes, making use of some results

of the Hannenhalli-Pevzner (HP) theory [12] on sorting

by reversal described in [13,14]. We provide an algo-

rithm with a quadratic time complexity, except for an

APX-complete part that is 2-approximabe. In Section

Application, an application for the reconstruction of a

non-duplicated ancestor of Drosophila yakuba, using

data from [4], is presented.

Methods

In this section we give the main definitions and nota-

tions of duplicated genomes and rearrangements. Next,

we generalize the definitions of rearrangements in order

to introduce a formal definition of breakpoint-duplica-

tion rearrangements, and the Genome Dedoubling Pro-

blem studied in the paper.

Duplicated genomes

A genome consists of linear or circular chromosomes

that are composed of genomic markers. Markers are

represented by signed integers such that the sign indi-

cates the orientations of markers in chromosomes. By

convention, – –x = x. A linear chromosome is repre-

sented by an ordered sequence of signed integers sur-

rounded by the unsigned marker ○ at each end

indicating the telomeres. A circular chromosome is

represented by a circularly ordered sequence of signed

integers. For example, (1 2 –3) (○ 4 –5 ○) is a genome

composed of one circular and one linear chromosome.

Each genome contains at most two occurrences of each

marker. Two copies of a same marker in a genome are

called paralogs. If a marker x is present twice, one of the

paralogs is represented by x . By convention, x x= .

Here, such markers represent segments duplicated by a

breakpoint-duplication rearrangement.

Definition 1 A duplicated genome is a genome in

which a subset of the markers are duplicated.

For example, ( ) ( )1 2 3 2 4 5 1 5− − −   is

a duplicated genome where markers 1, 2, and 5 are

duplicated. A non-duplicated genome is a genome in

which no marker is duplicated. A totally duplicated
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genome is a duplicated genome in which all markers are

duplicated. For example, ( ) ( )1 2 2 3 1 3− −  
is a totally duplicated genome.

An adjacency in a genome is a pair of consecutive

markers. Since a genome can be read in two directions,

the adjacencies (x y) and (–y –x) are equivalent. For

example, the genome ( ) ( )1 2 2 3 1 3− −   has

seven adjacencies, ( ),( ),( ),( ),( ),( )1 2 2 2 2 1 3 3 1 1 3− − − − ,

and ( )3  .

Definition 2 A dedoubled genome is a duplicated

genome G such that for any duplicated marker x in G,

either( )x x , or( )x x is an adjacency of G.

For example, ( ) ( )1 1 2 3 5− − − − −2  4 5 
is a dedoubled genome. The reduction of a dedoubled

genome G, denoted by GR, is the genome obtained

from G by replacing every pair ( )x x , or ( )x x by a

single marker x. For example the reduction

of G = − − − − −( ) ( )1 1 2 3 52  4 5  is GR =

(1 –2) (○ –3 4 –5 ○).

Rearrangement

A rearrangement operation on a given genome cuts a

set of adjacencies of the genome called breakpoints and

forms new adjacencies with the exposed extremities,

while altering no other adjacency. In this paper, we con-

sider two types of rearrangement operation called dou-

ble-cut-and-join (DCJ) and reversal. In the sequel, the

breakpoints of a rearrangement operation are indicated

in the genome by the symbol ▲, and the new adjacencies

are indicated in the genome by dots.

A DCJ operation on a genome G cuts two different

adjacencies in G and glues pairs of the four exposed

extremities to form two new adjacencies. For example,

the following DCJ cuts adjacencies (1 2) and ( )−5 1 to

produce ( )1 1 and (–5 2).

( ) ( ) ( )1 2 3 2 4 5 1 3 5 4 5 2 3 2 1 1 3 5 − − − − → − ⋅ − − ⋅ −    

A reversal on a genome G is a DCJ operation that cuts

two adjacencies (a b) and (c d) in a chromosome of G of

the form (… a b … c d …) to form two new adjacencies

adjacencies (a –c) and (–b d), thus reversing the orien-

tation of the segment of G beginning with marker b and

ending with marker c. For example, the following rever-

sal cuts adjacencies ( )−5 1 and ( )5  and reverses

the segment 1 3 5− .

( ) ( ) ( ) ( )1 2 3 2 4 5 1 3 5 1 2 3 2 4 5 5 3 1− − − − → − − − ⋅ − − ⋅      

A DCJ (resp. reversal) scenario between two genomes

A and B is a sequence of DCJ (resp. reversal) operations

allowing to transform A into B. The length of a scenario

is the number of rearrangement operations composing

the scenario.

The DCJ (resp. reversal) distance between two

genomes A and B is the minimum length of a DCJ

(resp. reversal) scenario between A and B.

Breakpoint-duplication rearrangements

We now generalize the definitions of rearrangement

operations to account for possible duplications at their

breakpoints.

A 1-breakpoint-duplication DCJ (1-BD-DCJ) operation

on a genome G is a rearrangement operation that alters

two different adjacencies (a b) and (c d) of G, by:

• first adding marker a at the appropriate position to

produce segment ( )a a b ,

• then applying a DCJ operation that cuts adjacencies

( )a a and (c d) to produce either (a d) and ( )c a , or

(a –c) and ( )−a d .

A 2-breakpoint-duplication DCJ (2-BD-DCJ) operation

on a genome G is a rearrangement operation that alters

two different adjacencies (a b) and (c d) of G, by:

• first adding markers a and c at the appropriate posi-

tions to produce segments ( )a a b and ( )c c d ,

• then applying a DCJ operation that cuts adjacencies

( )a a and ( )c c to produce either ( )a c and

( )c a , or (a –c) and ( )−a c .

Definition 3 A breakpoint-duplication DCJ (BD-DCJ)

operation on a genome G is either a 1-BD-DCJ opera-

tion, or a 2-BD-DCJ operation.

In the sequel, if some markers are duplicated by a BD-

DCJ operation, they are indicated in bold font in the

initial genome. For example, the following rearrange-

ment is a 2-BD-DCJ operation that acts on adjacencies

(–2 –1) and (4 –3), and duplicates markers 2 and 4.

The intermediate step resulting in the duplication of

markers 2 and 4 is shown above the arrow.

( ) ( ) ( )
( ) ( )

1 3 3 4 2 1 2 4
1 2 2 3 4 4

   2 4  
      

− ⋅ − ⋅ ⋅ ⋅ −
⋅ ⋅ − −

→

To summarize, a BD-DCJ operation consists of a first

step in which one or two markers are duplicated, fol-

lowed by a second step where a DCJ operation is

applied. Similarly, we now define a breakpoint-duplica-

tion reversal (BD-reversal) operation.

Definition 4 A breakpoint-duplication reversal (BD-

reversal) operation on a genome G is a BD-DCJ opera-

tion such that the DCJ operation applied in the second

step of the BD-DCJ operation is a reversal.

For example, the following rearrangement is a

BD-reversal that is a 1-BD-DCJ operation that acts on

adjacencies (2 –1) and (–3 4), and duplicates marker 2.

( ) ( )
( )    

1 3 4 1 2 3 2 4
1 2 2 3 4

   − − ⋅ − ⋅ ⋅
⋅ − − −

→
2   

A BD-DCJ scenario (resp. BD-reversal scenario)

between a non-duplicated genome A and a duplicated
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genome B is a sequence composed of BD-DCJ (resp.

BD-reversal) operations and possibly DCJ (resp. reversal)

operations allowing to transform A into B.

Definition 5 Given a non-duplicated genome A and a

duplicated genome B, the BD-DCJ distance (resp. BD-

reversal distance) between A and B is the minimal

length of a BD-DCJ (resp. BD-reversal) scenario between

A and B.

We now give an obvious, but useful property allowing

to reduce a BD-DCJ scenario to a DCJ scenario.

Proposition 1 Given a non-duplicated genome A and

a duplicated genome B, for any a BD-DCJ (resp. BD-

reversal) scenario between A and B, there exists a DCJ

(resp. reversal) scenario of same length between a

dedoubled genome D and B such that the reduction of D

is A (DR = A).

Proof. Let S be a BD-DCJ (resp. BD-reversal) scenario

between A and B. D is the genome obtained from A, by

adding, for any marker x duplicated by a BD-DCJ opera-

tion in S, the marker x in a way to produce either

adjacency ( )x x , or ( )x x as done in S. Thus, DR =

A. The DCJ (resp. reversal) scenario between DR and B

having the same length as S, is the sequence of DCJ

(resp. reversal) contained in S or in BD-DCJ (resp. BD-

reversal) operations of S, with the same order as in S. ■

For example, in the following, a BD-reversal scenario

of length 4 between A = (○ 1 2 3 4 5 ○) and

B = − − − − −( ) 1 4 2 3 5 2 1 4 3 5
induces a reversal scenario of length 4 between

D = ( ) 1 1 2 2 3 3 4 4 5 5 and B.

BD-reversal scenario Reversal scenario

A D= =( ) (  1 4  2 3 5 1 1 2 22 3 3 4 4 5 5

1 4 3 1 4 5 1 4 3 3 2 2 1 4 5 5

1 4 2 3



  






   


)

( ) ( )

(

− − − − − − − − − −

−

2

−− − − − −

− − − −

2 1 4 5 1 4 2 3 3 2 1 4 5 5

1 4 2 4 1 2 1 4 2 3 3 4 1 2

  

  

  
  

) ( )

( ) (3 5 55 5

1 4 2 3 5 2 1 4 3 5 1 4 2 3 5 2 1 4 3 5

 
   

)

( ) ( )− − − − − − − − − −

Genome dedoubling problem

We now state the genome dedoubling problems consid-

ered in this paper.

Genome dedoubling problem: Given a duplicated

genome G, the DCJ (resp. reversal) genome dedoubling

problem consists of finding a non-duplicated genome H

such that the BD-DCJ (resp. BD-reversal) distance

between H and G is minimal.

Given a duplicated genome G, we denote by ddcj(G)

(resp. drev(G)), the minimum BD-DCJ (resp. BD-reversal)

distance between any non-duplicated genome and

G. From Proposition 1, the following proposition is

straightforward.

Proposition 2 Given a duplicated genome G, the DCJ

(resp. reversal) genome dedoubling problem on G is

equivalent to finding a dedoubled genome D such that

the DCJ (resp. reversal) distance between D and G is

minimal.

The next proposition describes a further reduction of

the genome dedoubling problem on a duplicated gen-

ome G.

Proposition 3 Given a duplicated genome G, the DCJ

(resp. reversal) genome dedoubling problem on G is

equivalent to the DCJ (resp. reversal) genome dedou-

bling problem on the totally duplicated genome GT

obtained from G by replacing every maximal subse-

quence of non-duplicated markers beginning with a mar-

ker x by the pair x x .

Proof. See proof in Additional file 1 (Supplemental

proofs). ■

For example, solving the DCJ (resp. reversal)

genome dedoubling problem on

G = − − − − − −( ) 1 4 1 8 4 87 5 10 2 6 9 3

is equivalent to solving it on

G
T

= − − − − − − −( ) 1 4 1 8 4 87 7 5 5 2 2 .

The transformations applied on G to obtain GT are indi-

cated in bold font.

In the sequel, G will always denote a totally duplicated

genome, and we focus in Sections Genome dedoubling

by DCJ and Genome dedoubling by reversal on the pro-

blem of finding a dedoubled genome D such that the DCJ

(resp. reversal) distance between D and G is minimal.

Results

In this section, we first study the Genome Dedoubling

Problem under the DCJ model. Next, we study the pro-

blem under the reversal model on oriented genomes

described in the Hannenhalli-Pevzner (HP) theory on

sorting by reversal [12-14].

Genome dedoubling by DCJ

In this section, G denotes a totally duplicated genome.

In order to give a formula for the DCJ dedoubling dis-

tance of G, ddcj(G), we use a graph called the dedoubled

adjacency graph of G.

Dedoubled adjacency graph

Definition 6 The dedoubled adjacency graph of G,

denoted by( )G , is the graph whose vertices are the

adjacencies of G, and for any marker x there is one edge

between the vertices (x u) and ( )v x , and one edge

between the vertices (y x) and( )x z .

An example of dedoubled adjacency graph is depicted

in Fig. 1. In the following, we will simply refer to

dedoubled adjacency graphs as adjacency graphs.

Note that all vertices in ( )G have degree one or

two. Thus, the connected components of ( )G are

only paths and cycles. These paths and cycles are called

elements of ( )G .

Given a couple of paralogous markers ( , )x x , an ele-

ment of the graph ( )G is said to contain the couple
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( )v x if it contains the edge linking vertices (x u) and

( )v x , or the edge linking vertices (y x) and ( )x z .

By definition, a couple ( , )x x can possibly be contained

in only one element A of ( )G if element A contains

both edges (( ),( ))x u v x and (( ),( ))y x x z . In

this case, A is said to contain twice the couple ( , )x x ,

and A is called a duplicated element of ( )G . If an ele-

ment A contains no couple ( , )x x twice, then it is called

a non-duplicated element of ( )G . If the two edges

(( ),( ))x u v x and (( ),( ))y x x z belong to two dif-

ferent elements A and B of ( )G , then A and B will

both contain ( , )x x . In this case, we say that A and B

intersect. If two elements A and B do not intersect, then

we say that A and B are independent. For example in

Fig. 1 the two paths of the adjacency graph are dupli-

cated, while the three cycles are non-duplicated. The

leftmost path and the leftmost cycle intersect because

they both contain the couple ( , )2 2 , while the two paths

are independent. Given an element A of ( )G , the set

induced by A is the set of couples ( , )x x contained in A.

General sorting

In this section, we prove the following theorem:

Theorem 1 Let n be the number of couples of paralo-

gous markers in G. Let Ci be the maximum size of a subset

of non-duplicated pairwise independent cycles in( )G .

The DCJ dedoubling distance of G is ddcj(G) = n – Ci.

For example, in Fig. 1, the maximum size of a subset

of non-duplicated pairwise independent cycles is 2 as

there are three cycles, and the two rightmost cycles

intersect. The distance would then be ddcj(G) = 8 – 2 =

6. To prove Theorem 1, we use the following properties:

Property 1 Let n be the number of couples of paralo-

gous markers in G.

1. The maximum size Ci of a set of non-duplicated

pairwise independent cycles in the graph( )G is n.

2. If G is dedoubled genome, then( )G contains n

non-duplicated pairwise independent cycles, each con-

taining a single couple of paralogous markers, plus possi-

bly other cycles. In this case, Ci = n.

3. A DCJ operation can only alter the maximum size

Ci of a set of non-duplicated pairwise independent cycles

by –1, 0 or +1.

Proof. See proof in Additional file 1 (Supplemental

proofs). ■

Algorithm 1 is an algorithm that provides a n – Ci

length DCJ scenario transforming G into a dedoubled

genome.

Algorithm 1  Finding a shortest DCJ scenario transforming a  totally duplicated genome  into a dedoubled genome    

1

G

:: .

:

 Construct 

2  Choose a maximum size set  of non-d

 G

Si

( )

uuplicated pairwise independent cycles

3   Any couple 

.

: for x,,

: ,

x

x x

( )

( )

 of paralogous markers 

4    is containe

do

if dd in a cycle  of  containing more than one couple c Si then

55  Perform the DCJ that creates adjacency  o: x x( ) rr  by splitting 

             into two cycles  one of

x x c( )

,   the cycles containing only the couple 

6  

x x, .

:

( )

RReplace  in  by the two new cycles

7  

8

c Si .

:

:

else

. Perform any DCJ that creates adjacency  or x x x x( ) ( )

99    

1   

:

:

end if

end for0

We now have all the pre-requisites to give the proof

of Theorem 1. The proof can be found in Additional file

1 (Supplemental proofs).

Lemma 1 Choosing a maximum size set of non-dupli-

cated pairwise independent cycles in( )G is an APX-

complete problem, approximable with an approximation

ratio of 2.

Proof. See proof in Additional file 1 (Supplemental

proofs). ■

From Lemma 1, the complexity of the Genome

Dedoubling problem by DCJ follows immediately.

Corollary 1 The Genome Dedoubling problem by DCJ

is NP-complete. Algorithm 1 solves the problem in linear

time complexity, except for the computation of the set of

cycles Si that is 2-approximable.

Sorting between linear unichromosomal genomes

In this section, we search for a minimum length DCJ

scenario that transforms a duplicated genome consisting

of a single linear chromosome into a dedoubled genome

consisting of a single linear chromosome. The results of

this section will then be used in the next section for the

study of the Genome Dedoubling problem under the

reversal model.

In this section and the sequel, G denotes a totally

duplicated genome consisting of a single linear chromo-

some. In this case, the graph ( )G contains exactly

one path, and possibly several cycles.

Definition 7 The path in( )G is said to be valid if it

contains every couple( , )x x of paralogous markers in G.

◦ 4 2 −1 −3 −1 2 −4 ◦ ◦ 5 −3 6 5 6 7 8 8 7 ◦

•

• ••

••••

•

• ••

••••

•

• ••

••••

•• •

• ••

••••

••••

••••

••••

•• ••

•• ••

•• •

Figure 1 The adjacency graph of G = − − − − −( ) ( )   4 2 1 3 1 2 4 5 3 6 5 6 7 8 8 7 .
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A DCJ operation that merges a cycle c of ( )G in the

path p is a DCJ operation that acts on an adjacency of c

and an adjacency of p, thus gathering c and p into a

longer path.

Note that if G is a dedoubled genome, then the path

in ( )G is necessarily valid. We call such a genome a

dedoubled linear genome. So, if the path in ( )G is not

valid, then any DCJ scenario transforming G into a

dedoubled linear genome will merge, in the path, cycles

containing the couples ( , )x x that are not contained in

the path.

In the following, we always denote by m the minimum

number of cycles required to make the path of ( )G

valid. We also denote by Ci the maximum size of a sub-

set of non-duplicated pairwise independent cycles. First,

we have the following property:

Property 2 Let C be the number of cycles in( )G . We

have Ci = C – m.

Proof. See proof in Additional file 1 (Supplemental

proofs). ■

From Property 2, we then have the following lemma.

Lemma 2 Let n be the number of couples of paralo-

gous markers in G. Let C be the number of cycles

in( )G . The minimum length d of a DCJ scenario

transforming G into a dedoubled genome consisting of a

single linear chromosome equals d = n – C + 2m.

Proof. See proof in Additional file 1 (Supplemental

proofs). ■

From Property 2 and Lemma 2, we immediately have

the following complexity.

Corollary 2 The problem of finding a DCJ scenario

transforming G into a dedoubled genome consisting of a

single linear chromosome is NP-complete. Algorithm 1,

in which we add the line (2’: Merge in the path all the

cycles that are not in Si) between lines 2 and 3, solves

the problem in linear time complexity, except for the com-

putation of the set of cycles Si that is 2-approximable.

Genome dedoubling by reversal

We build and use a graph that behaves like the arc over-

lap graph used in [13] for the Hannenhalli-Pevzner the-

ory of sorting by reversal [12]. The genome G consists

of a single linear chromosome.

Dedoubled overlap graph

For any couple ( , )x x of paralogous markers in G, the

segment of ( , )x x is the smallest segment of G contain-

ing both markers x and x . For example, in genome

G = − − − −( ) 1 3 1 2 4 3 2 4 , the seg-

ment of ( , )1 1 is ( )1 3 1 , and the segment of ( , )2 2
is ( )− − −2 4 3 2 .

Definition 8 The dedoubled overlap graph of G,

denoted by ( )G , is the graph whose vertices are all the

couples( , )x x of paralogous markers of G, and there is an

edge between two vertices( , )u u and ( , )v v if the segments

of u and v overlap.

An example of dedoubled overlap graph is depicted in

Fig. 4.a. In the following, we will simply refer to

dedoubled overlap graphs as overlap graphs.

The vertex ( , )x x of the graph  ( )G is oriented if x and

x have different signs inG, otherwise it is unoriented. If the

vertex ( , )x x is oriented then there exists a reversal opera-

tion denoted by Rev( )x x that produces the adjacency

( )x x and a reversal operation denoted by Rev( )x x

that produces the adjacency ( )x x . For example, in gen-

ome G = − − − −( ), ( , ) 1 3 1 2 4 3 2 4 3 3 
is an oriented vertex of  ( )G .

Rev

Rev

( ) ( ) ( ).

( ) (

3 3 1 3 1 2 4 3 2 4 1 3 3 4 2 1 2 4

3 3 1 3 1 2 4

= − − − − → − −

= − − −

   
 33 2 4 1 4 2 1 3 3 2 4− → − − − −  ) ( ).

The overlap graph of G behaves like arc overlap

graphs used in [13] for the Hannenhali-Pevzner theory

of sorting by reversal [12]. Indeed, given an oriented

vertex ( , )x x of the graph  ( )G , performing the rever-

sal Rev( )x x or Rev( )x x complements the sub-

graph induced by ( , )x x and all its neighbouring

vertices, and changes the orientation of all vertices in

this subgraph (see Fig. 4.b).

A connected component of the graph  ( )G is

oriented if it contains at least one oriented vertex, other-

wise it is unoriented. A genome is oriented if all con-

nected components of the graph  ( )G are oriented,

otherwise it is unoriented.

Given an oriented vertex ( , )x x of the graph  ( )G ,

the score of ( , )x x is the number of oriented vertices in

the overlap graph of the genome obtained after applying

Rev( )x x on G. Note that the same number of

oriented vertices is obtained after applying Rev( )x x

on G.

Property 3 Let ( , )x x be an oriented vertex of ( )G of

maximum score. Performing Rev( )x x or Rev( )x x does

not create new unoriented connected components in the

overlap graph of the genome obtained.

Proof. See proof in Additional file 1 (Supplemental

proofs). ■

In the sequel, we focus on sorting oriented genomes

using reversal dedoubling scenarios. A totally duplicated

genome G consisting of a single linear chromosome is

called a valid-path genome if the single path in ( )G is

valid. Otherwise, it is called a non-valid-path genome.

Sorting an oriented valid-path genome

In this section, we consider an oriented valid-path gen-

ome G. With n being the number of couples of paralo-

gous markers in G, we have the following theorem:

Theorem 2 Let G be an oriented valid-path genome.

Let C be the number of cycles in( )G . The reversal

dedouhling distance of G is drev(G) = n – C.
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http://www.biomedcentral.com/1471-2105/12/S9/S20

Page 6 of 9



Proof. See proof in Additional file 1 (Supplemental

proofs). ■

Algorithm  Finding a shortest reversal scenario transform2 iing an oriented genome  into a dedoubled genome    

1  Co

G

: nnstruct 

1  Construct 

3  Choose a maximum size s





G

G

( )

( )

.

: .

: eet  of non-duplicated pairwise independent cycles

4  Me

Si .

: rrge in the path all the cycles that are not in 

5  

Si.

: whilee do  is not a dedoubled genome 

6 Pick a maximum sco

G

: rre vertex  in 

7   is contained in a

x x G

x x

, .

: ,

( ) ( )

( )



if   cycle  of  

8  Choose between Rev  and

c S

x x

i then

: ( )   Rev  the reversal that splits  into two cycles  and ( ) ,x x c pperform it

9  Replace  in  by the two new cyc

.

: c Si lles

1  Apply the modification induced by the rev

.

:0 eersal on 

11  

12  Perform any revers

 G( ) .

:

:

else

aal that creates adjacency  or 

1        

14

( ) ( ).

:

:

x x x x

3 end if

   end while

Sorting an oriented non-valid-path genome

In this section, G denotes an oriented non-valid path

genome. At least m cycles of ( )G have to be merged

in the path to make it valid.

An edge (( ),( ))x u v x or (( ),( ))y x x z of the

adjacency graph ( )G is called oriented if markers x

and x have different signs. Note that extracting a cycle

from any element of the graph ( )G requires this ele-

ment to contain oriented edges. It is easy to see that

given two adjacencies picked in a given element, a rever-

sal acting on these adjacencies will extract a cycle if and

only if the path linking these adjacencies contains an

odd number of oriented edges. Thus, we have the fol-

lowing lemma:

Lemma 3 Let G be an oriented non-valid-path gen-

ome. Merging a cycle of( )G in its path never creates

unoriented connected components in the overlap graph of

the genome obtained.

Proof. See proof in Additional file 1 (Supplemental

proofs). ■

Theorem 3 Let G be an oriented non-valid-path gen-

ome. Let C be the number of cycles in the

graph( )G and m be the minimum number of cycles to

merge in the path to make it valid. The reversal dedou-

bling distance of G is drev(G) = n – C + 2m.

Proof. See proof in Additional file 1 (Supplemental

proofs). ■

Prom Lemma 1 and Property 2, the complexity of the

Genome Dedoubling problem by reversal on oriented

genomes follows immediately.

Corollary 3 The Genome Dedoubling problem by

reversal on oriented genomes is NP-complete. Algorithm

2 solves the problem in quadratic time complexity,

except for the computation of Si that is 2-approximable.

Application

We applied Algorithm 2 to reconstruct an ancestral chro-

mosome for the chromosome 2 of Drosophila yakuba

using a dataset obtained from [4] with Drosophila melano-

gaster used as the outgroup. The results obtained are in

good agreement with the biological results explaining the

evolution of the chromosome 2 from Drosophila yakuba

to Drosophila melanogaster in the litterature [4,15]. See

Additional file 2 (Experimental results) for a description of

the dataset and the results of the application.

Conclusion

In this paper, we introduced the genome dedoubling

problem in the DCJ rearrangement model, NP-complete

a.

(

1, 1
)

(

2, 2
)

(

3, 3
)

(

4, 4
)

(

5, 5
)

(

6, 6
)

b.

(

1, 1
)

(

2, 2
)

(

3, 3
)

(

4, 4
)

(

5, 5
)

(

6, 6
)

Figure 2 a. The overlap graph of G = − − − −( ) 1 3 1 2 4 3 2 4 5 6 5 6 . Oriented vertices are colored in

grey. The graph  ( )G has two connected components, one oriented and one unoriented. b. the overlap graph obtained after applying the

reversal Rev( )3 3 to produce adjacency( )3 3 .

◦ A −B−A−B C D −C−E−F−DG−H−GH I −J−F−E−I J K −L−M−K−L−M ◦

• ••

••••

•

• ••

••••

•

• ••

••••

•

• ••

•• ••

••••

•• ••

•• ••

•• ••

•• ••

•• ••

•• ••

••••

••••

•• ••

•• ••

•• ••

•• ••

•• ••

••••

•• ••

••••

•• •

Figure 3 The adjacency graph of G = (○ A –B –A –B C D –C –E –F –D G –H –G H I –J –F –E –I J K –L –M –K –L –M ○).
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in both the multichromosomal and the linear unichro-

mosomal case, by reduction to an APX-complete pro-

blem. For both cases, we described an algorithm solving

the problems in linear time complexity, except for an

APX-complete part that is 2-approximable. We also pre-

sented some results on the Genome Dedoubling pro-

blem by reversal, providing an algorithm solving the

problem on oriented genomes in quadratic time com-

plexity, except for an APX-complete part that is 2-

approximable. The case of unoriented genomes in the

reversal model will be treated in a future paper. Unsur-

prisingly, partial results obtained so far tend to show

that the general distance formula can be written as drev
(G) = n – C + 2m + t, with t corresponding to the cost

of genome orientation. However, the cost t here differs

from the orientation cost described in the classical

reversal theory based on the unoriented component tree

[14]. In our case, the structure of the graph ( )G

allows to orient components while not decreasing the

number of cycles, or even increasing it in some cases.

This requires proper identification of different kinds of

merging reversals and further extensions on the data

structures presented in this paper.

The second obvious extension of the present work, as

in the the Genome Halving problem theory [16], is to

generalize the Genome Dedoubling problem defined on

a single genome, to the Guided Genome Dedoubüng pro-

blem, that asks to find a non-duplicated genome that

minimizes the breakpoint-duplication distance to a

given duplicated genome, plus the distance to a given

non-duplicated genome. A further extension of this

work consists of taking account of the degree of diver-

gence of the breakpoint-duplicated sequences to order

the rearrangement operations in time as done in [10].

Additional material

Additional file 1: Supplemental proofs Additional file 1 is a PDF file

containing the proofs of Proposition 3, Property 1, Lemma 1, and

Property 3.

Additional file 2: Experimental results Additional file 2 is a PDF file

containing a description of an application of the methods to real

Drosophila data.
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